The Alternative Csound Reference Manual

Barry Vercoe
MIT Media Lab

Other Contributors

Edited by
John ffitch

Jean Piché

Peter Nix

Richard Boulanger

Rasmus Ekman

David Boothe

Kevin Conder

The Alternative Csound Reference Manual
by Barry Vercoe, and Other Contributors
Edited by John ffitch

Edited by Jean Piché

Edited by Peter Nix

Edited by Richard Boulanger

Edited by Rasmus Ekman

Edited by David Boothe

Edited by Kevin Conder

4.22-1 Edition
Copyright © 1986, 1992 by Massachusetts Institute of Technology

Table of Contents

Preface 23
Preface to the CSOUNA MANUALccuuviiiiiiiiiieeeeeeee ettt ettt e e e e e s ettt e e e e essssassateeeesessssssaseessessssnsns 23
COPYTIGNT INOTICE......eeutereieriieieteteete ettt sttt sb e st b e st ea e s bt s saesesbeeseesaenesnesmnennenne 23
(070 11051 0101 10) <Nt 24
Why is this called the Alternative Csound Reference Manual?...........ccccceererieieneninnieneneneeneeneneneeseeees 24

I. Overview W27
1. IETOAUCTION ceeetieeeieieeeee ettt ettt ettt e e e e saaaaeeeeesesssaaaaaaeeesessssassssaeessssssssnsssaeessssssssnsssaeesssssssssssaeesssnnns 29

Where to Get Public Csound and the Csound Manual...........cccccuuveiiiiiiiiiiiiiieeiccceieeeee e 29
|3 () WA (o T s K =1 | M OFT 010 s Vo USROS 29
510 16 D 29

JAY B Tt 1 0 10 < o RO USRS 29
MS-DOS and WINAOWS 95/ INT ...ttt e e eeeetrree e e e e eesssassreesseeesssssaseesseeessnes 29
WINAOWS 95798/ 2000.......00ceeieeeeeeeieeeeeeeeeiierrteeeeeeesssrsreeeeeeesssssssseeessssssssssssseessssssssssssssessssssssssssees 29

(01 915 g 34 F= 1 (0 s 4 K- OO 29

The CSoUNd Mailing LIStccceiriiiiiiiiiiieteteeee ettt ettt sbe e sbe e bt s bt e sbeesbeesbe s beesbeesveebenane 29
BUZ REPOTLS ..ottt ettt st sttt e enbe s sae s be e e ae e sbaesennesanne 29

A N o TSl OF:To 18 1 Te @10} 0's 1 s o =1 Ue AN 31
(9]¢ [Q6] i 35 (=116 (<] s Lol < SRR 31
DIESCIIPTION. ¢ eeeuteetieteeteeste et et et et et et e bt e bt e bt e be s bt s be s bt e besasesabesabesasesasesasesaseeasesasesasesasesasesasesnsesnses 31
CommMANd-lNE FIAGSccuveiuiriiriiiierereeeeree ettt st sttt se e s b s sbesbe s saesnesnes 32
Unified File Format for Orchestras and SCOTESccuviiievuveiiieieiiiiiieeeeereeeeeieeeeesrreeessareeeessaneesessneeas 36
DIESCTIPTION .ttt ettt et b e bt e bt e bt e bt e b e e e be e beeese e beesseeseeseesseesesseeseenne 36
Structured Data File FOTTNALuuvveiiiiiiiiieeeeeee ettt e e e e et e e e e e s s sasaseeeeeeeessnnsanees 37
Mandatory EIBIMIENEScc.ceeuiiriiiriiiiieiteiteetesttesit ettt sttt et esreesre e st esseesbeesbeesseesseesseesseenne 37

OPLIONS ..ottt bbb e 37

INSEIUMENTS (OTCIESTIA) wevvvveereeeeeeeeeeeeieeeseeseeeeeeessesesesssesssnnes 37

SCOTE oottt eeeeeeeeeeeeeeeeeeeeeaeeaaeaaeaaaaaanes 37

Optional EIEIMENTS....c..covioiiiriirieieieieierteeeteeetestete ettt ssesae e see et sesse e nesaens 37

INCIUAEd BASE64 FAlES.....uueeeeiiiiiieeeeeeeee ettt e e e e e e s ba e e e e e e e snnes 37

VETSion BIOCKINGccuiviiriiiiiiiiniiteiesieseetetestt sttt sttt et et sbe s s ebesaesaeens 37
EXAIMPIE....eitiiiieeiieetecteeteet ettt ettt s e st e ste e s beesreesbeesbaesseesse e seasseesseesseessaenseenne 38

Command Line Parameter Fileoooo ittt ettt e e e e e s aasae e e e e e e s eaasanees 38
SCOTE File PrEPTOCESSITIZ «..ceuvienviiiiiiieieiieeriteritette ettt ettt et e st sae e bt s sbe e beesbe e be e beesbe e bessbeesbessesnnes 38
THE EXITACT FEATULE......ccooieeeeeeiiieeeeeeeeeeeeee e eeeeitt et e e e e e e eaaaaeeeseeesssassaeeeeesssssassssesesssssssssssesesesssssnes 39
Independent Pre-Processing With SCSOTTc..cecvevuererieienienineeeeneeeeeeseeee e 39

3. SYNtAX Of the OTCRESITAccvevuieiieieiereeteteeeeet ettt ettt st et e st e sbe s st et e sbesbe s s ebesbessesasensassassesns 41
DiITECTOTIES ANA FILS....ciiiieeieieiieeeeeeeeeeeee ettt ettt e e e e s s ae e e e e e e s ssasabeeeeeesssssasaseeeesesssssasssaeeseens 41
JA\[o 5 813 0 o] E= 1 40 1 < T RR S R 41
Orchestra StAtEIMENT TYPEScetervererieienieneetenterteseetestestesteestestessesseesessessesssessessessesssensessassasssensessesses 42
CoNStANTS ANA VATIADIES.......uvviiiiiiiiiieeiieeeeeeeeete ettt ettt e e e e s s et b bt e e eeessssasaseeeeeessssnsssaeeeeeas 42
EXPIESSIONS ittt ettt et e st e et e s bt e e bt e e eab e e ea bt e e bt e e bt e e eabeeeabe e e beeereeeaneeean 43
Orchestra HEader STATEIMEIIES.covuveiiiiiieeiieieeeeeereeeeerireeeeeseeeeesaeeeeesaseeeessssesssssssessssssesssssssesesssssesssns 44
INStrumMent BIOCK STATEIMIEIIScoooueeieiiiiieeeeeeeeeeee ettt e e e e eaat et e e e e e s saabr et e e e eesssssaseeeeeesssssnsssaeeeeeas 44
AVZ R u =1 o) (S0 BN L =11 12210 (o) o WU 44
T o ST 0 a0 ho o T<) o Lo @10} s L s o) FUN SRR 45
(0 (o Y63 @) s 15 (o) IFTEE SRR 45
(@00} s e Fiu o) o F=1 RV£ 1 LU 1T SRR 45
Duration CONTIOL STATEIMEIILSeeiivuveiiiiiiiieieieeeeeereeeeereeeeeiaeeeeesaeeeeessaeeeeessseesssssesessssesesssssesesssssesesns 45
Introduction to FLTK Widgets and GUI cONtrollers.........oeeceeviererereenienenenierieneeeeeeseeneeeee e 45
I 2l D 000 01 211 5 1) S 47
FLTK VAIUATOTIS ...c.uvvveiieieeieeeieeeeeeteeeceieee e ettt e e ettt e e eeataeeeessseeesessseesssssseesensssessessesesasssesssssseessssreessns 47
Other FLTK WIAGETS.....cecuiruireeierienieeiteiestesieeiteteste sttt et st st e stesbe s st estestesbesseestessesbesseensensessesnenns 47
Modifying FLTK Widget ADPEATAIICEc..coveverrererieiinieriteienieneeeesresresseeseessesseeseessessessene 47

General FLTK Widget-related OPCOAEScc.eeuevieienierinierienienieieniesiestetesiesieetesee s saeenas 48

FLTK SIHACT BANK....ciiiiiiitieiiiiieeeeeeeteeeee ettt e e e e e et e e e e e s s eaabae e e e e e s sssnsaseeeeeens 48

| Na Ty unbhaalc) ahal BakveYor:] uTo) o WU uuu 48

Program FIOW COMEIOLcc.ccuiiriiriiiiirenictceetetct ettt e et sa et s s et aesne e 48
Real-time Performance CONIIOLcccooiiierieiinirieeneneeeesee ettt s sae st e ee 48
REINTALIZATION ...ttt ettt ettt ettt b ettt b b e et b e e e e e 48
Sensing and CONEIOL.....c..oivuiriiiiiiiirieeerercete ettt ettt ae et se s et s e ae e e e 48
SUD-INSIIUMENT CONTIOL... ..ottt sttt sre e eesae s e st e sbe s aesnesnes 48
TIME REAGINE . .veveeeienieieniteieteeet ettt sttt e st st et et e st e st et et e s bt e st esbesbesaeenbensessesasensansesseensensense 48
5. FUNCLION TADLE COMLIOLutiiiiiieiiiiieieniteteterteeit ettt sttt et s b st esbe s bt st esbesbesue et esbesbesueensensassenne 51
B o] Ll @ 1D U= o TP 51
REAA/WTItE OPEIATIONSeeuvenriiiriieienienieetertesiesttetestestesaeetestesteestessessesseensessessesssessenssessesssensensessesnsensenee 51
TADLE SELECHIOM ..cueniteteieeeteeteee ettt ettt et et s bt st et et esbe st et et e sbe e st e ntesbesbeeabenaensennes 51
6. MathematiCal OPETATIONSeevvirriirrieirieiritiieeteere et et et e st et esteestessteestesbesssessbessesssesnsesssesnsesnsesnsesnsesnses 53
AMPITUAE CONVEITETSeevviviriieiienienieetetentesttetestesteetetestestesstessessessesssessessessesssensessesseessessessesssensessassens 53
Arithmetic and LOGiC OPETatiONScecuevueruerueriierenientetestenieetesteste st estestestesseetestessesseetessessesseensessessens 53
MathematiCal FUNCHIONScccueoiririeieierieeeeecereete ettt sttt ae e s e b s s s saesnesnes 53
Opcode Equivalents of FUNCHOMNScccovueririiiieniiniinieieieseetestesiesie ettt sttt sttt stessesaesbesaas 53
RANAOIMN FUNCHOMNS ..ottt ettt ettt et e sbe s bt et be s b s st et e besbe st e saesbesnis 53
TrigoNOMEtriC FUNCTIOMS «..cocuiiiiiiiiiiiiieictcecect ettt ettt ettt ne e sne e ene s ne s ne e nesneeane 53
7. IMIIDI SUDPOTT ccneviiiiieiiieeeiteeite ettt ettt sttt e et e s bte s st e s esee e s bt e s stessaesenbeeesseessaesasaesenseeenseesnsaessnesnee 55
CONUTOLIET TNPULviitieiiecitectteete ettt ettt sttt e ste e teeste e beesaeeseeseeseessasssesssessseessasnsasnsesssesseesessesnses 55
COMVETLETS ..cuveeveireereeteeite ettt ettt r e re s b e eae bt e re s re s bt s ae s bt s bt s bt sane s bt sanesesesneenesaseeaneeanesanesanesanesanes 55
EVENT EXTEIIARTS ..ottt ettt ettt e et sbe sttt b e b et s st e e sesse s e e enessesaenes 55
Generic INPUL ANA OULPUL c...cocveirieeriieieeceeceeseeeeese et esteesteesteesseesseesseessesssesssessseessesssesssesssesssesssesssesnses 55
INOTE-0N/INOTE-OFF ...ttt ettt saesresnis 55
MIDI MESSAZE OULPULeeiuieiiiiiiiieiiiereieeeieeeteeesttesesteseite st e st e sestesesaesenaeeeseesssaesesaesenaessnseesnseessnesas 55
REAL-TIMNE MESSAZES ...ceveueenverernieientenieeitetestee et e e s bt st et esbesbe et e sbesbesbe et esbesbesstenbesbesbeestensenbessesasensensenns 55
SHAET BATIKS ...ttt ettt sttt st sbe e sb e s b s snesneenis 55
8. PItCI COMVETTETS.cueuiieieiieiertetctetet ettt ettt ettt et et b e bt s b et et e be et et sbe s e e et mensenee 57
FUDNICHIOMIS ..ttt ettt r e st b e s b s bt sbe s be s bt s beebe s se e seeasesasesasesasesnsennnes 57
TUNING OPCOAES ...ttt sb e st a s b s st sae b e s be e e e saesbe s st e aesnesnesnis 57
9. SIGNAL GEIIETATOTS. .. cuveveeurererteriieieniesiestetestesteeutetesbesseestesbesbesseestesbessesstessensessesstensensessesssensessessesstensessessenns 59
Additive Synthesis/RESYNTNESIS.coeiiiiiririeiereeeeeereee ettt st sbeeae s 59
BaSIC OSCIIIATOTSeiruiiiieriiirttetetetee ettt ettt ettt e be et e s sbe e be s be e be e beesbe e beebeenbassesnsesnsesnsas 59
Dynamic SPectrum OSCIlLATOTS.c..eeeeiirieririeieriereeteteseet ettt ettt st st et e sbesaeetesbesbesseessesbesaesas 59
FIML SYIENESIS ...ttt ettt et b et s bbbt s b et et b e sbe et et e sbe s bt e s e nbesbesns 59
GTanUIAT SYNTNESISeeevieriiiriiiiiirietetet ettt ettt et be s be e s bt e be s be et e e be e be e bessbe e beessesnsesnsasnsas 59
Linear and EXponential GENETATOTScceeeeierierieririenieniesieetentesseseetestessesatessessesseesensessessesssessessesnes 59
Linear Predictive Coding (LPC) ReSYNTNESISccceeerieiiirireriesieneeeeeseneeeeese e 59
Models and EMUIATIONScccciruiiriiriiiiiitertetetest ettt ettt stessbessae e beesbeesbe e seesbeesbesssesssesssasnsas 59
PRIASOTIS ..ttt ettt et ettt ettt sttt b et a ettt se bt ne e 59
380016 (00 s M O\[0) K1) K€1) 1) = 110) - 59
SAMPIE PLAYDACKccuiiiiiiiititite ettt ettt ettt e be st e b e s e st e b e b e e beebeebeeneas 59
SCANNEA SYINTRESIS ..c.veviiiiiiiriieieteeeetet ettt ettt st et e st s bt et et s be s bt et e besbesseebesbesseens 60
Short-time Fourier Transform (STFT) ReSynthesis........ccoceceeverinenieneneneeieeneneeeeseeee e 61
TADIE ACCESS ...cnvieeiieieiieiteteteree ettt sttt b e st b e s bt s e bt s b s e a e r e s b nesreeneens 61
Wave Terrain SYNTNESIS.cecviviiriririeiereetet ettt ettt ettt et sttt sae et e be st sae et esbesaasaeens 61
Waveguide Physical MOAEINGcocuevieririeieienieeeiesteseeteeesite ettt sttt s saessesneens 61
10. Signal INPUL AN OQULPUL.c..ceouiiriiieiiirieeteeteeteet ettt st e st e st e st e stesaeesseesutesstesasesseesstesssesssessaessaessnens 63
File INDUL AN OULPUL...ccuveiiriieiiierieeteieeeee ettt sttt et st et et e sbe s bt et e besbesaeesbesbesbesatesessesseens 63
] 010 L O PSPPSR PPUROPPRON 63
OULPUL ettt ettt et e e st s et e e sab e e s bt e s bt e e st e e emb e e sa bt e s st e e seeeesbeeeaseesaseesaneesanseean 63
Printing and DISPIAYcccceerueriiiririneienereete ettt ettt ettt 63
SOUNA File QUETIESoeeevieeiieeiieeeece ettt rte e te e e te e e ee e taeessteessbe e e bae e bae e sasessseesnsasenseensananssenns 63
11, SiGNAL MOMITIETS ...uveveeeieiieieeieeteiesteeeet ettt ettt st et e st et e s e et e st e saessaesbesbesseessensesaesssensensessasssensensessessean 65
AMPLItUAE MOIIETS ...ttt ettt ettt s se et 65
Convolution and MOIPRINIGccvviriiiiriirieesereeee ettt sttt b e s sb e s bbb sme s 65
DIELAY ..ottt sttt et et et e st e s ae e bt e ae e bt e ae e s ae e be e bt e be e beenre e beenas 65
ENVElOPE MOGIfIOIS....c..iceiiriiieicieeeecee ettt sttt 65

Panning and SPatialiZation...........ccecuereririienieniniiieriesestetesie et este e sttt estestesae et e tesbe st esbeseesaeensensenes 65

REVETDEIATION.eetieiieieeiteteete ettt ettt ste et esteeteesteete e te e teestaesseessaessaessesnseensasssassseensesssesnsennes 65
SAMPIE LEVE] OPETATOTSeeuvieneieiieriieniieniieniestestestestesstestesstesstesstesssesssesssesstesasesssesssesssesssesssesssessesnes 65
SIGNAL LITHTETS «..euviiiieiieiieiteetteiteetterit ettt ettt s st s e sat e s st e st e sat e s st e s at e s st e sabesabesabesabesatesasesasesnsenaee 65
SPECIAL EEFECLS ..ttt ettt ettt b e ettt e s bt et e b e besbt et e besbeeneensenees 65
SPECIAIIZEA FIILETS ..c.uveiutieieiiteieeteeteete ettt ettt ste et s te st e s stesbesbe s bessbesssesntasssasnsasasesasesnsasnses 65
StANAATA FIIEETS....cvetiieiriietiteicei ettt ettt ettt sttt et b et et b e bt e et b s e e emene 66
WAVEGUIAEScouvevereniieietenieetetest ettt e st e et este st e s bt et e besbe e st et e bes bt eut et e besbeeutentessesseeatensensesseensensansenne 66
12, SPECITAL PIOCESSIIIG ...cuvevtiueeieiieiieieteeteetetestest ettt s et e s e st et s b st aesbesbe s e e saesbesseeseesessesseeneensensens 67
Non-standard SPECtTal PrOCESSINGco.eeverieriiririenienienitetesiesteetestesiesteessessessesasessessessesssessessessesnsensense 67
Tools for Real-time Spectral PrOCESSING........cccoceverieriririniereieerereteteesreteteesreaeee e ssesne e sennens 67
13. ZaK PATCH SYSTEIM ..cuveiiiiiieieieeecetert ettt ettt ettt a e s bt s b e s b s e e e s e s s e meesessesseemaensensees 69
14. The Standard NUINETIC SCOTEcoevueruiirirterieieinertertetereetestetesessestestestesesseseeeesessesseeesessessesseneesessensens 71
Preprocessing of Standard SCOTESccceeverueiriririiiiireeeceeenestete ettt se et es 71
L0F: 1 4 17O P PRSPPI 71
TRITIPO .ttt ettt st sttt e bt e s b b e s bt et e e bt e e bt e s bae s sae s e bt e e bt e s raesenaeenee 71
SOOIttt ettt et e e h b e et be e e bt e e bt e e bt e e hb e e a b e e et e e et e e e bae e sae e abeeeabeeearaas 71

N B ettt ettt b ettt b e bt bbbt Rt e b b et ea e bt b et et eneebe b e te e ebeebetent 72
Next-P and Previous-P SYIMDOLSccceiiriiririiiiieietcieeseetestese sttt st sttt st st sbesbe st saesbesaas 72
RAIMIPIIIG ..ttt ettt ettt sttt b e st st s be st e s be s besbe e aesasesabesasesaeesanesasennees 72
SCOTE IMACTOS ...ttt ettt ettt st r e s st s bbbt s bt bt s bt st e s bt s ae s nesneenesnesanesmnesanes 73
DIESCTIPTION .ottt b et e bt e bt e bt e bt e be e bt esbee bt esbeesseeseeseesseesaeseenseenne 73

) L2 GO U USROS 74
INTHAlIZATION ..c.veeieteieieee ettt r e s bt s aesreere s 74
PeITOTINANICE. ...ttt ettt et b et b et et be et s b saens 74
EXAIMIPIES c.veeiieiiieiieeieeetestt ettt stteste e steesteeste e bt e sseesseesseesseassaesseessaesseanseenseenseesseenseessessseenseenns 74
CIEAILS c.uvenveieeieeieteeee ettt sttt st s bt b e s b s b e e r e s b e et e e e b e sbeeneeaesnesnene 75
IMULIEIPLE FIlE SCOTEveviiitenieiieiieieteeieetetee ettt et ettt e et s b sat et et sbesatesbesbesbasasenbesbessaeasensessesas 75
DESCIIPTION «eiteiiiieeiieeite ettt ettt et et e et e e bt eesat e e s abe e s bt e s bt e e st eesabeesabeesaseeeseeensseesaseenane 75
SYIITAX 1.ttt ettt b e b bbbt bbbt bbbt s bbb s aeenes 75
PeITOTINANCE. ...ttt ettt ettt et b et be st sesnen 76
CIEAILS .ottt ettt s bt e et s b e s bt et et e be s bt et e be s bt e st et e besbe e st e benbesbeentesenbesbent 76
Evaluation Of EXPIESSIONScccceirtiriiriiieirtiitctesieest ettt ettt ettt et s sbe s beesbessbe e bessbe e bessbessessasnsas 76
EXAINPLEeiteieeieieeteetet ettt ettt et et s b st e b e b e s b e s a et e b e s b e e bt et e s beebeea b et e beeat et e besbesaean 76
CIEAILS c.ueeuvereeeeetenteeeete ettt ettt et s b et e et s b s bt st e st e be s bt et e be s bt e st et e besbe e st esesbesseentensenbesseens 77
SCOTE STATEITIEIILS ...ceueiiiiieieieeeee ettt ettt et e ettt et e et e e e e s bt e e bt e e sabe e sase e e bt e s sstesesaeesaseeeaseesnseeeneenan 77
SINE/COSINE GENETALOISeevuiiuiiriiiriiiiiiiencet ettt ettt b b st e b e b s st s e saesaeesessnesnesaeenis 77
Line/Exponential SEZment GENETATOLSccccecuerererieriereneeienieseesteseestessesseessessesseseessessessesssessessesnes 77
File ACCESS GEIN ROULITIESciouiiiiiiiiiiiiiesteitceerteet ettt ettt ettt e be e b e be et e b e b e beesbessbaensas 77
Numeric Value Access GEN ROULINEScoeeuerurereriirieininienicteenenteteeeesresseeeesresseseeessessesseeesessenee 78
Window Function GEN ROULINEScc.coerueriiriininieieiereeteiestesieete ettt st seesse s e s ssessesneens 78
Random FUnction GEN ROULINEScc.ceviiriiriiriiniiteeetesteie ettt ettt sie e sae e e v e v s saeenees 78
Waveshaping GEN ROULINESc..coeeiiriiririeieienieeeetestesieet ettt ettt sae st estesbessesstesbessesseensessessesseens 78
Amplitude Scaling GEN ROULINES.cc.coviririerierenieeiereseeieeie ettt eseestessesseeeessesbesseeeessessesnean 78
Mixing GEN ROULTITIESeeiiiiiiiieeieetee ettt ettt et ettt e s e st s e e e sase e s beesmee e maeean 78
I1. Reference 79
15. Orchestra Opcodes and OPETALOISc.evverieriirieriententeetestestestestestesseesstesstesssesseesssesssesssessaessessaenns 81
o ettt ettt et b e et e b e bt e Rt e R e b e ke e st e bt et et e bt e b et et e st e be b et e seebenee 81
FHABTINIE ..ttt ettt b et s b s b e bt et e s b e s bt e at et e b e s be e at et e be e bt e a b et e beebe et et e sbeeseenes 82
FTICIUAL ...ttt st sttt b et sb e s b st e s b e s be e e e e s b e sbe e e e sesreeneens 85
FUIUAET ..ottt ettt sttt et b ettt et s b et b e bttt b e bt et ere 86
FINAME ...ttt ettt ettt ettt ettt e e bt s b et et e st s b et e st e ae e b e s b e st eaeese s b et ea s e st b et et e atebe b et enteae et et et eaeeaeeee 87
ettt ettt a e bttt a e b bt st e bt b e ket ea e bt e b et e a e e bt e b et e a e e ae e b e b et e Rt e bt e b et e a e a e e b et et e at e b e b et ent e st b et et et eaeee 90
QUL ettt b bt b e s bt et b e bbb bt e e s b et e et ae e 91
RN 93
S e e e a e b e e e b e e e e a e e e b e e e e e e e e a e e e e b e e e e a e e s e a e e e aae s 94
SO 95

PP P PP PP P PP PPPPPPPPPPPPPPPRE 98
ettt ettt ettt h ettt h bt e e e a e b et et ea e e Rt e b et et e a e e bt b et et ea e b et et e at e Rt b et et e a e e b e b et eat e bt b et et entebe et et et ens 100
S ettt e te et et h ettt h e bt et R bRt et e R e b e e e e aE e Rt b et et e Rt e b e b e e e Rt e b e e b et ea e e Rt b et et ent e b e bt ent e st ebensetenees 102
L ettt ettt e ettt e e e et—eeeee—eeeee—aeeeaa—eeeeatateeaatteeaaataeeaatteeeaaateeeeasteeeaateeeeaartteeeanraeeeanstaeeenreeeeannrees 104
Dt ettet ettt h et et et h b et et a e e b et et ea e b et et e ateh e e b et eatea e e b e b et ea e bt b et eateh e e b et eat e Rt e b et et eat e bt b et eateheebebententebententen 105
D ettt ettt ettt et h bttt h bt ea e Rt b et et et e bt b et e e e R e b b ettt e Rt b et et et e b e b et et e st e b et e e et be b e aeneens 107
e eeeteeeeerrteeeeeeeeeeserteeeessteeesesseeeesateeeeaatteeeaaateeeaateteeaasteteeaasteeeeartteeeaartteeeaasteeeearaeeeeantaeeeaanteeeanraeeeeanraeees 108
[+ eereeentent ettt ettt ettt ettt h et h ettt h bt h e b et e e a e e b b et e a e e bt b et et ea e b et et ent e b et et et eneebe b enes 110
OADIES ettt ettt et et s bt e st et e b e e a e et et e s beea s e be b e eta et e besbe e st enbebanbeen 111
2 N 113
ADELATAIIA ...covveiiieiieiieie ettt ettt ettt e s e st e st et e s bt e s bt e s bt e s bt e at e atesa b e s st e s st e atesatenatenatens 114
ADEXPITIA ..ottt ettt ettt et ettt e st et b e s bt et e b e b e s at et e be s bt e a b e bebesha et e besbe e st enbebensaen 114
ADIS ittt et e et e et e e r e e et e et e e et e e e a e e st e e st e e st e e st ees e e st eesteesteestensteesteenseestenntenntans 114
ACAUCKHY .ttt ettt sttt s bbb e s bt e e e e b s s et e b e bt e e e ae b e e se e e ereereas 116
ACTIVE .ttt a e s e sRb e a s e R s e R b e s R s e s a b e s R b e R b e R b e s R b e abe s 116
T) OSSOSO PSSR 118
AASYTLe ettt sttt e b e e b e e h e e b e bt Rt et e b e bt e e e nae b e e seeeesrenrees 121
AASYIUL ettt ettt ettt ettt e st e st e st e et e b e b e s a s et e b e s bt e st et e b e e at et e beebeea b e st e b e ehe et e besbeeatenbebestaen 123
AEXPTANIA.c..veevieeieeeieeitesteeteeteett e st e st es st e st e s st eestesssassseeseasssesssasssasssasssesssanssenssesssesssesssanssesssanssesssesssenssens 125
AFTOUCK . .ttt ettt s e st e s bt e s st e s bt e s bt e s bt e s st e s st e sab e s st e s st esatesatesabenatens 126
AZAUSS ..oveveeiiiirieiiite et e bbbt e s e bt e e e e bt s e b e e s e a e s b et e s bt e s e bbbt e e e b e e e s b e e s e bbb e e s e b b e e e sebbbe e s s nabeees 127
AGOGODEL ...ttt et h et b e b e e a et be bt e a et e b e eb e et e nbesbeeaeebenbensean 127
ALNTANA ..ottt ettt s et e st e st e e st b e sa e e s st e s bt e s st e s h b e e h b e s abesabeeatesabesabesabesatesatesabesatens 127
ALPASS 1ottt ettt st et b et e a et e b e s bt et et e s b e e a s et e be e bt et e besbeeat et e besbeentenbenbesseen 127
AIMNPAD ettt e e et et e et e et e et e e st e e st e e st e e st e e st eenteesteenteenteentenntans 129
AIMNPADES ...ttt ettt sttt e st s a e st e st e e a b e st e s st e s atesatesabesatans 131
AINIPITIIAI vttt ettt e et s bt et et e be s bt ea b et esbesue e st e besbesatenbebesseeatenbesbesutenbebesbeestenbenbesaean 132
APCAUCKHY .ottt ettt s bt et et esbe s bt et et e s be s bt e st et e s b e sae et e be s bt eatenbesbessee b enbesbeeatensenbessean 133
AP OISSOTN ceneeteeuieeeiiteeiteeitte e et e et e et e e e bt e e e st e e esbeeease e e s st e e st e e asaeeemseeea bt e e bt e e asbeeesbeeeabeeea bt e e bt e e eneeeenbeeenreeearees 133
APOW oiiiiiiiiiiiitceiite et b ettt e e b e s e bt s e e e s e b e e s e bbbt e s e b e e e s b e e s e bbb e e s e bbb e e s e bb s e s s sabee s 133
ATESOTL «.eeevieeeiitieeeeuiteeeeeutteeesaeteeeeubeeeeeausteeeensteeaaaseeeeaaasaeeeanseeeeeaseeeeeaasaeee e s be e e e e sateeeearaeeeenreeeeenreeeeenrreens 133
ATESOMIK ...ttt ettt s e et e st e st e st b e e a b e s a b e s a b e s st e e a b e e a b e e h b e e st e e ateeateeateeabesabesabesateeatesabenatens 135
210) 0 L 136
ALOTIEK ..ttt ettt ettt e et e et e et e et e e st e et b e s st e s st eesteestessteesseesbeesseesteesteesteeateenteeateenteenseenteenteensennsans 138
ALOTICX c.eeeeeeeiiiteeeette ettt et e e e st e e s et e e s a e e e s a et e s e s et e e e bt e e e s b bt e e e R b e e e e e bt e e e e b bt e e e enra e e s ennreeesenraeees 138
ALTITATI ettt ettt ettt b et et b et et et b ettt s ettt b e et nenen 139
AUIITATIA ..ottt s e et e et e et e s st e s st eestesstesstessseestesssesssesssesssesssesssesssasnsesssasnsesssesnsennsens 139
AWETDULL ..ttt ettt s e st e st e st e s st e s st e sab e s st e sabesabesasessbesasesasesasesasens 140
DADO ottt a e e a e 140
[oF:1F: 1 o Lol IO 143
DAIMDIOO0 ...ttt ettt et et b e e b e b e be e be e beeas 144
DDCULIN «.e ettt ettt ettt sttt b et ee 146
DDCULS ..ttt ettt e et e et e et e e et e e be et e e b e et e et e e ta e ba e teenbeenbe e taentes 150
DETATAIIA ..ottt st e r s r s n e s reene s 152
DEXPITIA ...ttt ettt ettt et b et b ettt sb e bt et e b be e bt et e besbeeat et e besaeeaean 153
o) L L0 F: U KOS 155
DIQUAA. ...ttt et e b e b e be e b e be e be e beeas 157
DAITIA ottt sttt a et ne e 158
01011 o) o TP 159
DULDT .ottt st r e s b et a e r e s ne s s 159
DULID ettt ettt ettt 159
DULID .ttt sttt et et et et e et e b e et e e b e et e e b e et e e ba e ba e ae e be e beeraentes 160
DULEETDP ..ttt ettt ettt et s b e e e e b e et e e be e be e be e beesbe e beensas 160
01BN =) f o) TR 161
01BN u T3 1 o) o J TR 163
DULEETID .ttt ettt et e e bt et e e e e e b e e b e e be e be e be e be e be e baenes 164
01011 o) s TR 166

oz o7 11 TR 168
CAUCKIY ..ttt sttt et b e s bt b e s b e s s e e e b e s bt emeesaenbesneenaenrens 170
07 5 1 TR 171
(o 4= {0) {0 TSP 173
CRATICHTL. ..ttt ettt et et e bt e bt e s bt e bt e s st e st e s st e st e st e st e st esstanstenstenssesseenssensaans 174
CRECKDIOX.. ..ttt ettt ettt ettt et b ettt b e bt e e e st b b e e et ese b e eeneenis 175
o3 1={0) (o 1SS P PSSRSO SRR PSPPI 176
CKEOTO ettt ettt ettt s e sttt e bt s bt et e s e s bt e st et e bt s bt e st e s e bt e me e st enbesreemeeaesesseenaenserens 177
CLBAT .ttt ettt ettt ettt b ettt b et e h ettt b e bt et st b et et et e beneneen 179
CIALE 1ttt ettt ettt e b e st e st et e b b et et e a e b e b et e n e b et et en e e b e b et et e st e be st et entebessantan 180
o] 11 0 J OSSOSO SO ST SRS OO RR PRSPPI 182
CLOCK ettt ettt et b e a et ettt b ettt b e e et sesaeneen 184
CLOCKOTT ...ttt ettt e st e st e st e e s s e e s st e sse e s st e s s e asseesssasstasssesssanssesssasssasssanssenssans 184
CLOCKOTN .ttt ettt ettt ettt e b e e st e e s a e e s st e s st e s st e s st e s st e st e s st essbesstasstessbenssesssenssenseans 185
(3 01 ={0] (o TP P PO PR TOPPP PRI 186
[o70) s8] o OSSOSO PSSR 187
COMITOL 11ttt ettt ettt s e st e st e s ttesttesat e s bt e bt e s st e s st e st e s st e st e st esstes st esstesstessbasstasssasssesssasssenssans 189
COTMIVIE .ttt ettt ettt ettt b bt s b et et e b b et et e st s b et et e st s be st ententesenseneen 190
COMVOIVE ..eviiviiiieeiteeteet et et eett e st e st e st e s st e s st esseesstesstasseesssesssasssasssasssasssanssanssasssesssesssanssasssanssenssenssenssens 190
COS caetteeeneeee ettt e ettt e et e e e et e e et e s et e e e e et e e e b et e e e R b et e e e b e et e e b et e s e s b et e e e R e et e e e b et e e e nr e e e e e nraeeeenraeeeeenraeeas 193
COSHLa ettt ettt ettt ettt a et b e bt b e st et et be st et et seeneneen 194
COSIMIV . citttiiteeeite e et et e et e e et e e e bt e e bt e e bt e e bt e e s abeesabe e e s b e e e st e e sbeesabeeeabeeeastee st e e st e asabeaeaseesasteesbeannbeennsaennseas 195
CPS2PCR ettt ettt ettt e ettt a e st e a b e s h b e e h b e s h b e e a b e e h b e s atesateeabesat e e st e ate s st esabenatans 196
CPSTIUIAI 1. teutenieieeiteieeteet ettt ettt et et s et et esbe st e e at e besbesae e st et e s b e sat et e besbeea b et e besha et e besbaeatenbenbessaan 199
100153101 (0 1 o JS OSSOSO PU SRS 200
CPSOCT .ttt ettt ettt et e e s et e e s a et s e s et e s e bt e e e e bt e s e n b b e e e e R ba e e e e b et e e e s b bt e e e nrae e s e rateeeenraeeas 202
CPSPCI ettt ettt ettt et b e s a et b e bt e a s et e be e bt et et e b e eh e et e besba e st enbesbeeaeen 203
10301510 1 16 U OO OSSOSO PR SRS 205
CPSTUIL .ttt ettt ettt e et e e s a e e e s m et e s s s b e e e s ab et e s s emba e e s e s baeesessaeeeeenbaeeeeanraeesennreeesenrreeas 207
CPSTUILL ettt ettt ettt e st e st e st e sat e s st e s bt esut e st e st e s st esat e s st e s st e st e s st e s st esabesatesabesutesasesnbesnsesnsesasesasens 209
1001554 01 o WU OO OSSOSO PU SRS 211
CPUPIC eetteeiiiteeeeitte e ettt e ettt e e ba e e s et e e s e me e e e s esbaeessmraeesaasbaeeeessaeesesssaeeesnsaeesansaaeesansaeessnraeessnsseessansaeens 214
103 (0151 216
CTUTICHL. ¢ttt ettt ettt e et e et e et e et e s st e estesatee st esstesstessseesseessesssesssesssesssesssasssesssasnsesssasnsesssennsennsenn 218
CUILT ottt ettt e e st e s a e s a b e s a b e s a b e e a b e s at e s a b e e st e e st e e st e e st e e abesab e s a b e e abeeateeabeenteeateeabesatens 219
CLTI2T 1ttt ettt et ettt ettt b et st b et et ettt b ettt b e et nenen 220
o7 0 4 I OO OO O PO RPN 221
CUITIIL 1ottt ettt ettt e e e e a b e s a b e s at e s a b e eab e s st e s st e s st esabesatesabesabesabessbesasesasesabesasens 222
CUSEITIIA ..ottt ettt ettt et ettt ettt b ettt b e b et e s e b et et s st b et et esesbeaeneenesnensen 223
QAN .ttt et s e et e st e et e et e et e et e e st e et e e et e e st e e st e e n b e e n b e e st e e ateente e te et e e st eenteenteenbeentann 224
AD ettt et b ettt b ettt b ettt b e bt et b e bt et e b neen 227
ADAIND ittt ettt et et e sb st b e st e et b e s bt et e b e s he e st et e b e s b e eut et e sbe e bt et e besaeeaeen 228
16 10} 53211101 o OO TR OO PR PO PRRPRR 229
ACDLOCK .ttt ettt ettt b e sttt s a e s b st nesneene s 230
QCOTMIV ettt ettt ettt b ettt ettt b b et e e s bt et e st b et et et b e a et et nenen 231
QLAY ..ttt ettt b ettt b e e bttt b e e bbb e e bt e st et e s besbe et e besbeeaeen 233
QEIAY L.ttt ettt e et e e et e e et st e et e et e et e et e e a b e et e et e e a b e et e e b e et e eabeeabeeatenn 234
QELAYT ..ottt ettt sttt e s be st et b st eat et b e e bt et e b e s bt e a e et e be e bt eat et e s heeat et e besseeaeen 235
QELAYTW ..ttt ettt s b st e s b s bt e st et s b e bt et et e b e e st et e b e e bt e st et e s beebe et e nbesreeaeen 236
16 153 L | o OO O OO OO OO O T T O OO O T OO OO OO R PR PTRPRRPRR 237
AP ..ttt ettt ettt sttt b et et s et enen 239
16 153 L o) FS OO OO OO OO ORI 240
(6 153 L o) o OO OO OO OO OO OO OO OO PO OO RO PR PRPRRTRR 242
AOIEAPX ettt ettt ettt sttt sttt e et et b et b e e nes 243
16 153 s o) OO OO OO PP 245
QT ettt ettt et b ettt b ettt nnen 247
16 1T a1 o OO 248

ESPLAY vttt sttt ettt ettt b et b e s bttt b e e bt et et e s beeh e e bebesbeeat e bebesaeenbenbens 252
QESTOTTL ..ttt sttt et b e e b et e e e s bt e ae et e s b s bt e st et e b e e bt emee s esbeemeemeesesreeneeneesesneenaensens 253
QEVZ ettt ettt et ettt et s b e a et et e s b e e a s et e b e e h e e Rt et e s beea e e st et e ehe e st e te b e sae et e bebeeatententans 255
QOWTISAIMIP .. uveeteeteeteeete et ettt e et e bt e teesteeste e beesse e seeseesseeseasseasseasseesesseaseeseeseesseenseenseensessseensesnsenns 256
AIIPWALET .ttt ettt ettt e s e bt et e e st e bt et e e s st e st e st e st e st e se e st e st esstesstanstesstanssesseanssensaens 257
QUIMIPK 1ottt ettt et sttt et e st e st e st et e st e sae e st enbesbesatesbassassasssensansasseessansensesssensensans 259
AUIMNPKZ .ottt et e st e et e et e et e e st e e s s e e s e e seasss e st asseenssasssasssasssanssanssanssasssasssenseens 260
AUIMIPKS ettt ettt et e bt e st e e s bt e s st e s st e s st e s st e st e st esstesstesstasstesstestesseenssenssans 261
QUIMIPKA <.ttt et s ettt e s a e et et e s bt e st et e besat e st esbesbesatensenbessaessansesesssensansansens 262
QUSETTIIA ...ttt ettt ettt et b sa et e be s bt e a et et e sueeab e besbeeatenbesbesbeeabensebesseensensensens 263
BLS .ttt h e e bR b e e bt e e e bt e R e e e et e sr e e e e saenbeebe e e erenrens 265
BISEIT ...ttt ettt et b et et b b et beaeneen 265
EIUAIT ...ttt ettt b et b e e h et b e b e e a b et e b e eb e et e nbesbe e st ebebenbean 266
EIMAIN .ttt b e s bt e e e bRt e b e bt e e e saenreese e e enresreas 267
EILAOP ettt et ettt ettt et e st e et s b e et e et e b b e e a e et et e e bt e st et e b e e a e et e be e bt ea b e st e beehe et e besbeeatenbebenseen 268
123 01741 0) OSSOSO PSSP 269
EIIVIDXT c.ttitteitetteett et e st e e tt e tt e st e sttesteestt e s st esstes st e st e st e s st e s st e st e st e s st e s st e e bt e s st e atesateeatesate s st e st esstesatenatans 272
LA TL=) 0 273
153:4 0 J OO O PPPPPPPRRRRRRRRINt 275
154 010) s LU OO O PP O PP ROUPRRROPP 276
EXPTANIA. ..ceutenteieeiieienteettetes ettt et e ste et e testesutes b e besbesatesbesbesstesbenbebesatent e besseeatenbesbesat et e besbeestenbenbeeaeen 277
1.4 0 1] <SPPSR 278
1o QT T = LT 280
104 01 <4 PO P PO PP OPPPRPPP 282
FILELETL ..ttt ettt ettt b ettt b e e a et b e be e a e et e besbeea e et e sbeebe et ebenbesaean 284
FILEIICHIIIS ..ttt r e sttt e e s n e s be e e reere s 285
FILEPEAK ..ottt ettt ettt ettt b et b s b e a et e b beea b et e b e e bt ea b et e besae et e besbeeaeen 286
FILEST ..ttt ettt ettt b et h et b s b e a et e b e b e e bt et e b e be e Rt et e b e e bt e n b et e sbeebe et ebenressean 288
FIIEET2 .ttt ettt et s e st st e et e st e st e s a b e e st e et e st e et e et e et e et e et e e beebeenbe e beebeents 289
BITL ettt a et e e et b et et et s b et s e nee 290
I ettt b e et b e b e h et e b e e be e st et e b e e beea b et e sbesbe et ebesbeenean 291
B ettt b et bbb bt s e bt e bbb et et eaeebeneen 292
FLOPDETN. .ttt ettt ettt b et b e bt e a et e b s bt e st et e be e bt e st e besbesaeeabebesbeeaean 293
FLATIEET ...ttt ettt et b et b e bbb e b e e be et et e b e e bt et et e sbesae et e benbeeneen 294
FTASIIEXT 1ottt ettt ettt s a e s bbb b b aesne e b e e nesre b s 295
FLDOX 1ttt ettt ettt sttt ettt b et nenen 296
FLDULBANK ...ttt ettt et b et s b bt e et sbe s st e e e sbesbe e e enbesbeenean 299
FLDULEOT .ttt ettt ettt e s e st s e st e s a b e sa b e satesa b e s st e s st e s st e s st esabesatesabesabesusesssasasesnsesasesasens 301
FLCOLOT ..ttt ettt ettt sttt s b ettt b ettt et b ettt s et nenen 304
FLCOLOTZ ..ottt ettt st ettt st et b e s bt et et e s b e s bt et et e sbeemee s e sbesbeeasenbessesseen 305
FLCOUINL .ottt ettt et ba e e s s sba e e s s sae e e s smsbe e e sembaeesssnneeesennneess 305
FLEEOISTIAD .ttt sttt s et e st e s e s b e s ab e e e bt e s ne s 307
2l =4 {0 1 o TP PP PO 307
FLGTOUPEIA ...ttt ettt ettt et s e st s e st s st e st e sab e st e st e sabesabesasesnsesabesasens 309
FLITAE ...ttt ettt ettt ettt b et a e nen 309
FLJOY ettt ettt st s ettt et s e e s et e e e an e aeeeareennenn 310
FLKEYD <.ttt ettt ettt ettt s s bttt b et neaen 312
FLKINIOD ...ttt ettt ettt ettt sttt sa e 312
FLIADEL ...ttt ettt ettt b et s bbb s b et e b e s besbe et e besbeeneen 314
FLIOAASIIAP .. teeuteeuteeiteeiteeteet ettt ettt e et e e e e st e st e st e st e e st e s st e sabe s st esabesabesabesaseeabasasesnsesasesasenn 316
FLPACK ..ttt ettt ettt sttt b et a e et nen 317
FLPACKEIAetiiieieeieeteet ettt ettt e et s e st e st e et e et e st e s st e ssb e s st e sasesnsasnsesssasnsesnsesnsesnsenn 319
FLPANEL. ...ttt ettt ettt st s e st st e b e st e st e st e et e et e et e et e et e e b e e abeeabeeatenn 319
FLPANEIEINA ...ttt ettt ettt ettt ettt b e et sa et nes 321
FLPTINTK .ttt ettt et e st e st e st e et e st e s st e sstesssasssesnsesasesnsesnsasnsesnsesnsesnsenn 322
FLPTINTKZ .ottt ettt ettt s e st et e e e b e et e e b e et e et e et e sabeeabeensesasesnsesnsenn 323
FLIOLET ...ttt ettt ettt et b s bt et et s bt e at et et e s bt eut et e sbeeseeut e besbeeutenbenbesaeenean 323

10

FLSAVESIIAP ..eeiutiiiiiiiieite ettt ettt ettt st sttt e s bt st e b e e e bt e s bt e s bt e s e e s sa e e a e e ane 326
) IR Te3 (o) | OSSR 327
) T3 o) | 1 25 U APPSR 329
FLSETALIGIN......eeitetieiteteeteeite ettt et st et e et e st e s bt et esbesbeeut et esbe s bt eab et e b e sseeabesbe bt esbentenbesstenbensesesatensensas 329
L2l KT 2 0) PRSP P URR PPN 330
) BT (7o) (o) (F TR 332
FLSETCOLOT2 ...ttt ettt et e e e e ettt e e e e e e e s saaabbeeeesesssasssbeeeesessssssssseeesssssssssssaseessssssssnsssnees 332
Il KT o 200) s | TSRO U URPRRN 333
FLSEIPOSITION. ...ccciiiiiiiieeiiiiieeeeeeeeeeee ee e e e e e e e e e aaaeaeees 334
S IR /<Y 335
FLSEISTIAD -eeeeneeiiiiiiieeietee ettt ettt e ettt e et e e s et e s e s et e e s esaee e s mbaeesessaaeesemsaeesanraeesenneeessanraeens 336
FLSEBETEXE .eeeiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt eaaaaaeees 337
FLSEUTEXECOLOT «..eveieiiiieeeeeeeeeeee ettt e e e ettt et e e e e s e sasabbeeeesessssasssaeeeeesssssssssaeesssssssssssseesssasssssssnees 337
|3 Y W Lo () 7/ 338
FLSEITEXETYPIC oottt ettt ettt st s bt s s e s ma e e et e e bt e s saesnaesenaeesnnees 339
| 2 Y RV I 341
S I T<] Y- 1 RO RRRRRRRRRRR 341
2l 5] o Lo) ARSI 342
FLSIIABIIK. ...cciiiiiieeeieeee ettt ettt ettt e ettt e e e e e e saaa b eeeeseesssassaaeeeesessssssssseessasssssssssseesseasssssrsnees 343
S 0] § G U] OO 345
2l 51721 o LIRSS 347
|2 B 1 o 1Y 25 o U AP RSR SRR 351
|2 B 1)« OO RRTRRRRRRRRRRY 352
FLIUPDAALE ..ottt ettt ettt ettt ettt s et e s sat et e be st e sat et esbesbaentesbesbessaenbensessasstensesessann 353
FLVAIUE ..ottt ettt e e e e s ettt e e e e e s e saaabaeeeseeesssassaaeeeesesssssssbesesssassssnssaseesssessssnrsnees 354
001 0)G J RSP RERRRRRR 354
0111 | E ORI 356
F0 0700 1<] ¥ | AU RSSO 358
FINPETCTL ...ttt ettt s e st s e st e st e st e st e st e et e e sba s besabeenbasnbesasasnses 360
01 s Lo Yo (ST 362
0031707 (o1 UU OSSR 364
10 8107 U1 § (<SRRI 366
o) TSRS 368
o) V2SO RRRRPRR 370
O ettt e e st e et et e e a b e e a b e et e e a b e e st e e a b e e a b e st e e a b e et e e ateeabesatens 372
0 (s ORI 373
0] 1 1o} 1 AR 374
0] 110} Y2/ RO RRRRRRRRRR 376
(0 T:To3 | OO RRS R 377
J 01103 | USSR 379
10181 SRR 381
(010 16 PRSP 383
101 1 § (RSOSSN 384
(0] 0 10 TR 386
i ¢ [ORI 387
101 01 0] TSRS 388
BT .ttt ettt ettt e e et e et et e et e et e et e st e e b e et e e ateeabesatenn 389
1 (<3 s DRSSP 390
11 (oY= Lo OSSR 392
8 (oY= e | R 393
FEIDTIIIL ¢ttt ettt ettt ettt ae et 394
118010 L0) o (RSP RRRRERRRRR 395
Y A7/ <D 396
FESAVEK ..ottt ettt e e e e e sttt e e e s ssssaaaa et eeesssssaaaataeeessssssaaasteeesessssaassaeeesesssssnnnnees 398
1) QOSSR 399
AT ettt ettt e e et et e st e et e et e e et e e et e e bt e st e s et e e a bt e e bt e e bt e s st e s ne e e enbe e sareeeneeenees 400
GAUSS .eoiiiiiieiiitiee et e e e e e e e b b e e e b b e e e e ba e e e e b b e s e e e ba e e e et ba e e e eaaee s 401

11

ZOGODEL ...ttt ettt ettt b e s bttt e bt bt et e b e be e h e et e beshe et enbebesatenbenbens 404
=01 1 o T PO 406
5 €21 | 0 H RSOOSR P PRSP PORUPPRUPPRPP 407
BTAINIZ ..ottt ettt et et et e bt et e et e bt e bt e bt et e e bt et e e bt et e e bt e bt e bt e bt et e e bt e bt e bt e bt e be e beereereeas 409
o4 5211 0 S TSSOSO P OSSPSR PSPPSRI 413
BIATIULE ...ttt ettt ettt et e bt e bt e bt e bt et e e bt e bt e be e beeab e e b e e be e be e be e beebeebeebeeas 418
BUITO ettt ettt et et e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e b e e b e e b e e b e e R e e b e e s e e s e e st e st e st e neeeneesneenneens 420
2115 0 L) s WU OSSR 421
531013 o OO 424
oV 6 (<) GOTTTTT SO STRERRRRRRRRTRRRRRRTIN 427
T o Yo 1103 | F RSO RRRERRRRRR 429
Tttt ettt ettt e e ettt e ettt e e ———— e et eeaa e ————eteeeeaaa bt ———tteeeeaa b baa—ateeeeaaabbaaaaaeeeeaaabrarraeeeeeaaararreeeeeeennnrrraees 431
b0 112 - 1 L AT R RRRRRRRRRRRII 432
TDEXPITIA ..ttt ettt sttt s e e bt e st e e s at e s st e s st e s st e s st e s bt e s st e s st e s st e s st e s st essbenatesstesabenatens 432
ICAUCRY 1ttt et ettt sttt e s b s bt et et e b e sateab et e sbe s st esbasbesbeeatenbebesaeentenbebenseen 432
o5 B SR TRORSRRRRRRRRTRRI 432
1Tt 4 225 RS RRRRERRRRRR 433
ot 7SRO 433
1154 0) ¢ 1 0 Lo DRSSO 433
1 OO RRRERRRRRRR 433
IZAUSS cuveenveereettentteeutestteett e et e st e st esutesutesutesstesatesatesste s st eesbesatesabeea b e e st e e st e e abeea b e e a b e e abeea b e e a b e et e e abeenbeenbeeabenars 437
IBOTO cveeieeteeeeeete ettt ettt et ettt b e e st e bt e bt e bt e bt e e bt e s h e e s e e R e e R e e e R e e e R e e s e e e Rt e e s e e e neesneeene e nneeneesnnennnens 437
11 5 70) U RO 439
F1 T30 <1 s Lo RO RO RRRRR 440
100 (o | (o3 I SRS SRR 440
11008 (o | (o2 RSP RRRRRRRRR 441
TITHIAICT oottt e e et e e e eab e e e esaaa e s esbae s e esasaeeesaaeeseeasaeeeesasaeeessbeeeeenbaeeeetrreeeenraeeas 441
o 441
1015 /ORI 442
110 (o] o AR 442
1101 o WU RSO RRRRRRRRRR 443
38 1 1 SN 444
ITMECTA ottt eeeete et e e et e et e e e e e eeeeeeabaaaeeeeeeeesasssaaaseseeesasssaasseaeeesasssbassseeeeensssbasesseeeeennsrrnnes 444
10 UL 07275 445
IIEIEC 7 e eeeeeeet ettt ee e e ee e ettt et eeeeseassra e eeeessasssaraseeesssssssrnnsseessssssrannseeeresssrnnneeessrnsrrnnneeeerrerrrnnnnnees 446
1101 SRR 447
15 L0 TSSO RRRTRRRRRRRRNY 448
11 0 Lo [PPSO PP O PP OPPPRROPP 448
IT1S e ettttueeeeeeeeettteeeeeeeeeeaureaaeeeeeeasssnnneaeeeesssssnnnnseeeessssssnnneeeesssssrnnnnaeeesersrrnnnaeeesransrrnnnaeeeeernrrrnnaeeeeererrrnnnnaees 449
FE T80 00 1<) OSSR 449
10 1] 010 0 (S 450
1 1) 1 RS RUUR RPNt 450
13 | SO SRR TRRTRRRRRRRRNY 453
0 = PO P PPN 454
ITUEETP ettt ettt ettt e et s e et s e s at e s ab e s at e e at e s at e s ab e s ab e e ab e e ab e e st e e a s e e ab e e ab e e a b e s ab e et e e abeeateeateeareeatens 456
11z 1 L6 1< TSR 458
115 b QU 459
) /PR RPNt 459
110 i OSSNSO 460
110 o [P UPRRURRRRPRY 460
170 s La L0 1 iSO PRRRRTRRRRRRIN 461
1103 s e 16§ w2/ OSSR 461
1 10] U1 2 | SRR RPNt 461
10 18 {2 461
110181 (o2 K 461
110] D11 0T 1 AR OO OO RO P TP TP PR PORU PP 462
TOULPD ottt ettt a et a e et nes 462

12

.. 462
TOULPC ettt ettt ettt st s se e et e s bt e s neesneesneeenns

... 462
Dy e
D T o
D o
B L P
B L s
B ios
B o
B o
BT o
Dy o
D o
X e
o s
D e
LI P
D 100
O o
L ol
D 109
e prs
I p
S pk
D o
D i
D a
D L o
L s
L ps
S L L ps
e e
I b
kon """"""""""""""""""""""""""""" e
L pon
O i
B L p
O p
D p
D L p
D U P
S ane
L b
L pr
N S ek
B L psd
L L
B prs
D o
DO g P
B ps
kunlrand ... e
I P
D 180
llmlt ... -
B i
B e
B o
U] € o JOTTTTT TSR PR

13

LS. .ttt ettt sttt ettt b et b e s a et e b e bt et et e b e eh e et et e be e Rt et et e eht et e besbeeatententes 487
LIS ..ttt ettt ettt st b e bbb e bt st et et e e re e e e tesre e st eneennes 489
LOCSEIIA ...ttt ettt ettt ettt b et b ettt b ettt se b ae e ns 491
LOCSIG ettt ettt ettt sttt b e e a e bbbt et e b e b e e h e et e be bt e Rt et e beeh e et e besbeeatententes 493
O ettt b et b e e bRt e e b e Rt e et e b e e Rt e e eaeereere e e erenrens 495
LOGL0.. ettt ettt sttt et et sttt et e st e et e et e b e e a b et e b e bt et et e b e ea e et et e e he e Rt et e beeatenbenbesbeentenbentas 496
LOGDIEIWO .ttt sttt et et b ettt s bt et et e be e bt et et e b e e h e et et e be e bt et ebesbeeatenbebebean 497
LOOPISEE .ottt ettt b et b e et b e s bt et e e b bt e e b e Rt e e aeereeneeneenrereas 498
LOT@IIZ ...ttt et ettt ettt a ettt e b e bt b e bt et b e nee 500
1071 1 F TSROSO 502
LOSCIIS ..ttt st s e st e st st e st st e e st e st e st e st e et e et e et e e te e besateenbeentesnbeeats 504
LOWP@SS2 ..ottt ettt st et et et e s bt st et e st e sbe e st e b esbes st eabenbesbesatenbenbesbesstentansassesasensansessesssensensansenn 506
LOWTES ..t eveeeeeetteett ettt ettt e et e et e et e st e st b e e st e s st e e st e s st e e st esstasssaesseasseesseessesssaessasssaessaessaessaensaensaensaensaenses 508
LOWTESX 1nvteetetteetteeit ettt ettt s e st e st e st e s a b e s at e s st e s st e s st e s st e sste s st esstesssasabesabasstasasaenbesntesssesasesnsasnsesnsasases 509
IDEL8 ettt ettt ettt b et et be et be e nee 511
0] 3 (210) o H OSSOSO 513
0] a B 110) OO OO OO O OO OO OO U SRR RRPRRRRRR 513
IDINEETP 1.ttt ettt ettt ettt ettt et et s bt et et e st e s bt et et e besat e st e besbe s st e st e besbeest et enbesaee st enbebeeaeen 514
IPOSCIL ettt et e et s e et e et e st e et e et e et e et e et e et e e b e et e et e entaenbeenaeenteentaensaentas 515
LPOSCILB.c..eeete ettt ettt s e st s e st st st st e st e st e et e et e et e et e e beenbe e beenbesbaentes 516
LPT@AM ...ttt ettt ettt sttt et b et e bbb s h et e b s besa b et et e s beeut et e besae et enbenbesaaen 517
0] (110 o F OO USRS RRURRR 518
IDSNIOLA ..ttt sttt ettt ettt e st e et e et e et e et e e abe e beebeenbaeats 519
IPSIOT ettt ettt ettt ettt et b e h et b b e h et e b s heea s et et e s b e en s e besbesae et enbenbessaen 520
80 L2 Lo OO ORPPPPRPRRRRRRRRIRt 521
ITDACE «eenuveeeeenreeeeeuiteeeeereeesebtteeeenba e e s e ubaeesenneteesemraeesesraeesannbaeeeensaeeseesra e e s e s ba e e e e s b ae e e e en b b e e e e nraeesenrateeeenraeeas 522
TTVAAST «.vevententeiteieetertet ettt ettt sttt b et et e e bt s b et e e st b b et et a e bt e Rt b e st b e bt et et ae b et et benrenee 522
TNATIAOL ..ttt e b e st e et e e st e s st e s st e s st e e st e e st e e st e e st eesteesteesbeenteeateesseenteenteentenntann 524
TNIATIITIDA ¢ttt ettt s e st e st b e st b e sat e s st e sab e s st e s st e s st esabesabesabesatesatessbesabesabesabesatans 526
TTIASSIGTN e eveeueenteneeeniteniteeutes st estte s st esutesates st e s st esstesstes st e st esatesate s st esstesatesst e s st esabesabesabeeubesabeeabesnseentesnbesatens 528
TNAXALLOC 1ttt ettt e e et e et e et e e st e s st e et e e st e e st e e st e e st e e st e e st e eateeateeateentaenseenteensenntans 528
ITICTOCK .ttt ettt ettt s e st e st b e s a b e s st e s a b e s st e s st e s st esabesabesabesabesabesabesabesatesabenatans 530
ITHAEIAY ..ttt ettt ettt et et e be s bt et et s b e s bt et e be s bt e a b et e s be s st e a b e besbeeut et e besbe et e besbeeaean 531
1001 0 b (ol 2 OO OO OO PR SRRPRRPRR 531
ITHAIC2 T ettt e e et e st e s e s a b e st b e s a b e s a b e s st e sa b e s st e s st e s st e s st e sabesabesabesabesabesatesabesatens 532
INHEAECT oottt ettt ettt ettt b et a ettt s ettt se b a et nenen 533
MidichannNElaftertOUCKcc.oiviiiiie ettt ettt s e sbesnneas 534
INHAICHI 1.ttt et s e st e st e st e st e st e s st e sab e s st e sabesabesabessbesabesntesabesasens 536
MIAICONTIOICRANGE ...ttt ettt et et et s et et s b st et e sbesae et esbesbesaeen 538
1001 o) (ot n o SO OO OO OO OO O OO RORPRRPRR 540
INHAIAETAULL. ...ttt ettt et e e st s b e st e st e sabe st e sabeesbesasesnsesabesasens 541
INHEAEITL covceeiet ettt ettt ettt ettt b et a et nenen 542
TNHAINOTEOTT ...ttt et e b st e st st e st e s te st e s s e s s esnsasnsasnsasnsans 543
TIAINIOTEOMICPS ettt ettt e et e st st e eat e st e sat e st e sabesab e s st esabesabesabesabesabesabesabesasesasesasesasans 545
INEAINOTEONKEYceutieieiiiieieetet ettt ettt s bt et et s bt e st et e be s bt estesbesbesutenbenbessesaean 547
1001 (0 110 10] U700 8 Lo of A0TSR O OO PRSPPI 549
INIAINOTEONPCR ..ttt ettt s st et st e s b e st e st e st e st esabessbesasesasesasesasens 551
ITHEAEOTL ittt ettt ettt ettt sttt bttt b et b e et nenen 553
001 (0 1 10) s D2/ OO OO OO OO 553
ITHAIOUL ¢ttt ettt s bt st a e s b e s bt s e e b e sbeemeenenesneenees 554
MIAIPIECADEIIA ...ttt 555
MidIPOLYATtEITOUCH. ...ttt s 557
MIdIPrOGramMCRANGZE.ceoiiiiieieeieeteeeee ettt ettt et e s e s b st e st e st e et e snsesabesasesasens 558
110115 10) SRRSO TR OO RO UT PRSP 560
180 L0 o = PP PPO 561
ITIOOEVCE .ttt ettt et et s et et ste st et e st e s ae s st e b e s bess e e st e b e sae e st ensesbeeaees s e besaeeaeentebenaeenean 562
TTMOSCIL 1euvteeeieeieete ettt ettt et e et e et e et e e sbe e be et e et e esbeessaesseenbaesseesseenseenseesseenseenbeenseensaenseenteenseensann 564

14

000 0 001~ TSRO 566
TTMUTTITAD «veenveeteeteeete et ettt ettt et e bt e bt e bt e be et e e be e beeabeesbeesseanbeenbaenseeseensaensesnseenseensesnseesessessesnsesnsenns 567
TTAUTE ... e ieeeeiiiiieeeeeeertttteeeeeeeeersaneeeeeeeessssssnnsaseeessssssnnnnsesessssssssnsseessssssssnnnsseesssssssnnnneesesssssssnneeesessssssnnnnneseees 568
1 0100:¢ Lo 1) (R UU TSSO RPRRTRRRRRRR 569
18 T6] 01 81 KOOSR 570
TIESTEAAD ..euvteureteiieiteieste et et et e st eit et e steste et e besbesteestesessesatesbebesseestessasbesseenbenbassee st enbanbesstenbenbesseentensensas 571
1011 31 L ST TSSOSO RRRRRRRRRRRRRRRIN 574
00) T 575
Y0] (<10 & EPUUOROR RO SRRRRR 576
) 4 6] (<70) s KU URRRRRRY 577
1810] 110) 8 L6 LU | GRS 578
J Yo] 1=10) 8 s 11 o2 NSRS 579
)1 1058101 0 o RPN 580
181 (51414 o SRRSO 581
81 0 6 PP PO PP O PP TOOPRPRPPP 583
TISEATITIP ciuuurereeeeeeeeeanrereeeeeeeeennrereeeesaaeannrraeeeesseeannsraeeessasesnnrrrateesssesssnesteeessssssnsrrsteeesessssnnsnseeessenssnnsnnees 584
TEETPOL 1ttt ettt et e s e st e st e et e bt e bt e s bt e s bt e bt e bt e s bt e e st e e bt e htesatesa b e e st esatesabe st e s st esatenatans 585
OCTAV .. eeeieeeettiieeeeeeeetttteeeeeeeeersstnnaeeeessassrnnnaeeesesssssnnnneesessssssssnnsseesssssssnnnssessssssssnnnneeesssssssnnnneessesenssnnnnnees 586
L0101 (o] 0 1 TP PPPPPPPORRRRRRPINt 588
Lo Yot 01 6 § AR RRRRRRRRR 589
(15 0 01 (s 11 o JUUUR OO RURURRRRR 590
OCTPCR ottt et et e st e et e et e s et e s st e e st e et b e s st e e st e e st e e st e e st e e st e esteeateesteesteeateesteenteentannrenntans 592
OPCOAE ..ttt ettt ettt e st e st e st e s tt e s st e s st e s st e s st e s st e s st e s st e st e s st e s st e s st e s st e s st e s st e e st e s a b e s st e s abesatesatesatenatans 593
L0 1STo] o) s | QSRS 598
Lo 1T o1 | RO RRRRRRRTRRTI 603
L 1111 5 RO RRRRRRRR 605
L0 1STo3 1 B OO RURSRRRRR 605
L0111 K OSSR 606
L 11 1 | SRRSO 608
(01103 1 1< SO RS ORRRRRR 609
OSCIIKED ettt ettt et e e st e st e st e s st e s st e s st essbessbesstessseestesnseessasnseensannsennsans 611
L0 1011 11 F RO RRRRRRRRRRR 612
(01103 1§ o VRO 614
L0111 KOOSR 615
[0 1011 - RS RRRRRERRRRRRR 616
OUL cettuuneeeeeeiertiiieeeeeeeeeaartneeeeeesesssnnnneeeeessssssnnnseeeessssssnnnseesessssssssnnseessssssssnnnseessssssssnnnneessssssssnnnneesssssnssnnnneees 616
(015 113 /R RRRRRRRRRNY 617
OULC tuvuuneeeeeeieeeiieeeeeereeterteeeeeeeeressssneseeeessssssasssseessssssssnnsseesssssssssnnssesssssssssnnssessssssssnnnsseesssssssnnnseesessssssnnnnnees 618
(0101 (o] s DTSRRI 618
101010 o DRSSPSR 619
(010 15 B | 620
OUTIC 1eeeiieiiiieeeeeeeeeeeiiteeeeeeeeeeebareeeeeeeeesssaseeseeeeeesssasassaeeeeessssassseeeeseaassssssseeeeesansssssssseeessesssssssseeeesensssrnnns 620
(010 1 (0 621
OULIPAL c.eteeiieeeteeet ettt ettt et e et ettt e st e st e s e e s me e e sae e e eab e e s bt e s see e mbeeeab e e e st e s st e e st eeenseeenseeenneesanees 622
OULIPD ettt sttt be st e e b e e bt s at et e s b e s bt e ab et e sbeeat et e beebeea e et e sheeae et e besseeatan 623
OULIDIC ettt ettt ettt e ettt et e e bt e e at e e s ab e e e a bt e e bt e e st e e eaeeesaseeeabeeea st e e st e e eabeeeabe e e st e e st e e st eeenseeeabeeeaneeennees 624
OUEK ..ttt ettt e e e e eete e e e e e e eeeabaa e e e eeeeeessabaaaeeeeeesessssaaaeeaeessssssasseeeeesssssssrssesesessesssssreseeesssssssrnnns 625
(01014 <=1 TSRS 626
OULKC .ttt ettt et e e e ettt e e e e s e e bbbt e eeseessssabaeaeeseessassaseeeeeeesssansbsseeessessssnssaseesesessssssrrnnes 627
OULKC L oottt e e et e e e e e e e ae e e e e e e eesasssaaeseaeesssssaaasaeeeessasssssssesesessssssssseseeesssssnsrnnns 627
OULKPAL -ttt ettt ettt et ettt ettt b ettt b et s e a et et nen 628
OULKPD ettt e e et s e et e st e st e st e et e st e e st e e st esasesateeateeaseenseenseenseenseenseentann 629
OULKPDIC 1ttt ettt ettt e et e e st e st e s at e s a b e e a b e e ateea b e sabeeateeab e e st e s st eeabesabesabesabesabesaseeabasaseensesnsesasens 630
(018 1 o TR 631
(0] 0L (e [O TP PU RO PRPRPP 632
(01 UL (e T PO TSP PO PP P ROPPPOPPON 632
L0101 /O 633

15

outg4........ccoeuueee.
ouga
OutSI -- 634
s —————————————— o
OUtvalue ... 636
OutX -- 636
s —————————— ol
R ——,S,S,l,lkllkl;, oo
pan T —.-eff if 638
P 010
phy “““““““““““““““““““““““““““ o1
pChbend --- 641
pChmidi .. 643
pChmidib .. 645
pChOCt --- 646
peoc..._ o1
pkk """"""""""""""""""""""""""" P
pea o
phaserl .. 652
phaserz --- 652
phasor ... 655
phasorbnk .. 657
pinkiSh --- 660
pitCh ... 662
pn o
planet --- 665
pIUCk -- 668
pOisson ... 670
pOIYaft -- 671
port s 673
s o
pon o
pOSCils -- 677
e — o
pwﬂw """"""""""""""""""""""""" 080
prealloc --- 680
print nn 682
prin o
prlntkz .. 685
printks................. .. 686
prOduct .. 688
pset .. 689
pdd """"""""""""""""""""""""""" bo2
pbfd """""""""""""""""""""""""" oo
pvcross .. 693
ptp """"""""""""""""""""""""" o
pVOC .. 697
pvread ... 698
pdy """"""""""""""""""""""""" s
prad o
pvscrOSS .. 702
pvsfread ... 703
pvsftr ... 705
pVSftW .. 706
pf """""""""""""""""""""""""""""" Tos
pvsmaSka............. --- 708
pvsynth.................:: -- 710
... 711
... 712

16

21016 | o ROUUUT TSRS RRPRRTRRRRRRRN 714
11221 8 L6 | DRSO 715
2210 Lo () o o WU 717
bz 1016 (0] 051 o WRRRRRRRRRR TSSOSO PRRTRRSRRRR 719
1ig=1 8 L6 [0 o ¥ RSSO 720
(T L (o] Lo Yol <H SRRSO 721
(Y2 Lo | OSSOSO RRRRRRRRRRRRRRRI 723
(T L6 | 2RO RRRRERRRRRRR 724
T Lo < TSRS 726
TEAAKA ...ttt ettt e e e e e et b et e e e e e s e ab—at e s e e e e s e ——bt et e aeae e bbb teeeeeessaaateeeeeenesarraaaes 727
=) 10 1) 728
TEIEASE ..ottt e ettt e eett e e e eeaa e e e ee sttt e e esabbeseesaabesesba e e e esaba e e e e ar e e e eaabaeeeeabaeseebbeeeenarreeeeareeeennrreeas 729
TEPIUCK ...ttt ettt e e et e st e et e s st e s et e e st e e st eessesstasssesssasssesssesssesssaessasssasssaessasssasnseensanssasssannses 730
TESOIL ouuuneeeererrruneeeeeerrerssnneeeeesssssssnseeeessssssssssssesssssssssnseesesssssssssssessssssssssssseesssssssssnnseessssssssnnnesesssssssnnnnnnes 732
JESET0) o | SO O PR SRRRRRR 734
TS OINT .. evvuuieeerueeeerrneerssseeeessseeeesssneessssneessssnsessssssessssnsessssnsessssssessssnsessssnsessssnsessssnsessssnnessssnnsssssneessssnnesnsnnne 734
TESOIIX .uueeeererernnneeeeeerrerssnneeeeesssssssssseeesesssssssssseesssssssssssseessssssssssssssesssssssssnsseessssssssssssesssssssssnnnseesssssssnnnnnees 737
TESOILY nuuvrieiiirieeiiirteteiuteeeeiateeseaateseabaeesesbtesessaaeesessaaessessatesesaaeesessstessssaseesessraeesessseessssraeesessstessssneess 738
) 110) 0 /2RI 740
oA /<) 1 o J RSP RRRRRRRRR 742
JRSA1/1 4 o YOO 743
7477 OO RPTPP 744
11 € TR 745
TITETUTTY c.iviiieeeeceeeeitiee e e eeeettre e e e e e eeeeabbeeeeeeeeeseassbsesseeeesassssaaasseeeesasssasasseseesssssasssesesessnssssssseeeesnnssrrnnes 746
10 0 N 747
15 0 1 DSOS 748
506 1< 3 ORI 749
155] 0111 1= OO OSSOSO PR SRS 753
TECIOCK ettt et e e e e e e e e e eesababaeeeeeeessssssaaaeeeeeeesassbasseseeessssssaseeseeessssrrannns 754
L3] o 3 ORI 755
LR Y22 o) S 756
SAMMPRNIOLA. ...ttt ettt e s e st e st e st e s at e s st e et e sabesabesabesabesabesabesateeatesabesatens 758
SATLAPAPET ..cnveeveeuientenieeiteteeteeie et et e st st et e besteeat et esbesbeeat e besbesstesbesbesbeeatenbesbesseenbenbessesstenbenbessaessensessessean 759
LYoz 101 o 10 010 0 1) oRRUUUU OSSR 760
SCATLS 1uuuneeeerrereruneeeeerereaessnaeeeeeressssnnsseessssssssssssseessssssssnnssesesssssssssnssessssssssssnssessssssssnsnssessssssssnnnseessssssssnnnnsees 761
LYoz 1 1221 o) (< T ORR U RRRRRRR 762
SCATIU uuuuuieeereeuruneeeeereeesssaeeeeeesssssssesseeeessssssssssseesssssssssnsseeesssssssssssesssssssssnsssesssssssssnsssesssssssssnnseesessssssnnnsees 764
LYo L6 | (T 1) o APPSR 765
LYe] s T<To L1 [T O ORRRRRRRR 767
LYo L6 A 174 0 1<) o WP 769
Y= TSRS 771
LIS (S (TR 771
LS8 VL0 0 (= 773
153 o N 774
SEIISEKEY vttt ettt ettt et e e s b e s u e et et e s besut et e b e e bt e a e et e b e e bt e a b et e e heea e et e be e bt ea s et e shesat et e beeseeaten 774
SEQLITIIC ...ttt ettt ettt e et e ettt e et e e e bt e e bt e e bt e e e ae e e e ae e e eabe e e bt e e st e e ab e e e ab e e e bt e e bt e e ateeeabeeeabeeeneeenees 776
LY (o1 5 AR RRRRRSRTRRRR 777
SETKSITIPS ...ttt ettt ettt et ettt st et et e s bt s at et e b e s bt eut e st esbesuteut et e sbeeat et e besbeeu b e besbeeat et enbesseeatan 779
LY 1 RSO RRRRERRRR 781
L3 50 011 o GO R 781
LY § 1011 0 s SRS TR P RRRRTRRRRRI 783
LS 81011 6 53 0 o VRS RRRRERRRR 784
L3 50 011 o VO 785
1533 (o Y= Uc KNSR PRRRRTRRTRRRIN 786
STPASSIGIN ettt st be et b e b e be e e b e s beeneen 787
STPLAY ettt ettt et b e e e et b e et e et e b e e ae e st et e beeae e st e besbeeaeensenbenaeenean 788
SEPLAYS ettt ettt a et nen 789

17

... 792
D 7o
D L oA
sfpreset .. 7o
T 79
L e
D il
L 7o
S b
G 801
L 80
L 801
S 80
L 806
L 807
T 808
B 810
D s
O T 813
O O 816
U 817
D 818
D 822
D o
D 833
D L 830
D 810
D %
O T %
O o
D Bas
DD o
D a0
D . o
D 818
spsend """"""""""""""""""""""""""""" 819
sqrt .. o
L 852
L 853
D o
L 856
DD o7
L 858
T 858
B 500
B 8o
0D 8o
D g0
D sot
Dy 8o
DI L 806
K 807
X soe
tablelw .. 509
P a7
T 872
BTG o
17210) U3 < RSSO ORI

18

171 0] 131 TSSO SU SR 877
TADLEWA ...ttt ettt ettt ettt ettt e a e e bt e bt e bt e bt e bt e bt e h e e at e st e st e st e st e st enaeeaen 879
EADLEWKE ..ottt ettt ettt ettt et b bt b e bt et b e e ns 881
L7 1 0] 14 EF USSR 883
LADLEXSEE . cveeueeneeteetteeterte ettt ettt ettt ettt s b e st b e e bt et b e s bttt r e bt e et e b e e Rt e e e naesbeeseeneerenrens 885
TAIMDOUTIIIE <.ttt ettt ettt et et b ettt b bt e st e b e b a et esesbeseeneenis 886
LE21 o PP OPPPPPPPTORRRRRRPINt 887
171 01 o W OO OO OO OO U RSOOSR UPPRRPRRRR 888
TATLITIV ettt s s s s ab e s b bbb e s b s b saa s 889
TATMIIVZ 1.ttt ettt et e et e et e et e e s bt e e bt e e sbe e a b e e e b e eeasae s sbeesabe e sbaeesbaeesste e sbeesabaesbaeensaessteennne 890
TDVCE ettt s e st s e st e st e s st e st e s a b e e st e st e e a b e st e et e e st e e abeeateebesnbeenbeebeenbeeates 892
LS00 01T PP P PP RO PR OO PPOROPP 894
L5301 010 TSP OPPPPPPPRRRRRRRRINt 896
10c) 001 010)77: | FOS OO OO OO OO OO OO O SRR RPRRRRRR 897
TEZOTO ceuvtettetteetteett ettt ettt et s e s ut e st e s atesa b e s bt e s a b e s st e s at e e st e sabesa b e e a b e e st e e ab e e a b e e a b e e a b e e a b e et e ea b e e beenbeeabeenbesabeeares 899
1800015010 13 1 OO USROS 899
TIITLEITISTS -ttt ettt ettt et e et e s bt e e bt e e aee s ea bt e e bt e e st e e embeeeabeeeabe e e bt eesteesnbeeenseeenseenaneeenneeenne 901
TIIIIEK ottt ettt ettt ettt b e bt b et et e e b et b s enee 902
L8108 LT RRORPPPPPPRRRRRRRRINt 903
TEITLOUE «.e ettt e ettt et e et e e bt e e bt e e e aee e eab e e e bt e e st e e esbeeembeeeabe e e bt e e sbeeenbeeenseeenseenaseesaneeenee 905
TIVAL 1ttt sttt b et bbb e et be s e 905
10100153 €0 DO OO RRR PR 906
L0 o U< OO PR PSP PP O PP OTOPPPPRROPP 907
EOTIEK ottt ettt ettt ettt et b ettt b et bbbt b e et et be e nee 907
L0) 6 15 PP OOPPPPRPTRRRRRRRINt 908
L8 U T~ PSPPSR 909
TEEZEET «eeenveeeieeiteeiteete et e et e et e et e et e st e s atesatesabesutesab e e st e s st eeasesabesabesabeeaseeaseeabeeabeeaseeabeeab e e b e e besabeeabeeabenareeares 910
L8 0T cTo [T P OO PSPPSR 911
ETITAIIA ettt ettt s e st e s et e st e s bt e s a b e sat e s st e s bt e s st e s st e e st esabesabesabeeatesatesabesateeabesabesatens 913
TUITIONE ...ttt ettt ettt b ettt a st b s e s e nee 914
L1615 00 o PP OOPPPPRPRRRRRRRINt 915
UTHTAIIA 1.ttt ettt e s e st e st st e st e s at e et e s st e sabesabessbeesbesabesabasasesaseensaessasnsasnsesnbasnsesnsasases 916
UIPSAITIP c.eevteiiiireeiiirtee ettt e e ettt e s etrt e s esabaeesesabtessessbeesesaseesessssessssaseessasaessssasaessssaseessssaessssseesossssesssssneeas 917
UTA ettt ettt et et e et e st e st e et e et e e st e e s tes st eesseessasssasssesssaesseensaasseesseenseensaensaenseensaensaenseenseenteensaensaenses 918
VALPASS «veenvteeieniienitentenit ettt st e st e st e s bt e s bt e s bt e s bt e ae e s bt e s be e be e bt e be e b e e bt e b e e bt e be et e e b e et e e be e be e be e beenbeebaenrs 919
VDAP LG ..ottt ettt ettt et ettt et et b s a et b e b e s a et e b e bt e st et e be e bt e Rt e b e s beshtea b et e sbeeat et e besaeeaes 919
VDAP LIOINIOVE ...ttt ettt et te et e e et e et e et e et e e be et e e st e ssseessesssaessasssaensaensaensasnsesnsasnsesnsannses 921
VD@D ettt ettt ettt et e s a e e b e e be e bt e bt e b e e b e e bt e b e b e e b e e b e e be e be e be e be e be e baenrs 923
VDAPAINIOVE ...ttt et teett et et e s testt et e be s bt sut e be st essesutensesbe e st estenbesbesstest e bessesstentenbessesatensenbesseenes 924
AU 0T 0 J0U OO 926
VDAPBIMIOVE ...ttt ettt ettt ettt e s e e bt e s be e be e be e bt s be s be e be e be e be e beesbe e be e beesseensaenss 927
VDAPLSIIUIT ...ttt ettt ettt et st sat et e be e bt et et e be e bt et e besbeebt et e be s bt eat et e besaeeaes 929
VDAPDZ. ettt ettt ettt e et e et e e et e et e et e et e et e et e et e e ta e be e ae e be e baenraentes 930
VDAPZITIOVE ...ttt sttt et sttt et s bt e s be e s bt e s be e be e bt e bt e beesbe e ba e be e be e saesbaesseenseesesnsesnses 931
727 N 933
VICOZ . teeeettee ettt e ettt e e et e e e ettt e e e s bt e e s e bae e e e s be e e e ea s bt e e e ase e e e e s bt e e e e s e e e e e a b e e e e e R et e e e e ara e e e e anre e e e e saeeeeanreeeeeanreeas 935
VCOZEE ettt ettt st et e a e e bR e b s bt e aesresreens 938
VCOZIEE vttt ettt ettt ettt ae et a et nen 939
VICOZITUAT 1.ttt ettt ettt ettt e et e et e e a et e e at e e e st e e bt e e bt e e euteeeube e e be e e bt e e ateeeubeeeabe e e bt e e eneeeenbeeeareenane 940
VCOTIID Lottt ettt sttt et st a e s bt st b e s bt et a e b s bt e b e et e b e s r e e e e n e b e eneens 942
VABLAY ...ttt ettt sttt e et et a et enen 943
VAELAYS ...ttt sttt ettt s bbb bbb s b e e se e e e b e s bt et et e beereeneen 944
VAELAYX ettt ettt sttt st s e st e st e sat e sae e s at e s bt e s bt e s bt e s bt e bt e s bt e be e be e bt e bt e be e se e beense e baenns 945
VABLAYEQ e vttt ettt a et et a e eren 946
VAELAYXS ..ttt sttt s sttt et e bt et e b e s b e e bt et e b e s b e e st et et e e be e st e e e s b e sbeeae et e nbesbeeneen 947
VAELAYXW ...ttt ettt ettt s e st e st e sae e s bt e s bt e s bt e sbe e s bt e s bt e sae e s bt e beesbeesbeesbe e seessaesseesaenss 948
VACLAYEWG - ettt ettt ettt ettt ettt s b et ettt et et sesae e et neenens 949

19

L7751 (o 1RSSR PRRRRRRRRRN 951
A7 o T TSRO 952
1721 o) USROS 954
721 03 =1 (o JRUTTTU TSSO RRPRRTRRTRRR 955
172 1 8 (o1 SRR OURR PPN 957
VIOWTES ..ottt e eeee e e e eeeesttba e e e e e e eeessabaaeeeeeeessassaasseeeeessssssaaeseeeesassasaseesesessssssssseseseesnnnnes 958
70 (LTS UURRRRORRPRRRRRS 960
VPVOCetteeeitteeeeutteeeenteeeeereeesasteeeeemseteseanraeeseneeeeaamsaeesaneaeesassaeeesansaeesasneteeeansaneseansaeesaneneesanseeesannneeesannene 962
WWAVESET cevrrnneeeeeererrtiiieeeeeeretttneieeeeeeeerrssenaeeessssssssnneesessssssssnneesssssssssnnnsesssssssssnnnesesesssssssnnssessssssssnnnenessssns 963
LTS3 011 | SRRSO T SRR 964
WEDOW ..ttt ettt b e s bt st a e b s bt et e e e b e bt e e b e b e e Re et e b e sreeneenrerenns 966
WEDOWEADAT ...ttt ettt s et e e st s bt et e besbesatesbesbesbesatenbanbessasntensensenaes 967
WEDTASS ettt ettt ettt e et e st e st e e at et et e s bt e a b et et e s bt e a e et e b e e bt et et e be e bt et e be b e e at et e be s bt eatenbebenns 969
WECLAT ettt sttt b e s bttt b e e bbbt e e e b e sre e enrerenns 970
WEEIULE .ttt ettt et et s bt et et et e sa e et e be st e s bt e st e besbesaten b e besbeestenbenbesaeentenbabesas 972
WEPIUCK .ttt ettt sb ettt e bt et esbesbe s bt et e be b e e at et enbe s bt et e bebenas 974
WEPIUCK2 .ottt ettt a e st n e s b e e e e n e s be e e s e nresnis 976
WEUIAET .ttt ettt ettt s e et et e st e s bt et et et e sut e st e besbesstesbenbesbesatenbenbesbeestenbanbesaeensansansesses 977
WEULAL ..ttt ettt ettt et e et et e s bt et e b e b e sbesab e besbe e st ea b e be bt est e b e be bt eatenbenbesseentensesenas 978
TWEEAD «oevveeeeeuneeeeeanreeeeeaueteesesaeessanraeesaneteesensaeesesssaeesansaeesaanraeesaseaessansaeessassaeesansaeeesansaeesaansaeesaneeeseanseeesannnee 980
IWEETTAITY .eeiiiiiiiiiieeeeeieeiiitee e e e e eeeeittreeeeeeeeesssbareeeeeeesssssaseeeeeeeassssassseeeesssssssassseeeessssssssssseeeeessssrssnsseseesnnnes 981
D2 Lo 1<) SRRSO 982
b« 1 s NSRS UURR PPN 983
XOUT ceeeietrtuueeeeeeeeerruneeeeeeeeeersunneeeeesssssssnnnseeessssssssnsseeeessssssssnnseesssssssssnnnsesssssssssnnnsesssssssssnnnseessssssssnnnneessssens 984
D CT021 01 121 0 RO UPPPPPTTRN 986
XSCATISITIAD -eeeeeuurreeeeumreeeearreeesenraeeeenreeeeesaeeseasraeesassreessansaeesassaeesasaeesssssaeesassaeesanaeesssnsaeessnsseesssnseeessnnses 986
XSCATLS evvvrunneeeeerrrrrunneeeeeeessssssnnaeeesesssssssnnssessssssssssnnneessssssssssnnseessssssssnnnnsesssssssssnnnsesssssssssnnneeessssssssnnnseeesesens 987
D07 1 0 1 0 RN 988
XETATIITY oevvvvvvvreeereeeeeereeeeeeeeeereeeseessessasssnssrsssrrnnes 990
XYTLecuttettenueenteesiee et e st et e bt e bt e s bt e s bt e s bt e bt e bt e s bt e bt e bt e bt e bt e bt e b e e b e e bt e b e e bt e bt e bt e bt e bt et e e be e be e be e beebeebeeares 991
7o) SRS RRRRRRRRRT 993
2.1 < 0 1L OSSPSR 995
721 510 1o ERRUUR OSSR 996
ZAT aueeeeeereertuieeeeeeereratt——eeeeertatta———eeertatb——————ettttrhh———eetetttrtaa—.tttrttthh—tteerarrhatteerrrbrraaeeeerrrrrraneeeeerres 998
ZATG uveeeeeieeeeeerttee ettt e e ettt e e et e e e e bt e e e e bt e s et e e e e b et e e b e e e e R et e e e b bt e e e b b e e e e R b et e e e b b e e e e e ba e e e s raaeeeeraeeeennrae 1000
ZAW .eeeeeeeeertrnneeeeeeeseesstnnaeeeeesessssnnnaseesessssssnnnseesesssssssnnnseesssssssnnnnseesesssssnnnneessssesssnnnaseeesssssssnnaeeeesssnrsrnnnaeees 1001
ZAWIX L. .ceeeiirtiieeeeeereerstteeeeeeresssssaseeeesssssssssssessssssssssnsseesssssssssssssessssssssssssseessssssssnnsseesssssssssnseessssssssnnnneees 1003
A <) 2/ OO 1005
ZAT ettt eee e ettt e e ——— e e ettt eaa————aaeeeeeaa b ———ataeeeaaa b b——ttaeeeeaaabaaaraaeeeeaatbaaaataeeeeennrraareeeeeeannes 1006
A\ 1008
ZIWTIL «.eeeeeiiiieeeeeeeeeeestieeeeeeereesssaaeseeeesssssssensseessssssssnnsseeesssssssnssssessssssssssnsseessssssssnnnseessssssssnnnseessssssssnnnenees 1009
4 <) OOt 1011
A< '8 Lo Yo RSOOSR 1013
A SRR 1015
ZW e ee e et e e — e e e —r e e ea—— e e e e b bt e e sehar e e et bt e e eab bt e e eabareeenabteeeebareeearbreeeenrbeeeenares 1016
A 72 s o OSSR 1018
16. Score Statements aNd GEN ROULITIEScooiiiiieiiiiiiiiieiieeiiieeeeeee ettt eeeeeeeesasaeeeeeeessesssssssseesesssssnnsnnes 1021
NTel0) N ¥ 1) 01015 1 £ U 1021
a Statement (OF AAVANCE STATEIMIEIIT) ..evveeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeseeeeeseesessesessssnssenssssnnsssssnnnnnnnnns 1021

[721 <) 0 1<) o | O RRSRRRR 1021

(SN £ (S 0 1<) o L AR TTRRRRRRNY 1022

f Statement (Or FUNCION TaDIe STATEIMIEIIT) «..uuueeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeseeeaaeeeas 1023

i Statement (Instrument Or NOte StAtEIMEIIT) .ocoveeeeeeieiiieeeiieieees 1024

m Statement (Mark STATEIMEIIT)coevueeeiiiiiieiieeeeeeee et eee e e e e e srareteeeesssssasaaeeeessssssnsseseessns 1027

0] K1 1) 8 1<) 01 SRR 1028

L0 E 102) 00153 o | O O SO SO SRR PRSP PRRP PP 1028

1 Statement (Repeat STateIMEnT)cccevvieiriiiiiiiniiiieteee e 1029

20

SRS £ 17510 01<) 01 HURSRR PP PPPPPPPRPPPPPPPPRt 1030

t Statement (TemMPO STATEINENT)ccoviiiiiiiiiiiiiiirierte ettt eree e e e e 1031

AT £ 1<) 00 1<) 0 | AU 1031

D] F2 1151 001 01 ENUUUUUT U U U 1033

GEN ROULIIIES .. s s s s s s s s sssssssssssssssssssssssssssnssnsnnnen 1033
[1\ N[SN 1033
GEINDZ..eeeeeeeeeetee ettt ettt e e e e eeseabb e e e e e eeesssabaseaeeeeesssssasasaeeeesassbasseseseesassrrnseeeeeesnnnnns 1035
GEINDB....eeeeeeeeeeeeeeeeeeeeeeesereaaeeeeaeaaeaeaearaeaeaseasesssssssasssessssrennes 1036

[1\ OSSN 1037
GEIN DB ..ottt eee b e e e eeeeeabb e e e e e e eeesssabaseeeeeesaasssasesaeeeeesasbaassseeeesastrraseseeeennnnnns 1038
GEINDB.......ueeeeeeeeeeeeeeeeeeeeteeeeaeeeeaeseeaeeeaseeseassssesssnssnnes 1039

[1\ RN 1040
GEINDB....oeeeeeeeettteee ettt eeeeet e e e e eesettbba e e e e e eesssabaaaaeeeeesasssssssasaeeessssbasssseeessssssranseseseennnes 1041
GEINDO.....oeeeeeeeeeeeeeteeeeeteeeeeeetae e taaaeeaeaeasaaaaaasasessassasassssssaasassassnrsnnes 1042

[1\ TSN 1043

[1\ I USSR 1044

GEIN L2ttt et aa e et e e e e aa e e e e e e s e asaasasaaa s s s s aassssasssssssssssssssssssssssssssssssssasssssssssssssssrnsnnnnnns 1045

[1\ I TN 1046

GEIN LAttt e e et e et e e e e eee s s abaaaeeeeeesasssbaasasaeeessssbasseseeesssssranssseeeennnes 1047
GEIN LD ...oeeeeeeeeteeeeeeteeetteeteeeattt e aeaeaaeaaaaaa e e aa e e s e sesasasaasssssasssssasssrssnrrnnns 1048

[1\ < TN 1049
GEIN LT et eee e e e e et e et e e e e e eees st aaaeeeeeesasssbaasaeeeeesassbaaasseeeesessrasssseeeennnes 1050

(€ 20\ < TR 1051

[1\ K TSRO 1052
GEINZ0.uuueiiiee ettt eeeea e e e et e e tbaa e e e e e eeesasabaaaseeeeesasabaasaseeeeeaassbaaaeaeeeeeanssraaeeseeeennnes 1053
GEINZL..oeeeeeiieteieeteieeeeteettetttteeraaaeearaeaeaereaararaasassarasssseaasssssasssrssssnrrnnes 1054

[N D2 TN 1055
GEIN24 .ottt e e et e et a e e e e e e e e st ba e e e e e eesasababaaaaeeeeesssbaaaeaeeeeeanstraareseeeeennes 1056

(€ 20 2 TR 1057

[1 D2 U 1058
GEINZ8...eeeeeeee ettt et ee et e e et e e bbb e e e s e eeeeessababaeeeeeesassbabasaaeeeeesssbaaaeseeeeeanssraaesseeeeeanes 1058

(€ 20 11 TR 1060

[1A\ SN 1061
GEIN B 2.ttt ettt e e e e e e ee bbb e e e e e eeee st b aaaeaeeeeeaabbbaaaaeeeeeaaabaaarseeeeeenatraaaraeeeeeanes 1061

[1S TSR 1063

[1S T SR 1065
GEINZO...ueeeiee ettt eeeete e e et e e tbbae e e e e eeeessbbaaeeeeeeseessbasassaeeesesssbasasseeeseenssrasssseeeennnnes 1066

(0 1\ SRR 1067

[1A\ OO 1067

17. The Utility PrOGIAIMIS. ...cc.coovieiieieiinierieeteieeieettetest sttt et sttt et et saesat et et s st st esbesbessae s esbesbesatensensessesaes 1069
|) =Tt 0] o (= TR 1069
SOUNALLE FOTTNALS. ..vvviiiiiiiiiieiiieee ettt e e e e e eeabar e e e e e e sesasbaseeeeeeesssasssseesesessessssssseeesesssssrnnnes 1069
(05 =16 |1 1= TR 1069
ANAlySis FIle GENETATIONcc.eeiiriiriieiieierieeeetesteeee ettt sttt st s b s bt et esaesbe s bt et esbesbeenis 1070
| 115 (o TR USSR 1070
IPANAL ..ttt b e st b s bttt s b bbb sbesat et e besaeeas 1071
PVANAL ..ueiiiiieiieeieeieeteeteet ettt ettt s e st e st e st e st e e st e s a e e s st e et e e s at e e st e e st esatesatesatesatesseesaeesstenaaenns 1073
(637221 s - | ES SN 1074

FILE QUETIES ..eevveeeerieeiieeetteeete et e et e et e e vt eebeeebeeesbeeestasessbeeesseeeasee e seaesssseesseessbeeenseeesssensssensssennseennns 1075
Y 0 Lo 1501 {0 YU SR 1076

33 1 L 003§ 174 =3 10) s WSRO RSSO 1076
AIIOISE 1eveveeeeieeeeeeeeeee ettt ettt e e e e e s taa et e e e esssssaassaaeesesssssaasaaeeeessssnsasaeeeessssssnssaseeesssssns 1077
PVIOOK c. ittt sttt ettt s e s a e st e s atesat e st e satesatesatesatesaaenns 1079

e 11 .2 e ISR 1083

1] (010) 0 72NN 1084

B TR0) 1087
Events, Lists, aNd OPETAtIONSccceviiruiiriiniieienterterteste ettt et saeesreesae e s e e saeesaeesaeesseesseesbeennas 1087
WIiting @ Main PrOZIamMcciiiiiiiiiiiiiiiiciccccecrc ettt sre st 1088

21

More Advanced Examples...................
Compiling a Cscore Program..............

19. Adding your own Cmodules to Csound

Function tablescocceeveverencnnencne
Additional Space.......cc.eceeverenereennene
File Sharingc..cccceccevevenvevencneeeenne.
String argumentsccocceeeveeeeceeenneen.

A. Pitch Conversion

B. Sound Intensity Values.....

C. Formant Values

D. Window Functions

E. SoundFont2 File Format...

F. Quick Reference

Index.

22

Preface

Preface to the Csound Manual
Barry Vercoe
by Barry L. Vercoe, MIT Media Lab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different manner
of control. Direct synthesis generates waveforms by sampling a stored function representing a single cycle;
additive synthesis generates the many partials of a complex tone, each with its own loudness envelope;
subtractive synthesis begins with a complex tone and filters it. Non-linear synthesis uses frequency
modulation and waveshaping to give simple signals complex characteristics, while sampling and storage of a
natural sound allows it to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is really a
computer program that can produce sound, while a score is a body of data which that program can react to.
Whether a rise-time characteristic is a fixed constant in an instrument, or a variable of each note in the score,
depends on how the user wants to control it.

The instruments in a Csound orchestra (see) are defined in a simple syntax that invokes complex audio
processing routines. A score (see) passed to this orchestra contains numerically coded pitch and control
information, in standard numeric score format. Although many users are content with this format, higher
level score processing languages are often convenient.

The programs making up the Csound system have a long history of development, beginning with the Music 4
program written at Bell Telephone Laboratories in the early 1960’s by Max Mathews. That initiated the stored
table concept and much of the terminology that has since enabled computer music researchers to
communicate. Valuable additions were made at Princeton by the late Godfrey Winham in Music 4B; my own
Music 360 (1968) was very indebted to his work. With Music 11 (1973) I took a different tack: the two distinct
networks of control and audio signal processing stemmed from my intensive involvement in the preceding
years in hardware synthesizer concepts and design. This division has been retained in Csound.

Because it is written entirely in C, Csound is easily installed on any machine running Unix or C. At MIT it runs
on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI’s under 5.0, on IBM PC’s under DOS 6.2 and
Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single language for defining the audio
signal processing, and portable audio formats like AIFF and WAV, users can move easily from machine to
machine.

The 1991 version added phase vocoder, FOE and spectral data types. 1992 saw MIDI converter and control
units, enabling Csound to be run from MIDI score-files and external keyboards. In 1994 the sound analysis
programs (Ipc, pvoc) were integrated into the main load module, enabling all Csound processing to be run
from a single executable, and Cscore could pass scores directly to the orchestra for iterative performance. The
1995 release introduced an expanded MIDI set with MIDI-based linseg, butterworth filters, granular
synthesis, and an improved spectral-based pitch tracker. Of special importance was the addition of run-time
event generating tools (Cscore and MIDI) allowing run-time sensing and response setups that enable
interactive composition and experiment. It appeared that real-time software synthesis was now showing
some real promise.

Copyright Notice
Copyright 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.I.T., Cambridge,
Massachusetts, with partial support from the System Development Foundation and from National Science
Foundation Grant # IRI-8704665.

Permission to use, copy, or modify these programs and their documentation for educational and research
purposes only and without fee is hereby granted, provided that this copyright and permission notice appear

23

Preface

on all copies and supporting documentation. For any other uses of this software, in original or modified form,
including but not limited to distribution in whole or in part, specific prior permission from M.I.T. must be
obtained. M.I.T. makes no representations about the suitability of this software for any purpose. It is provided
"as is" without express or implied warranty

The original Hypertext Edition of the MIT Csound Manual was prepared for the World Wide Web by Peter J.
Nix of the Department of Music at the University of Leeds and Jean Piché of the Faculté de musique de
I'Université de Montréal. A Print Edition, in Adobe Acrobat format, was then maintained by David M. Boothe.
The editors fully acknowledge the rights of the authors of the original documentation and programs, as set
out above, and further request that this notice appear wherever this material is held.

Contributors

In addition to the core code developed by Barry L. Vercoe at M.1.T., a large part of the Csound code was
modified, developed and extended by an independent group of programmers, composers and scientists.
Copyright to this code is held by the respective authors:

Table 1. Contributors

Mike Berry Richard Karpen
Eli Breder Victor Lazzarini
Michael Casey Allan Lee
Michael Clark David Macintyre
Perry Cook Gabriel Maldonado
Sean Costello Max Mathews
Richard Dobson Hans Mikelson
Mark Dolson Peter Neubécker
Rasmus Ekman Ville Pulkki

Dan Ellis Marc Resibois
Tom Erbe Paris Smaragdis
John ffitch Rob Shaw

Bill Gardner Greg Sullivan
Matt Ingalls Bill Verplank
Istvan Varga Robin Whittle
Jean Piché Peter Nix

The official manual was compiled from the canonical Csound Manual sources maintained by John ffitch,
Richard Boulanger, Jean Piché, Peter Nix, and David M. Boothe. The Alternative Csound Reference Manual is
maintained by Kevin Conder.

Why is this called the Alternative Csound Reference Manual?

When I originally started my manual project, there was already an Official Csound Reference Manual (last
known address: http://www.lakewoodsound.com/csound/hypertext/manual.htm). The Official manual was
maintained by David M. Boothe. I found its layout confusing and I wanted to change it. But since it was
maintained with commercial word processing programs, I couldn’t. I could neither afford those programs nor
were they available for my main computing platform.

So I created an alternative to the Official Csound Reference Manual. I changed the layout: used actual page
numbers, renamed the index section to "Index" and moved it to the end, add working examples, got rid of the

24

Preface

HTML frames, etc. I distributed my manual using the DocBook/SGML format so that anyone on any platform
could edit it with a text editor. This manual can also be produced with freely available programs.

David M. Boothe wasn'’t interested in maintaining my DocBook/SGML version of the manual. He was also
concerned that people would confuse his project (the "Official" one) with mine. So out of respect for his
wishes, I named my project the Alternative Csound Reference Manual. I made this decision so that nobody
would confuse my project (the "Alternative" one) with his.

It’s frustrating that members of the tight-knit Csound community have attacked me for merely using the term
"Alternative". Some have tried to confuse my readers by referring to my manual using my last name, often
misspelling it. One outspoken member of the Csound community has personally attacked me for being
"confrontational”" and suggested that I change my manual’s name to be more "neutral". For the record, I
chose my project’s name out of respect to David M. Boothe not malice. Changing it now would only confuse
my regular readers.

Written by Kevin Conder, October 2002.

25

Preface

26

|. Overview

Chapter 1. Introduction

Where to Get Public Csound and the Csound Manual
Public Csound is available for download from :
ftp:/iftp.cs.bath.ac.uk/publ/dream/newest/

This Hypertext Edition of the manual, as well as the Print Edition, in Adobe Acrobat format (.pdf) are
available for browser download from:

http:/lwww.kevindumpscore.com/download/

How to Install Csound

Linux
Detailed instructions for installing and configuring Csound on a Linux system may be obtained from:
http:/lwww.csounds.com/secondprinting/cdroms/installing/linux/

Macintosh
Detailed instructions for installing and configuring Csound on Macintosh systems may be obtained from:
http:/lwww.csounds.com/installing/howtomacintosh/index.html

MS-DOS and Windows 95/NT

Detailed instructions for installing and configuring Csound on a MS-DOS or Windows 95/NT system may be
obtained from:

http://hem.passagen.se/rasmuse/PCinstal. htm

Windows 95/98/2000

Detailed instructions for installing and configuring Csound on a Windows 95, Windows 98, or Windows 2000
system may be obtained from:

http:/lwww.csounds.com/installing/howtowindows/index.html

Other Platforms
For information on availability of Csound for other platforms, see The Csound FrontPage:
http://mitpress.mit.edu/e-books/csound/frontpage.html

The Csound Mailing List
A Csound Mailing List exists to discuss Csound. It is run by John ffitch of Bath University, UK.
To have your name put on the mailing list send an empty message to:
csound-subscribe@lists.bath.ac.uk

Posts sent to csound@lists.bath.ac.uk go to all subscribed members of the list.

29

Chapter 1. Introduction

Bug Reports
Suspected bugs in the code may be submitted to the list.

30

Chapter 2. The Csound Command

Csound is a command for passing anorchestra file andscore file to Csound to generate a soundfile. The score
file can be in one of many different formats, according to user preference. Translation, sorting, and
formatting into orchestra-readable numeric text is handled by various preprocessors; all or part of the score is
then sent on to the orchestra. Orchestra performance is influenced by command flags, which set the level of
displays and console reports, specify I/0 filenames and sample formats, and declare the nature of real-time
sensing and control.

Order of Precedence

With some recent additions to Csound, there are now three places (and in some cases four) where options for
Csound performance may be set. They are processed in the following order:

1. Csound’s own defaults

2. .csoundrc file

3. Csound command line

4. <CsOptions> tag in a .csd file

5. Orchestra header (for sr, kr, ksmps, nchnls)

The last assignment of an option will override any earlier ones.

Description

Flags may appear anywhere in the command line, either separately or bundled together. A flag taking a Name
or Number will find it in that argument, or in the immediately subsequent one. The following are thus
equivalent commands:

csound -nm3 orchname -Sxxfilename scorename
csound -n -m 3 orchname -x xfilename -S scorename

All flags and names are optional. The default values are:

csound -s -otest -b1024 -B1024 -m7 -P128 orchname scorename

where orchname is a file containing Csound orchestra code, and scorename is a file of score data in standard
numeric score format, optionally presorted and time-warped. If scorename is omitted, there are two default
options:

1. if real-time input is expected (-L, -M or -F), a dummy score file is substituted consisting of the single
statement 'f 0 3600’ (i.e. listen for RT input for one hour)

2. else CSound uses the previously processed score.srt in the current directory.

Csound reports on the various stages of score and orchestra processing as it goes, doing various syntax and
error checks along the way. Once the actual performance has begun, any error messages will derive from

31

Chapter 2. The Csound Command

either the instrument loader or the unit generators themselves. A CSound command may include any
rational combination of flag arguments.

Command-line Flags

Many flags are generic Csound command-line flags. Various platform implementations may not react the
same way to different flags!

The format of a command is either:

csound [-flags] [orchname] [scorename]

or

csound [-flags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a “-”), and name arguments (such as
filenames). Certain flag arguments take a following name or numeric argument.

Command-line Flags

-@ FILE
Provide an extended command-line in file “FILE”

-3, --format=24bit

Use 24-bit audio samples.

-8, --format=uchar

Use 8-bit unsigned character audio samples.

-A, --aiff
Write an AIFF format soundfile. Use with the -c, -s, -/, or -f flags.

-a, --format=alaw

Use a-law audio samples.

-B NUM, --hardwarebufsamps=NUM

Number of audio sample-frames held in the DAC hardware buffer. This is a threshold on which software
audio I/0 (above) will wait before returning. A small number reduces audio I/0 delay; but the value is
often hardware limited, and small values will risk data lates. The default is 1024.

-b NUM, --iobufsamps=NUM

Number of audio sample-frames per sound i/ o software buffer. Large is efficient, but small will reduce
audio I/0 delay. The default is 1024. In real-time performance, Csound waits on audio I/0 on NUM
boundaries. It also processes audio (and polls for other input like MIDI) on orchestra ksmps boundaries.
The two can be made synchronous. For convenience, if NUM = -NUM (is negative) the effective value is
ksmps * NUM (audio synchronous with k-period boundaries). With NUM small (e.g. 1) polling is then
frequent and also locked to fixed DAC sample boundaries.

-C, --cscore

Use Cscore processing of the scorefile.

32

Chapter 2. The Csound Command

-c, --format=schar

Use 8-bit signed character audio samples.

-D, --defer-genl

Defer GENO1 soundfile loads until performance time.
-d, --nodisplays

Suppress all displays.

-ENUM, --graphs=NUM

Mac only. Number of tables in graphics window. (was -G)

-e, --format=rescale

Mac only. Rescale floats as shorts to max amplitude.

-F FILE, --midifile=FILE
Read MIDI events from MIDI file FILE.

-f, --format=float

Use single-precision float audio samples (not playable, but can be read by -i, soundin and GEN01
-G, --postscriptdisplay

Suppress graphics, use PostScript displays instead.
-g, --asciidisplay

Suppress graphics, use ASCII displays instead.

-H#, --heartbeat=NUM
Print a heartbeat after each soundfile buffer write:
« no NUM, a rotating bar.
« NUM =1, arotating bar.
« NUM=2,adot(.)
« NUM = 3, filesize in seconds.
« NUM =4, sound a bell.

-h, --noheader

No header on output soundfile. Don’t write a file header, just binary samples.
--help

Display on-line help message.
-1, --i-only

i-time only. Allocate and initialize all instruments as per the score, but skip all p-time processing (no
k-signals or a-signals, and thus no amplitudes and no sound). Provides a fast validity check of the score
pfields and orchestra i-variables.

-i FILE, --input=FILE

Input soundfile name. If not a full pathname, the file will be sought first in the current directory, then in
that given by the environment variable SSDIR (if defined), then by SFDIR. The name stdin will cause

33

Chapter 2. The Csound Command

audio to be read from standard input. If RTAUDIO is enabled, the name devaudio will request sound
from the host audio input device.

-J, --ircam
Write an IRCAM format soundfile.

-j FILE
Currently disabled. Use database FILE for messages to print to console during performance.

-K, --nopeaks
Do not generate any PEAK chunks.

-k NUM, --control-rate=NUM
Override the control rate (KR) supplied by the orchestra.

-L DEVICE, --score-in=DEVICE

Read line-oriented real-time score events from device DEVICE. The name stdin will permit score events
to be typed at your terminal, or piped from another process. Each line-event is terminated by a
carriage-return. Events are coded just like those in a standard numeric score, except that an event with
p2=0 will be performed immediately, and an event with p2=T will be performed T seconds after arrival.
Events can arrive at any time, and in any order. The score carry feature is legal here, as are held notes (p3
negative) and string arguments, but ramps and pp or np references are not.

-1, --format=long

Use long integer audio samples.

-M DEVICE, --midi-device=DEVICE
Read MIDI events from device DEVICE.

-m NUM, --messagelevel=NUM

Message level for standard (terminal) output. Takes the sum of 3 print control flags, turned on by the
following values:

« 1 =note amplitude messages
» 2 =samples out of range message

+ 4 =warning messages

The default value is m?7 (all messages on).

-N, --notify
Notify (ring the bell) when score or MIDI track is done.

-n, --nosound

No sound. Do all processing, but bypass writing of sound to disk. This flag does not change the
execution in any other way.

-O FILE, --logfile=FILE
Log output to file FILE.

34

Chapter 2. The Csound Command

-0 FILE, --output=FILE

Output soundfile name. If not a full pathname, the soundfile will be placed in the directory given by the
environment variable SFDIR (if defined), else in the current directory. The name stdout will cause audio
to be written to standard output. If no name is given, the default name will be test. If RTAUDIO is
enabled, the name devaudio will send to the host audio output device.

-P NUM, --pollrate=NUM

Mac only. Poll events every NUM buffer writes.

-p, --play-on-end
Mac only. Play after rendering.

-Q DEVICE, -Q DIRECTORY, --analysis-directory=DIRECTORY

Beos and Linux only. Enables MIDI OUT operations and optionally chooses device id DEVICE (if the
DEVICE argument is present). This flag allows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely managed by DAC buffer sample flow. So
MIDI OUT operations can present some time irregularities. These irregularities can be fully eliminated
when suppressing DAC operations themselves (see -Y flag).

Mac only. Define the analysis (SADIR) directory.

-q DIRECTORY, --sample-directory=DIRECTORY
Mac only. Define the sound sample-in (SSDIR) directory.

-R, --rewrite
Continually rewrite the header while writing the soundfile (WAV/AIFF).

-r NUM, --sample-rate=NUM
Override the sampling rate (SR) supplied by the orchestra.

-3, --format=short

Use short integer audio samples.

--sched

Linux only. Use real-time scheduling and lock memory. (Also requires -d and either -o dac or -o
devaudio).

-T, --terminate-on-midi

Terminate the performance when MIDI track is done.

-10, --keep-sorted-score

Prevents Csound from deleting the sorted score file, score.srt, upon exit.

-t NUM, --tempo=NUM

Use the uninterpreted beats of score.srt for this performance, and set the initial tempo at NUM beats per
minute. When this flag is set, the tempo of score performance is also controllable from within the
orchestra.

-U UTILITY, --utility=UTILITY
Invoke the utility program UTILITY.

35

Chapter 2. The Csound Command

-u, --format=ulaw

Use u-law audio samples.

-V NUM, --screen-buffer=NUM, --volume=NUM
Linux only. Set real-time audio output volume to NUM (1 to 100).

Mac only. Number of chars in the screen buffer for the output window.

-v, --verbose
Verbose translate and run. Prints details of orch translation and performance, enabling errors to be more
clearly located.

-W, --wave

Write a WAV format soundfile.
-w, --save-midi
Mac only. Record and save MIDI input to a file.

-X DIRECTORY, --sound-directory=DIRECTORY
Mac only. Define the sound file (SFDIR) directory.

-x FILE, --extract-score=FILE

Extract a portion of the sorted score, score.srt, using the extract file FILE (see Extract).

-Y NUM, --progress-rate=NUM

Currently disabled. Mac only. Enables progress display at rate NUM in seconds, or for negative NUM, at
-NUM kperiods.

-y NUM, --profile-rate=NUM

Currently disabled. Mac only. Enables profile display at rate NUM in seconds, or for negative NUM, at
-NUM kperiods.

-7, --dither

Switch on dithering of audio conversion from internal floating point to 32, 16 and 8-bit formats.

-z NUM, --list-opcodesNUM
List opcodes in this version:
« no NUM, just show names
« NUM =0, just show names

« NUM =1, show arguments to each opcode using the format <opname> <inargs> <outargs>

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as well as
command line flags, to be combined in one file. The file has the extension .csd. This format was originally
introduced by Michael Gogins in AXCsound.

36

Chapter 2. The Csound Command

The file is a structured data file which uses markup language, similar to any SGML such as HTML. Start tags
(<tag>) and end tags (</tag>) are used to delimit the various elements. The file is saved as a text file.

Structured Data File Format

Mandatory Elements

The Csound Element is used to alert the csound compiler to the .csd format. The file must begin with the start
tag < CsoundSynthesizer>. The last line of the file must be the end tag </CsoundSynthesizer>. The remaining
elements are defined below.

Options

Csound command line flags are put in the Options Element. This section is delimited by the start tag
< CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Instruments (Orchestra)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax in
this section are identical to the Csound orchestra file, and have the same requirements, including the header
statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < CsInstruments> and the
end tag </CsInstruments>.

Score

Csound score statements are put in the Score Element. The statements and syntax in this section are identical
to the Csound score file, and have the same requirements. The Score Element is delimited by the start tag
< CsScore> and the end tag </CsScore>.

Optional Elements

Included Base64 Files

Base64 encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, where filename
is the name of the file containing the MIDI information. There is no matching end tag. New in Csound
version 4.07.

Base64 encoded sample files may be included with the tag < CsSampleB filename=filename>, where filename
is the name of the file containing the sample. There is no matching end tag. New in Csound version 4.07.

Version Blocking

Versions of Csound may blocked by placing one of the following statements between the start tag
<CsVersion> and the end tag </CsVersion>:

Before #.#
or

After #.#

37

Chapter 2. The Csound Command

where #.# is the requested Csound version number. The second statement may be written simply as:

#H#

See example below. New in Csound version 4.09.

Example

Below is a sample file, test.csd, which renders a .wav file at 44.1 kHz sample rate containing one second of a 1
kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and tone.sco, with the
addition of command line flags.

<CsoundSynthesizer >;
; test.csd - a Csound structured data file

<CsOptions >
-W -d -0 tone.wav
</CsOptions >

<CsVersion > ;optional section
Before 4.10 ;these two statements check for
After 4.08 ; Csound version 4.09

</CsVersion >

<Cslnstruments >
; originally tone.orc
sr = 44100
kr = 4410
ksmps = 10
nchnls =1
instr 1
al oscil p4, p5, 1 ; simple oscillator
out al
endin
</Cslnstruments >

<CsScore >
; originally tone.sco
fl 0 8192 10 1
il 0 1 20000 1000 ;play one second of one kHz tone
e
</CsScore >

</CsoundSynthesizer >

Command Line Parameter File

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden. It
uses the same form as a .csd file. Lines beginning with # or ; are treated as comments.

38

Chapter 2. The Csound Command

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:275 to 22

The component labels may be abbreviated as i, f and t. The time points denote the beginning and end of the
extract in terms of:

[section no.] : [beat no.].

each of the three parts is also optional. The default values for missing i, f or t are:

all instruments, beginning of score, end of score.

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance (it
exists as soon as score preprocessing has completed), the user may sometimes want to run these phases
independently. The command

scot filename

will process the Scot formatted filename, and leave a standard numeric score result in a file named score for
perusal or later processing.

The command

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in outfile.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an already sorted score. An unsorted score should first be sent through Scsort then
piped to the extract program:

39

Chapter 2. The Csound Command

scsort < scorefile | extract xfile > score.extract

40

Chapter 3. Syntax of the Orchestra

An orchestra statement in Csound has the format:

label: result opcode argumentl ,argument2 ,... ;comments

The label is optional and identifies the basic statement that follows as the potential target of a go-to operation
(see Program Flow Control). A label has no effect on the statement per se.

Comments are optional and are for the purpose of letting the user document his orchestra code. Comments
always begin with a semicolon (;) and extend to the end of the line.

The remainder (result, opcode, and arguments) form the basic statement. This also is optional, i.e. a line may
have only a label or comment or be entirely blank. If present, the basic statement must be complete on one
line, and is terminated by a carriage return and line feed.

The opcode determines the operation to be performed; it usually takes some number of input values (or
arguments, with a maximum value of about 800); and it usually has a result field variable to which it sends
output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)
2. once at the beginning of each note (at initialization (init) time: i-rate)
3. once every performance-time control loop (perf-time control rate, or k-rate)

4. once each sound sample of every control loop (perf-time audio rate, or a-rate)

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These are
optionally full pathnames, whose target directory is fully specified. When not a full path, filenames are sought
in several directories in order, depending on their type and on the setting of certain environment variables.
The latter are optional, but they can serve to partition and organize the directories so that source files can be
shared rather than duplicated in several user directories. The environment variables can define directories
for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include files for orchestra and score
files INCDIR.

The search order is:

1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.
2. Soundfiles for reading are sought in the current directory, then SSDIR, then SFDIR.
3. Analysis control files for reading are sought in the current directory, then SADIR.

4. Files of code to be included in orchestra and score files (with #include) are sought first in the current
directory, then in the same directory as the orchestra or score file (as appropriate), then finally INCDIR.

Beginning with Csound version 3.54, the file “csound.txt” contains the messages (in binary format) that
Csound uses to provide information to the user during performance. This allows for the messages to be in
any language, although the default is English. This file must be placed in the same directory as the Csound
executable. Alternatively, this file may be stored in SFDIR, SSDIR, or SADIR. Unix users may also keep this file
in “/usr/local/lib/”. The environment variable CSSTRNGS may be used to define the directory in which the
database resides. This can be overridden with the -j command line option. (New in version 3.55)

41

Chapter 3. Syntax of the Orchestra

Nomenclature

Throughout this document, opcodes are indicated in boldface and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs), and
the result is usually denoted by the letter 7. Both are preceded by a type qualifier i, k, a, or x (e.g. kamp, iphs,
ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control (scalar) and audio
(vector) values, modified and referenced continuously throughout performance (i.e. at every control period
while the instrument is active). Arguments are used at the prefix-listed times; results are created at their listed
times, then remain available for use as inputs elsewhere. With few exceptions, argument rates may not
exceed the rate of the result. The validity of inputs is defined by the following:

« arguments with prefix i must be valid at init time;
» arguments with prefix k can be either control or init values (which remain valid);
« arguments with prefix a must be vector inputs;

« arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most opcodes
(such as linen and oscil) can be used in more than one mode, which one being determined by the prefix of the
result symbol.

Thoughout this manual, the term "opcode" is used to indicate a command that usually produces an a-, k-, or
i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as "+" or
"sin(x)" or, "(a>=b ?c:d)" are called "operators."

Orchestra Statement Types

An orchestra program in Csound is comprised of orchestra header statements which set various global
parameters, followed by a number of instrument blocks representing different instrument types. An
instrument block, in turn, is comprised of ordinary statements that set values, control the logical flow, or
invoke the various signal processing subroutines that lead to audio output.

An orchestra header statement operates once only, at orchestra setup time. It is most commonly an
assignment of some value to a global reserved symbol , e.g. st = 20000. All orchestra header statements belong
to a pseudo instrument 0, an init pass of which is run prior to all other instruments at score time 0. Any
ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09) provided it is an
init-time only operation.

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for k-
and a-rate results), with the sole exception of the init opcode. Most generators and modifiers, however,
produce signals that depend not only on the instantaneous value of their arguments but also on some
preserved internal state. These performance-time units therefore have an implicit init-time component to set
up that state. The run time of an operation which produces no result is apparent in the opcode.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and conditional
values.

Constants and Variables

constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and do
not change in value.

variables are named cells containing numbers. They are available continuously and may be updated at one of
the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e. they take on
only one value at any given time) and are primarily used to store and recall controlling data, that is, data that

42

Chapter 3. Syntax of the Orchestra

changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables). i- and k-variables are
therefore useful for storing note parameter values, pitches, durations, slow-moving frequencies, vibratos, etc.
a-rate variables, on the other hand, are arrays or vectors of information. Though renewed on the same
perf-time control pass as k-rate variables, these array cells represent a finer resolution of time by dividing the
control period into sample periods (see ksmps). a-rate variables are used to store and recall data changing at
the audio sampling rate (e.g. output signals of oscillators, filters, etc.).

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved, and
they may carry information from pass to pass (e.g. from initialization time to performance time) within a
single instrument. Local variable names begin with the letter p, i, k, or a. The same local variable name may
appear in two or more different instrument blocks without conflict.

global variables are cells that are accessible by all instruments. The names are either like local names
preceded by the letter g, or are special reserved symbols. Global variables are used for broadcasting general
values, for communicating between instruments (semaphores), or for sending sound from one instrument to
another (e.g. mixing prior to reverberation).

given these distinctions, there are eight forms of local and global variables:

Table 3-1. Types of Variables

Type 'When Renewable Local Global
reserved symbols permanent -- r symbol
score pfields i-time p number --

v-set symbols i-time v number gv number
init variables i-time i name gi name
MIDI controllers any time c number --

control signals p-time, k-rate k name gk

audio signals p-time, k-rate a name ga name
spectral data types k-rate ‘W name --

where rsymbol is a special reserved symbol (e.g. s7;, kr), number is a positive integer referring to a score pfield
or sequence number, and name is a string of letters and/or digits with local or global meaning. As might be
apparent, score parameters are local i-rate variables whose values are copied from the invoking score
statement just prior to the init pass through an instrument, while MIDI controllers are variables which can be
updated asynchronously from a MIDI file or MIDI device.

Expressions

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper rate.
For instance, if the terms within a sub-expression all change at the control rate or slower, the sub-expression
will be evaluated only at the control rate; that result might then be used in an audio-rate evaluation. For
example, in

kl + abs(int (p5) + frac (p5) * 100/12 + sqrt (k1))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the remainder of
the expression evaluated every k-period. The whole might occur in a unit generator argument position, or be

43

Chapter 3. Syntax of the Orchestra

part of an assignment statement.

Orchestra Header Statements

Statements that are normally placed in an orchestra header are ctrlinit, figen, kr, ksmps, massign, nchnls,
pgmassign, pset, seed, sr, and strset.

Instrument Block Statements

Statements that define an instrument block are endin and instr.

Variable Initialization

Opcodes that let one initialize variables are assign, divz, init, and tival.

44

Chapter 4. Instrument Control

Clock Control

The opcodes to start and stop internal clocks are clockoff and clockon.

Conditional Values

The opcodes for conditional values are ==, >=, >, <, <=, and /=

Duration Control Statements

The opcodes one can use to manipulate a note’s duration are ihold, turnoff, and turnon.

Introduction to FLTK Widgets and GUI controllers
Written by Gabriel Maldonado (http://csounds.com/maldonado)

Widgets allow the design of a custom Graphical User Interface to control an orchestra in real-time. They are
derived from the open-source library FLTK (Fast Light Tool Kit). Such library is one of the fastest graphic
libraries available, supports OpenGL and should be source compatible with different platforms (Windows,
Linux, Unix and Mac OS). The subset of FLTK implemented in Csound provides the following types of objects:

« Containers
« Valuators

« Other widgets

Containers are widgets that contain other widgets such as panels, windows, etc. Csound provides the
following container objects:

« Panels

« Scroll areas
« Pack

« Tabs

» Groups

The most useful objects are named valuators. These objects allow the user to vary synthesis parameter values
in real-time. Csound provides the following valuator objects:

« Sliders

« Knobs

« Rollers

« Text fields
« Joysticks
» Counters

45

Chapter 4. Instrument Control

There are other widgets that are not valuators nor containers:

« Buttons
« Button banks
« Labels

Also there are some other opcodes useful to modify the widget appearance:

« Updating widget value.

« Setting primary and selection colors of a widget.
« Setting font type, size and color of widgets.

+ Resizing a widget.

« Hiding and showing a widget.

At last, there are three important opcodes that allow the following actions:

« Running the widget thread.
« Loading snapshots containing the status of all valuators of an orchestra.

« Saving snapshots containing the status of all valuators of an orchestra.

Here is an example preview of Csound code for a window containing a valuator. Notice that all opcodes are
init-rate and must be called only once per session. The best way to use them is to place them in the header
section of an orchestra, externally to any instrument. Even though placing them inside an instrument is not
prohibited, unpredictable results can occur if that instrument is called more than once.

Each container is made up of a couple of opcodes: the first indicating the start of the container block and the
last indicating the end of that container block. Some container blocks can be nested but they must not be
crossed. After defining all containers, a widget thread must be run by using the special FLrun opcode that
takes no arguments.

Here is an example of creating a window:

sr=48000
kr=480
ksmps=100
nchnls=1

7% |t is recommended to put almost all GUI code in the
;*** header section of an orchestra

FLpanel "Panell",450,550 ;***** start of container
; some widgets should contained here
FLpanelEnd ;axx* and of container
FLrun e runs the widget thread, it is always required!
instr 1
;put some synthesis code here
endin

46

Chapter 4. Instrument Control

The previous code simply creates a panel (an empty window because no widgets are defined inside the
container).

The following example creates two panels and inserts a slider inside each of them:

Sr=48000
kr=480
ksmps=100
nchnls=1
FLpanel "Panell",450,550,100,100 ;***** start of container
gkl,iha FLslider "FLslider 1", 500, 1000, 2 ,1, ih1, 300,15, 20,50
FLpanelEnd ;eexx% end of container
FLpanel "Panell",450,550,100,100 ;***** gtart of container
gk2,ihb FLslider "FLslider 2", 100, 200, 2 ,1, ih2, 300,15, 20,50
FLpanelEnd % and of container
FLrun v runs the widget thread, it is always required!
instr 1

;put some synthesis code here

; gkl and gk2 variables that contain the output of valuator

; widgets previously defined, can be used inside any instrument
endin

* * * * *

All widget opcodes are init-rate opcodes, even if valuators output k-rate variables. This happens because an
independent thread is run based on a callback mechanism. It consumes very few processing resources since
there is no need of polling. (This differs from other MIDI based controller opcodes.) So you can use any
number of windows and valuators without degrading the real-time performance.

Since FLTK toolkit is still in evolution process, opcode syntax provided in Csound could be modified in future
version. This could cause some incompatibilities between orchestras of a determinate version. However it
should not be hard to modify early orchestras in order to make them compatible with later versions.

For more information, see the following sections.
FLTK Containers

The opcodes for FTLK containers are FLgroup, FLgroupEnd, FLpack, FLpackEnd, FLpanel, FLpanelEnd,
FLscroll, FLscrollEnd, FLtabs, and FLtabsEnd.

FLTK Valuators
The opcodes for FLTK valuators are FLcount, FLjoy, FLkeyb, FLknob, FLroller, FLslider, and FLtext.

Other FLTK Widgets
Other FLTK widget opcodes are FLbox, FLbutBank, FLbutton, FLprintk, FLprintk2, and FLvalue,

47

Chapter 4. Instrument Control

Modifying FLTK Widget Appearance

Opcodes one can use to modify FLTK widget appearance are FLcolor2, FLcolor, FLhide, FLIabel, FLsetAlign,
FLsetBox, FLsetColor2, FLsetColor, FLsetFont, FLsetPosition, FLsetSize, FLsetText, FLsetTextColor,
FLsetTextSize, FLsetTextType, FLsetVal, FLsetVal_i, and FLshow.

General FLTK Widget-related Opcodes

The general FLTK widget-related opcodes are FLgetsnap, FLloadsnap, FLrun, FLsavesnap, FLsetsnap, and
FLupdate.

FLTK Slider Bank
The opcode for the FLTK slider bank is FLslidBnk.

Instrument Invocation

The opcodes one can use to create score events from within a orchestra are event, schedule, schedwhen, and
schedkwhen.

Macros

The opcodes one can use to create, call, or undefine macros are #define, SNAME, #include, and #undef.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are cggoto, cigoto, ckgoto, cngoto, elseif,
else, endif, goto, if, igoto, kgoto, tigoto, and timout.

Real-time Performance Control

Opcodes that monitor and control real-time performance are active, cpuprc, maxalloc, and prealloc.

Reinitialization

The opcodes that can generate another initialization phase are reinit, rigoto, and rireturn.

Sensing and Control

Opcodes that read from signals or on-screen controls are button, checkbox, control, follow, follow2, peak,
pitch, pitchamdf, sense, sensekey, setctrl, tempest, tempo, tempoval, setime, trigger, trigseq, and xyin.

Sub-instrument Control

These opcodes let one define and use a sub-instrument: ink, outk, and subinstr.

48

Chapter 4. Instrument Control

Time Reading

Opcodes one can use to read time values are readclock, rtclock, timeinstk, timeinsts, timek, and times.

49

Chapter 4. Instrument Control

50

Chapter 5. Function Table Control

Table Queries
Opcodes the query tables for information are ftchnls, ftlen, ftlptim, ftsr, nsamp, and tableng.

Read/Write Operations

Opcodes that read and write to a table are ftloadk, ftload, ftsavek, ftsave, tablecopy, tablegpw, tableicopy,
tableigpw, tableimix, tableiw, tablemix, tablera, tablew, tablewa, and tablewkt.

Table Selection
Opcodes that let one dynamically select tables are tableikt, tablekt, and tablexkt.

51

Chapter 5. Function Table Control

52

Chapter 6. Mathematical Operations

Amplitude Converters

Opcodes to convert between different amplitude measurements are ampdb, ampdbfs, dbamp, and dbfsamp.

Arithmetic and Logic Operations

Opcodes that perform arithmetic and logic operations are -, +, &&, ||, *, /, *, and %.

Mathematical Functions

Opcodes that perform mathematical functions are abs, exp, frac, int, log, logl0, logbtwo, powoftwo, and sqrt.

Opcode Equivalents of Functions
Opcodes that perform the equivalent of mathematical functions are mac, maca, pow, product, and sum.

Random Functions

Opcodes that perform random functions are birnd and rnd.

Trigonometric Functions

Opcodes that perform trigonometric functions are cos, cosh, cosinv, sin, sinh, sininv, tan, tanh, taninv, and
taninv2.

53

Chapter 6. Mathematical Operations

54

Chapter 7. MIDI Support

Controller Input

Opocodes that accept MIDI input are aftouch, chanctrl, ctrl7, ctrli4, ctrl21, initc7, initc14, initc21, midic7,
midicl4, midic21, midichannelaftertouch, midichn, midicontrolchange, mididefault, midinoteoff,
midinoteoncps, midinoteonkey, midinoteonoct, midinoteonpch, midipitchbend, midipolyaftertouch,
midiprogramchange, and polyaft.

Converters

Opcodes that convert MIDI values are ampmidi, cpsmidi, cpsmidib, cpstmid, midictrl, notnum, octmidi,
octmidib, pchbend, pchmidi, pchmidib, and veloc.

Event Extenders

Opcodes that let one extend the duration of an event are release and xtratim.

Generic Input and Output

Opcodes for generic MIDI input and output are midiin and midiout.

Note-on/Note-off

Opcodes to turn MIDI notes on or off are midion, midion2, moscil, noteoff, noteon, noteondur, and
noteondur?2.

MIDI Message Output

Opcodes that send MIDI output are mdelay, nrpn, outiat, outic, outicl4, outipat, outipb, outipc, outkat,
outkc, outkcl4, outkpat, outkpb, and outkpc.

Real-time Messages

Opcodes for real-time MIDI messages are mclock and mrtmsg.

Slider Banks

Opcodes for slider banks of MIDI controls are s16b14, s32b14, slider16, slider16f, slider32, slider32f, slider64,
slider64f, slider8, and slider8f.

55

Chapter 7. MIDI Support

56

Chapter 8. Pitch Converters

Functions

Opcodes that provide common pitch functions are cent, cpsoct, cpspch, db, octave, octcps, octpch, pchoct,
and semitone.

Tuning Opcodes

Opcodes that provide tuning functions are cps2pch, cpsxpch, cpstun, and cpstuni.

57

Chapter 8. Pitch Converters

58

Chapter 9. Signal Generators

Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are adsyn, adsynt, and hsboscil.

Basic Oscillators

The basic oscillator opcodes are Ifo, oscbnk, oscil, oscil3, oscili, oscils, poscil, and poscil3.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are buzz, gbuzz, mpulse, and vco.

FM Synthesis
The FM synthesis opcodes are fmb3, fmbell, fmmetal, fmpercfl, fmrhode, fmvoice, fmwurlie, foscil, and foscili,

Granular Synthesis
The granular synthesis opcodes are fof, fof2, fog, grain, grain2, grain3, granule, sndwarp, and sndwarpst.

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are adsr, expon, expseg, expsega, expsegr,
jspline, line, linseg, linsegr, loopseg, Ipshold, madsr, mxadsr, rspline, transeg, and xadsr.

Linear Predictive Coding (LPC) Resynthesis

The linear predictive coding resynthesis opcodes are Ipfreson, lpinterp, Ipread, Ipreson, and Ipslot.

Models and Emulations

The opcodes that model or emulate the sounds of other instruments are bamboo, cabasa, crunch, dripwater,
gogobel, guiro, lorenz, mandol, marimba, moog, planet, sandpaper, sekere, shaker, sleighbells, stix,
tambourine, vibes, and voice.

Phasors

The opcodes that generate a moving phase value phasor and phasorbnk.

Random (Noise) Generators

Opcodes that generate random numbers are betarnd, bexprnd, cauchy, cuserrnd, duserrnd, exprand, gauss,
linrand, noise, pcauchy, pinkish, poisson, rand, randh, randi, rnd31, rand, randomh, randomi, trirand,
unirand, urd, and weibull.

59

Chapter 9. Signal Generators

Sample Playback

Opcodes that implement sample playback are bbcutm, bbcuts, loscil, loscil3, Iphasor, Iposcil, Iposcil3, sfilist,
sfinstr, sfinstr3, sfinstr3m, sfinstrm, sfload, sfpassign, sfplay, sfplay3, sfplay3m, sfplaym, sfplist, sfpreset, and
waveset.

Scanned Synthesis

Scanned synthesis is a variant of physical modeling, where a network of masses connected by springs is used
to generate a dynamic waveform. The opcode scanu defines the mass/spring network and sets it in motion.
The opcode scans follows a predefined path (trajectory) around the network and outputs the detected
waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio, or as
controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentially, this offers the
possibility of reconnecting the masses in different orders, causing the signal to propagate quite differently.
They do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the effect
of “molding” this surface into a radically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the following
grid describing the possible connections:

1
2
3
4

Whenever two masses are connected, the point they define is 1. If two masses are not connected, then the
point they define is 0. For example, a unidirectional string has the following connections: (1,2), (2,3), (3,4). If it
is bidirectional, it also has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix appears:

(=l el el e
o O[O ||
o O |~ |O W
S |H= O O (s

1
2
3
4

The above table format of the connection matrix is for conceptual convenience only. The actual values shown
in te table are obtained by scans from an ASCII file using GEN23. The actual ASCII file is created from the
table model row by row. Therefore the ASCII file for the example table shown above becomes:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use many
more masses than four, so their matrices will be much larger and more complex. See the example in the scans
documentation.

60

Chapter 9. Signal Generators

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, centering,

and damping can cause the system to “blow up” and the most interesting sounds to emerge from your
loudspeakers!

The supplement to this manual contains a tutorial on scanned synthesis. The tutorial, examples, and other
information on scanned synthesis is available from the Scanned Synthesis page at cSounds.com.

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval Research between
1998 and 2000.

Opcodes that implement scanned synthesis are scanhammer, scans, scantable, scanu, xscanmap, xscans, and
xscanu.

Short-time Fourier Transform (STFT) Resynthesis

Use of PVOC-EX files with the old Csound pvoc opcodes: All the original pvoc opcodes can now read a PVOC-EX
file, as well as the native non-portable file format. As the PVOC-EX file uses a double-size analysis window, users may
find that this gives a useful improvement in quality, for some sounds and processes, despite the fact that the
resynthesis does not use the same window size.

Apart from the window size parameter, the main difference between the original .pv format and PVOC-EX is in the
amplitude range of analysis frames. While rescaling is applied, so that no significant difference in output level is
experienced, whichever file format is used, some slight loss of amplitude can still arise, as the double window usage
itself modifies frame amplitudes, of which the resynthesis code is unaware. Note that all the original pvoc opcodes
expect a mono analysis file, and multi-channel PVOC-EX files will accordingly be rejected.

Opcodes the implement STFT resynthesis are ktableseg, pvadd, pvbufread, pvcross, pvinterp, pvoc, pvread,
tableseg, tablexseg, and vpvoc.

Table Access

The opcodes that access tables are oscill, oscilli, osciln, oscilx, table, table3, and tablei.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesis is wterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are pluck, repluck, wgbow, wgbowedbar, wgbrass,
wgclar, wgflute, wgpluck, and wgpluck2.

61

Chapter 9. Signal Generators

62

Chapter 10. Signal Input and Output

File Input and Output

The opcodes for file input and output are clear, dumpk, dumpk2, dumpk3, dumpk4, fiopen, fin, fini, fink,
fout, fouti, foutir, foutk, readk, readk2, readk3, readk4, and vincr.

Input

The opcodes that receive audio signals are: diskin, in, in32, inch, inh, ino, inq, ins, invalue, inx, inz, and
soundin.

Output

The opcodes that write audio signals are: out, out32, outc, outch, outh, outo, outq, outql, outq2, outq3, outq4,
outs, outsl, outs2, outvalue, outx, outz, and soundout.

Printing and Display
Opcodes for printing and displaying values are dispfft, display, flashtxt, print, printk, printk2, and printks.

Sound File Queries
The opcodes that query information about files are filelen, filenchnls, filepeak, and filesr.

63

Chapter 10. Signal Input and Output

64

Chapter 11. Signal Modifiers

Amplitude Modifiers

The opcodes that modify amplitude are balance, clip, dam, gain, and rms.

Convolution and Morphing

The opcodes that convolve and morph signals are convle, convolve, cross2, dconv, and ftmorf.

Delay

The opcodes that implement delay are delay, delayl, delayr, delayw, deltap, deltap3, deltapi, deltapn,
deltapx, deltapw, multitap, vdelay, vdelay3, vdelayx, vdelayxs, vdelayxq, vdelayxw, vdelayxwq, and
vdelayxws.

Envelope Modifiers

The opcodes that modify envelopes are envipx, envipxr, linen, and linenr.

Panning and Spatialization

The opcodes that one can use for panning and spatialization are hritfer, locsend, locsig, pan, space, spat3d,
spat3di, spat3dt, spdist, spsend, vbapl6, vbapl6move, vbap4, vbap4move, vbap8, vbap8move, vbaplsinit,
vbapz, and vbapzmove.

Reverberation

The opcodes one can use for reverberation are alpass, babo, comb, nestedap, nreverb, reverb2, reverb, valpass,
and vcomb

Sample Level Operators

The opcodes one may use to modify signals are a, diff, downsamp, fold, i, integ, interp, ntrpol, samphold,
and upsamp.

Signal Limiters

Opcodes that one can use to limit signals are limit, mirror, and wrap.

Special Effects

Opcodes that generate special effects are distortl, flanger, harmon, jitter, jitter2, phaserl, phaser2, vibr, and
vibrato.

65

Chapter 11. Signal Modifiers

Specialized Filters
The opcodes that recreate specialized filters are dcblock, nlfilt, and pareq.

Standard Filters

The opcodes for standard filters are areson, aresonk, atone, atonek, atonex, biquad, biquada, butbp, butbr,
buthp, butlp, butterbp, butterbr, butterhp, butterlp, clfilt, filter2, hilbert, lineto, lowpass2, lowres, lowresx,

Ipf18, moogucf, port, portk, reson, resonk, resonr, resonx, resony, resonz, rezzy, svfilter, tbvcf, tlineto, tone,

tonek, tonex, vlowres, and zfilter.

Waveguides

The opcodes that use waveguides to modify a signal are streson, wguidel, and wguide2.

66

Chapter 12. Spectral Processing

Non-standard Spectral Processing

These units generate and process non-standard signal data types, such as down-sampled time-domain
control signals and audio signals, and their frequency-domain (spectral) representations. The data types (d-,
w-) are self-defining, and the contents are not processable by any other Csound units. These unit generators
are experimental, and subject to change between releases, they will also be joined by others later.

The opcodes for non-standard spectral processing are specaddm, specdiff, specdisp, specfilt, spechist,
specptrk, specscal, specsum, and spectrum.

Tools for Real-time Spectral Processing

With these opcodes, two new core facilities are added to Csound. They offer improved audio quality, and fast
performance, enabling high-quality analysis and resynthesis (together with transformations) to be applied in
real-time to live signals. The original Csound phase vocoder remains unaltered; the new opcodes use an
entirely separate set of functions based on “pvoc.c” in the CARL distribution, written by Mark Dolson.

The Csound dnoise and srconv utilities (also by Dolson, from CARL) also use this pvoc engine. CARL pvoc is
also the basis for the phase vocoder included in the Composer’s Desktop Project. A few small but important
modifications have been made to the original CARL code to support real-time streaming.

1. Support for the new PVOC-EX analysis file format. This is a fully portable (cross-platform) open file
format, supporting three analysis formats, and multi-channel signals. Currently only the standard
amplitude+frequency format has been implemented in the opcodes, but the file format itself supports
amplitude+phase and complex (real-imaginary) formats. In addition to the new opcodes, the original
Csound pvoc opcodes have been extended (and thereby with enhanced audio quality in some cases) to
read PVOC-EX files as well as the original (non-portable) format.

Full details of the structure of a PVOC-EX file are available via the website:
http:/fwww.bath.ac.uk/~masjpfINCD/researchdev/pvocex/pvocex.html. This site also gives details of the
freely available console programs pvocex and pvocex2 which can be used to create PVOC-EX files in all
supported formats.

2. A new frequency-domain signal type, fully streamable, with f as the leading character. In this document
it is conveniently referred to as an fsig. Primary support for fsigs is provided by the opcodes pvsanal and
pvsynth, which perform conventional phase vocoder overlap-add analysis and resynthesis,
independently of the orchestra control-rate. The only requirement is that the control-rate kr be higher
than or equal to the analysis rate, whch can be expressed by the requirement that ksmps <= overlap,
where overlap is the distance in samples between analysis frames, as specified for pvsanal. As overlap is
typically at least 128, and more usually 256, this is not an onerous restriction in practice. The opcode
pvsinfo can be used at init time to acquire the properties of an fsig.

The fsig enables the nominal separation between the analysis and resynthesis stages of the phase
vocoder to be exposed to the Csound programmer, so that not only can alternatives be employed for
either or both of these stages (not only oscillator-bank resynthesis, but also the generation of synthetic
fsig streams), but opcodes, operating on the fsig stream, can themselves become more elemental. Thus
the fsig enables the creation of a true streaming plugin framework for frequency domain signals. With
the old pvoc opcodes, each opcode is required to act as a resynthesiser, so that facilities such as pitch
scaling are duplicated in each opcode; and in many cases the opcodes are parameter-rich. The
separation of analysis and synthesis stages by means of the fsig encourages the development of a wide
range of simple building-block opcodes implementing one or two functions, with which more elaborate
processes can be constructed.

67

Chapter 12. Spectral Processing

This is very much a preliminary and experimental release, and it is possible that the precise definition of the
opcodes may change, in response to user feedback. Also, clearly, many new possibilities for opcodes are
opened up; these factors may also have a retrospective influence on the opcodes presented here.

Note that some opcode parameters currently have restricted or missing implementation. This is at least in
part in order to keep the opcodes simple at this stage, and also because they highlight important design
issues on which no decision has yet been made, and on which opinions from users are sought.

One important point about the new signal type is that because the analysis rate is typically much lower than
kr, new analysis frames are not available on each k-cycle. Internally, the opcodes track ksmps, and also
maintain a frame counter, so that frames are read and written at the correct times; this process is generally
transparent to the user. However, it means that k-rate signals only act on an fsig at the analysis rate, not at
each k-cycle. The opocde pvsftw returns a k-rate flag that is set when new fsig data is valid.

Because of the nature of the overlap-add system, the use of these opcodes incurs a small but significant delay,
or latency, determined by the window size (max(ifftsize,iwinsize)). This is typically around 23msecs. In this
first release, the delay is slightly in excess of the theoretical minimum, and it is hoped that it can be reduced,
as the opcodes are further optimized for real-time streaming.

The opcodes for real-time spectral processing are pvsadsyn, pvsanal, pvscross, pvsfread, puvsftr, pvsftw,
pusinfo, pvsmaska, and pvsynth.

68

Chapter 13. Zak Patch System

The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak system can be
thought of as a global array of variables. These opcodes are useful for performing flexible patching or routing
from one instrument to another. The system is similar to a patching matrix on a mixing console or to a
modulation matrix on a synthesizer. It is also useful whenever an array of variables is required.

The zak system is initialized by the zakinit opcode, which is usually placed just after the other global
initializations: sr, kr, ksmps, nchnls. The zakinit opcode defines two areas of memory, one area for i- and
k-rate patching, and the other area for a-rate patching. The zakinit opcode may only be called once. Once the
zak space is initialized, other zak opcodes can be used to read from, and write to the zak memory space, as
well as perform various other tasks.

Opcodes for the zak patch system are zacl, zakinit, zamod, zar, zarg, zaw, zawm, zir, ziw, ziwm, zkcl,
zkmod, zkr, zkw, and zkwm.

69

Chapter 13. Zak Patch System

70

Chapter 14. The Standard Numeric Score

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s statement. Before
being read by the orchestra, a score is preprocessed one section at a time. Each section is normally processed
by 3 routines: Carry, Tempo, and Sort.

Carry

Within a group of consecutive i statements whose pl whole numbers correspond, any pfield left empty will
take its value from the same pfield of the preceding statement. An empty pfield can be denoted by a single
point (.) delimited by spaces. No point is required after the last nonempty pfield. The output of Carry
preprocessing will show the carried values explicitly. The Carry Feature is not affected by intervening
comments or blank lines; it is turned off only by a non- i statement or by an i statement with unlike p1 whole
number.

Three additional features are available for p2 alone: +, A + x, and » - x. The symbol + in p2 will be given the
value of p2 + p3 from the preceding i statement. This enables note action times to be automatically
determined from the sum of preceding durations. The + symbol can itself be carried. It is legal only in p2. E.g.:
the statements

i1 0 5 100
i, o+

will result in

i1 0 5 100
il 5 5 100
i1 1 5 100

The symbols » + x and » - x determine the current p2 by adding or subtracting, respectively, the value of x
from the preceding p2. These may be used in p2 only.

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input typing
and will simplify later changes.

Tempo

This operation time warps a score section according to the information in a ¢ statement. The tempo operation
converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the units required
by the orchestra. After time warping, score files will be seen to have orchestra-readable format demonstrated
by the following: i p1 p2beats p2seconds p3beats p3seconds p4 p5

Sort

This routine sorts all action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an fstatement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted into
ascending p1 value order. If they also have the same p1 value, they will be sorted into ascending p3 value

71

Chapter 14. The Standard Numeric Score

order. Score sorting is done section by section (see s statement). Automatic sorting implies that score
statements may appear in any order within a section.

N.B.

The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score file, to produce a
new file in orchestra-readable format (see the Tempo example). Processing can be invoked either explicitly
by the Scsort command, or implicitly by CSound which processes the score before calling the orchestra.
Source-format files and orchestra-readable files are both in ASCII character form, and may be either perused
or further modified by standard text editors. User-written routines can be used to modify score files before or
after the above processes, provided the final orchestra-readable statement format is not violated. Sections of
different formats can be sequentially batched; and sections of like format can be merged for automatic
sorting.

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features are interpreted
during file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previous i statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played by this
instrument. np and pp symbols are recursive and can reference other np and pp symbols which can reference
others, etc. References must eventually terminate in a real number or a ramp symbol. Closed loop references
should be avoided. np and pp symbols are illegal in p1, p2 and p3 (although they may reference these). np
and pp symbols may be Carried. np and pp references cannot cross a Section boundary. Any forward or
backward reference to a non-existent note-statement will be given the value zero.

E.g.: the statements

i1 0 1 10 np4 pp5
i1 1 1 20
il 1 1 30

will result in

i1 O 1 10 20 O
i1 1 1 20 30 20
i1 2 1 30 O 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to
glissando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may
not be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsorted
statements, the operation that interprets these symbols is acting on a time-warped and fully sorted version of
the score.

2

Chapter 14. The Standard Numeric Score

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation of a
time-based ramp. Ramps are anchored at each end by the first real number found in the same pfield of a
preceding and following note played by the same instrument. E.g.: the statements

il 0 1 100
il 1 1 <
il 2 1 <
il 3 1 400
il 4 1 <
il 5 1 0
will result in

il 0 1 100
il 1 1 200
il 2 1 300
il 3 1 400
il 4 1 200
il 5 1 0

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although they
may be referenced by these). Ramp symbols are illegal in p1, p2 and p3. Ramp symbols may be Carried. Note,
however, that while the Carry feature will propagate ramp symbols through unsorted statements, the
operation that interprets these symbols is acting on a time-warped and fully sorted version of the score. In
fact, time-based linear interpolation is based on warped score-time, so that a ramp which spans a group of
accelerating notes will remain linear with respect to strict chronological time.

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation ramp,
similar to expon. The symbols { and } to define an exponential ramp have been deprecated. Using the symbol
~ will result in uniform, random distribution between the first and last values of the ramp. Use of these
functions must follow the same rules as the linear ramp function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros. This
can can allow for simpler score writing, and provide an elementary alternative to full score generation
systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a simple macro. The name of the macro must begin with a letter and can consist of
any combination of letters and numbers. Case is significant. This form is limiting, in that the variable names
are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a'b'c') -- defines a macro with arguments. This can be used in more complex situations. The
name of the macro must begin with a letter and can consist of any combination of letters and numbers.
Within the replacement text, the arguments can be substituted by the form: $A. In fact, the implementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any choice
of letters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The name is
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not to

73

Chapter 14. The Standard Numeric Score

terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with #undef
NAME.

Syntax
#define NAME # replacement text #
#define NAME(a' b' c') # replacement text #
$NAME.
#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Another Use For Macros. When writing a complex score it is sometimes all too easy to forget to what the
various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #il#
#define Whoop #i2#

$Flute. 0 10 4000 440
$Whoop. 5 1

Examples

Example 14-1. Simple Macro

A note-event has a set of p-fields which are repeated:

#define ARGS # 1.01 2.33 138#
i1 01 800 1000 $ARGS
i1 01801 1500 $ARGS
i1 01 802 1200 $ARGS
i1 01 8.03 1000 $ARGS

This will get expanded before sorting into:
il 01800 1000 1.01 2.33 138
il 01801 1500 1.01 2.33 138
i1 01802 1200 1.01 2.33 138

74

i1 01 8.03 1000 1.01 2.33 138

Chapter 14. The Standard Numeric Score

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a second
macro (there is no real limit on the number of macros one can define).

#define ARGS1 # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
i1 01 800 1000 $ARGS1

i1 01 801 1500 $ARGS2

i1 01 802 1200 $ARGS1

i1 01 803 1000 $ARGS2

Example 14-2. Macros with arguments

#define ARG(A) # 2.345 103 $A 234.9%
i1 0 1 8.00 1000 $ARG(2.0)
i1 + 1 8.01 1200 $ARG(3.0)

which expands to

i1 0 1 8.00 1000 2.345 1.03 2.0 2349
il + 1 8.01 1200 2.345 1.03 3.0 2349

Credits
Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

Multiple File Score

Description
Using the score in more than one file.

75

Chapter 14. The Standard Numeric Score

Syntax

#include “filename”

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text

#include "filename"

where the character " can be replaced by any suitable character. For most uses the double quote symbol will
probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. There is currently
a limit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer’s style. It could
also be used to provide repeated sections.

s
#include :sectionl:
;; Repeat that

s

#include :sectionl:

Alternative methods of doing repeats, use the r statement, m statement, and n statement.

Credits
Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions when
some simple evaluation would be easier. This need is increased when there are macros. To assist in this area
the syntax of an arithmetic expressions within square brackets [| has been introduced. Expressions built from
the operations +, -, *, /, %, and A are allowed, together with grouping with (). The expressions can include
numbers, and naturally macros whose values are numeric or arithmetic strings. All calculations are made in
floating point numbers. Note that unary minus is not yet supported.

New in Csound version 3.56 are @x (next power-of-two greater than or equal to x) and @@x (next
power-of-two-plus-one greater than or equal to x).

76

Chapter 14. The Standard Numeric Score

Example

r3 CNT

i1 0 [0.3*$CNT]
i1 + [($CNT./3)+0.2]

e

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this expands to

i1 0 03

il 0.3 0.533333
S

i1 0 06

il 0.6 0.866667
S

i1 0 0.9

i1 09 1.2

e

This is an extreme form, but the evaluation system can be used to ensure that repeated sections are subtly
different.

Credits
Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

Score Statements

The statements used in scores are a, b, e, f, i, m, n, 1, s, t, v, and x.

Sine/Cosine Generators

The GEN routines that generate sine or cosine values are GEN09, GEN10, GEN11, GEN19, GEN30, GEN33, and
GEN34.

Line/Exponential Segment Generators

GEN routines that generate tables with linear or exponential segments are GEN05, GEN06, GEN07, GENO08,
GEN16, GEN25, and GEN27.

77

Chapter 14. The Standard Numeric Score

File Access GEN Routines
The GEN routines that access files are GEN0O1, GEN23, and GEN28.

Numeric Value Access GEN Routines
The GEN routines that generate tables from numeric values are GENO2 and GEN17.

Window Function GEN Routines
The GEN routine for window functions is GEN20.

Random Function GEN Routines
GEN routines the generate random distributions are GEN21, GEN40, GEN41, and GEN42.

Waveshaping GEN Routines
The GEN routines that have waveshaping functionality are GEN03, GEN13, GEN14, and GEN15.

Amplitude Scaling GEN Routines
GEN routines that perform amplitude scaling are GEN04, GEN12, and GEN24.

Mixing GEN Routines
GEN routines that mix together waverforms are GEN18, GEN31, and GEN32.

78

Il. Reference

Chapter 15. Orchestra Opcodes and Operators
1=
I= — Determines if one value is not equal to another.

Description

Determines if one value is not equal to another.

Syntax
(@al=b?2vl:v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For

n_nmn

convenience, a sole "=" will function as "==".)
NB.: If vI or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *,/, & and |[|).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the != opcode. It uses the files notequal.orc and notequal.sco.

Example 15-1. Example of the != opcode.

/* notequal.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

. Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it not equal to 3? (1 = true, 0 = false)
k2 = (p4 =32 1 :0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* notequal.orc */

81

Chapter 15. Orchestra Opcodes and Operators

/* notequal.sco */
[* Written by Kevin Conder */

; Call Instrument #1 with a p4 = 2.
il10052
; Call Instrument #1 with a p4 = 3.
il1053
; Call Instrument #1 with a p4 = 4.
il2054

e
/* notequal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 1.000000
k1 = 3.000000, k2 = 0.000000
k1 = 4.000000, k2 = 1.000000
See Also
== >=, >, <5, <

#define
#define — Defines a macro.
Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

#define NAME -- defines a simple macro. The name of the macro must begin with a letter and can consist of
any combination of letters and numbers. Case is significant. This form is limiting, in that the variable names
are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a'b'c') -- defines a macro with arguments. This can be used in more complex situations. The
name of the macro must begin with a letter and can consist of any combination of letters and numbers.
Within the replacement text, the arguments can be substituted by the form: $A. In fact, the implementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any choice
of letters. Remember that case is significant in macro names.

Syntax
#define NAME # replacement text #
#define NAME(a' b' ¢') # replacement text #

82

Chapter 15. Orchestra Opcodes and Operators

Initialization

#replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Examples

Here is a simple example of the defining a macro. It uses the files define.orc and define.sco.

Example 15-1. Simple example of the define macro.

/* define.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the macros.
#define VOLUME #5000#
#define FREQ #440#
#define TABLE #1#

; Instrument #1

instr 1
; Use the macros.
; This will be expanded to "al oscil 5000, 440, 1".
al oscil $VOLUME, $FREQ, $TABLE

; Send it to the output.
out al

endin

/* define.orc */

/* define.sco */

/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* define.sco */

Its output should include lines like this:
Macro definition for VOLUME

Macro definition for CPS
Macro definition for TABLE

83

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the defining a macro with arguments. It uses the files define_args.orc and
define_args.sco.

Example 15-2. Example of the define macro with arguments.

/* define_args.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the oscillator macro.
#define OSCMACRO(VOLUME'FREQ'TABLE) #oscil $VOLUME, $FREQ, $TABLE#

. Instrument #1

instr 1
; Use the oscillator macro.
; This will be expanded to "al oscil 5000, 440, 1".
al $OSCMACRO(5000440'1)

; Send it to the output.
out al

endin

/* define_args.orc */

/* define_args.sco */
/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

[* define_args.sco */

Its output should include lines like this:

Macro definition for OSCMACRO

See Also
$NAME, #undef

Credits

Author: John ffitch
University of Bath/Codemist Ltd.

Bath, UK
April 1998

New in Csound version 3.48

84

Chapter 15. Orchestra Opcodes and Operators

#include

#include — Includes an external file for processing.

Description

Includes an external file for processing.

Syntax
#include “filename”

Performance

It is sometimes convenient to have the orchestra arranged in a number of files, for example with each
instrument in a separate file. This style is supported by the #include facility which is part of the macro system.
Aline containing the text

#include “filename”

where the character " can be replaced by any suitable character. For most uses the double quote symbol will
probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. There is currently
a limit of 20 on the depth of included files and macros.

Another suggested use of #include would be to define a set of macros which are part of the composer’s style.

An extreme form would be to have each instrument defines as a macro, with the instrument number as a
parameter. Then an entire orchestra could be constructed from a number of #include statements followed by
macro calls.

#include “clarinet”
#include “flute”
#include “bassoon”
$CLARINET(1)
$FLUTE(2)
$BASSOON(3)

It must be stressed that these changes are at the textual level and so take no cognizance of any meaning.

Examples

Here is an example of the include opcode. It uses the files include.orc, include.sco, and tablel.inc.

Example 15-1. Example of the include opcode.

/* include.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr 44100

kr 4410

85

10
1

ksmps
nchnls

. Instrument #1 - a basic oscillator.

instr 1
kamp = 10000
kcps = 440
ifn = 1

al oscil kamp, kcps, ifn
out al

endin

[* include.orc */

/* tablel.inc */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

/* tablel.inc */

[* include.sco */
[* Written by Kevin Conder */

; Include the file for Table #1.

#include "tablel.inc"

; Play Instrument #1 for 2 seconds.

i102
e
/* include.sco */

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK
April 1998

New in Csound version 3.48

#undef

#undef — Un-defines a macro.

Description

Chapter 15. Orchestra Opcodes and Operators

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro

system in the score language.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with #undef

NAME.

86

Chapter 15. Orchestra Opcodes and Operators

Syntax
#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

See Also
#define, NAME

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

April 1998

New in Csound version 3.48

$NAME

$NAME— Calls a defined macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

$NAME -- calls a defined macro. To use a macro, the name is used following a $ character. The name is
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not to
terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

Syntax
$NAME

87

Chapter 15. Orchestra Opcodes and Operators

Initialization

#replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Examples

Here is an example of the calling a macro. It uses the files define.orc and define.sco.

Example 15-1. An example of the calling a macro.

/* define.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the macros.
#define VOLUME #5000#
#define FREQ #440#
#define TABLE #1#

; Instrument #1

instr 1
; Use the macros.
; This will be expanded to "al oscil 5000, 440, 1".
al oscil $VOLUME, $FREQ, $TABLE

; Send it to the output.
out al

endin

/* define.orc */

/* define.sco */

/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* define.sco */

Its output should include lines like this:
Macro definition for VOLUME

Macro definition for CPS
Macro definition for TABLE

88

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the calling a macro with arguments. It uses the files define_args.orc and define_args.sco.

Example 15-2. An example of the calling a macro with arguments.

/* define_args.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the oscillator macro.
#define OSCMACRO(VOLUME'FREQ'TABLE) #oscil $VOLUME, $FREQ, $TABLE#

. Instrument #1

instr 1
; Use the oscillator macro.
; This will be expanded to "al oscil 5000, 440, 1".
al $OSCMACRO(5000440'1)

; Send it to the output.
out al

endin

/* define_args.orc */

/* define_args.sco */
/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

[* define_args.sco */

Its output should include a line like this:

Macro definition for OSCMACRO

See Also
#define, #undef

Credits

Author: John ffitch
University of Bath/Codemist Ltd.

Bath, UK
April, 1998

New in Csound version 3.48

89

Chapter 15. Orchestra Opcodes and Operators

%

% — Modulus operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with x taking b and c and then + taking a and b * c.

2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

The operator % returns the value of a reduced by b, so that the result, in absolute value, is that of the absolute
value of b, by repeated subtraction. This is the same as modulus function in integers. New in Csound version
3.50.

90

Chapter 15. Orchestra Opcodes and Operators

Syntax
a % b (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the % operator. It uses the files modulus.orc and modulus.sco.

Example 15-1. Example of the % operator.

/* modulus.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls 1

; Instrument #1.
instr 1
il =5% 3
print il
endin
/* modulus.orc */

/* modulus.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* modulus.sco */

Its output should include a line like this:

instr 1: i1 = 2.000

See Also
D +y &&) ||) *, /, B

&&

&&— Logical AND operator.

91

Chapter 15. Orchestra Opcodes and Operators

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with * taking b and ¢ and then + taking aand b = c.
2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a && b (logical AND; not audio-rate)

where the arguments a and b may be further expressions.

92

Chapter 15. Orchestra Opcodes and Operators

See Also
B +7 ||J *, /; A) %

>

> — Determines if one value is greater than another.

Description

Determines if one value is greater than another.

Syntax
(@a>b?vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, aless than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For

n_nmn

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[|).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the > opcode. It uses the files greaterthan.orc and greaterthan.sco.

Example 15-1. Example of the > opcode.

[* greaterthan.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps 1

nchnls 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it greater than 3? (1 = true, 0 = false)
k2 = (p4 >37?21:0)

93

Chapter 15. Orchestra Opcodes and Operators

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* greaterthan.orc */

[* greaterthan.sco */
/* Written by Kevin Conder */

; Call Instrument #1 with a p4 = 2.
i10052

; Call Instrument #1 with a p4 = 3.
il1053

; Call Instrument #1 with a p4 = 4.
il12054

e

/* greaterthan.sco */

Its output should include lines like this:

k1l = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 0.000000
k1l = 4.000000, k2 = 1.000000
See Also
==, >= <5 <, 15
>=
= — Determines if one value is greater than or equal to another.
Description

Determines if one value is greater than or equal to another.

Syntax
(a>=b2?2vl:v2)

where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For

n_nmn

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and 2, and) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[|).

94

Chapter 15. Orchestra Opcodes and Operators

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples

Here is an example of the >= opcode. It uses the files greaterequal.orc and greaterequal.sco.

Example 15-1. Example of the >= opcode.

[* greaterequal.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

. Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it greater than or equal to 3? (1 = true, 0 = false)
k2 = (p4 >=37?21:0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
[* greaterequal.orc */

/* greaterequal.sco */
[* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.

il10052
; Call Instrument #1 with a p4 = 3.
il1053
; Call Instrument #1 with a p4 = 4.
il2054

e
[* greaterequal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 1.000000
See Also

== >) <:» <’ !:

95

Chapter 15. Orchestra Opcodes and Operators

<

< — Determines if one value is less than another.

Description

Determines if one value is less than another.

Syntax
(a<b?vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, aless than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "==".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *,/, & and |[]).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the < opcode. It uses the files lessthan.orc and lessthan.sco.

Example 15-1. Example of the < opcode.

/* lessthan.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it less than 3? (1 = true, 0 = false)
k2 = (p4 <3?21:0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* lessthan.orc */

/* lessthan.sco */

/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.

96

Chapter 15. Orchestra Opcodes and Operators

i10052
; Call Instrument #1 with a p4 = 3.
il11053
; Call Instrument #1 with a p4 = 4.
il12054

e
/* lessthan.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 1.000000
k1 = 3.000000, k2 = 0.000000
k1 = 4.000000, k2 = 0.000000
See Also
==, >=, >, <:, !:

<=

<=— Determines if one value is less than or equal to another.

Description

Determines if one value is less than or equal to another.

Syntax
(a<=b?2vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For

n_n

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[|).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

97

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the <= opcode. It uses the files lessequal.orc and lessequal.sco.

Example 15-1. Example of the <= opcode.

/* lessequal.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it less than or equal to 3? (1 = true, 0 = false)
k2 = (p4 <=37?21:0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* lessequal.orc */

/* lessequal.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.

il10052

; Call Instrument #1 with a p4 = 3.
il1053

; Call Instrument #1 with a p4 = 4.
il12054

e

/* lessequal.sco */

Its output should include lines like this:

ki = 2.000000, k2 = 1.000000
ki1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 0.000000
See Also

==>=>,< =

+ — Multiplication operator.

98

Chapter 15. Orchestra Opcodes and Operators

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with * taking b and ¢ and then + taking aand b = c.
2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a * b (no rate restriction)

where the arguments a and b may be further expressions.

99

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the x operator. It uses the files multiplies.orc and multiplies.sco.

Example 15-1. Example of the « operator.

/* multiplies.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 44100

kr = 4410

ksmps = 1
1

= 10
nchnls =

; Instrument #1.
instr 1
i1 =24*8
print il
endin
/* multiplies.orc */

/* multiplies.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

[* multiplies.sco */

Its output should include a line like this:

instr 1: i1l = 192.000

See Also
5 +) &&) ||) /) A) %

+

-+ — Addition operator

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

100

Chapter 15. Orchestra Opcodes and Operators

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as
a+(*c

with * taking b and ¢ and then + takinga and b = c.
2. 4 and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d
is taken as

(a&&(b-c)|ld

3. When both operators bind equally strongly, the operations are done left to right:
a-b-ci
is taken as

(@a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
+ a (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the + operator. It uses the files adds.orc and adds.sco.

Example 15-1. Example of the + operator.

[* adds.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.
instr 1

101

i1=24+38
print i1
endin

/* adds.orc */

[* adds.sco */
/* Written by Kevin Conder */

; Play Instrument #1 for one second.

il101
e
/* adds.sco */

Its output should include lines like:

instr 1: i1l = 32.000

See Also
) &&v ||’ *, /» A) %

- — Subtraction operator.

Description

Chapter 15. Orchestra Opcodes and Operators

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+(b*c)

with x taking b and ¢ and then + taking a and b = c.

2. 4 and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-cl|d

is taken as

102

(a&&((b-0)||d

Chapter 15. Orchestra Opcodes and Operators

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(@a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

- a (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the - operator. It uses the files subtracts.orc and subtracts.sco.

Example 15-1. Example of the - operator.

[* subtracts.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
i1 =24 -8
print i1
endin
/* subtracts.orc */

/* subtracts.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* subtracts.sco */

Its output should include lines like this:

instr 1: i1l = 16.000

103

Chapter 15. Orchestra Opcodes and Operators

See Also
+) &&) ||’ *, /» A’ %

| — Division operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+(b*c)

with * taking b and ¢ and then + taking a and b = c.

2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c|d

is taken as

(a&&(b-c)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

104

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a /b (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the / operator. It uses the files divides.orc and divides.sco.

Example 15-1. Example of the / operator.

/* divides.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.
instr 1
il =241/8
print il
endin
/* divides.orc */

/* divides.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* divides.sco */

Its output should include lines like this:

instr 1: i1l = 3.000

See Also
B +7 &&7 ||; *, A; %

105

= — Performs a simple assignment.

Syntax
ar = xarg
ir = iarg

kr = karg

Description

Performs a simple assignment.

Initialization

Chapter 15. Orchestra Opcodes and Operators

= (simple assignment) - Put the value of the expression iarg (karg, xarg) into the named result. This provides

a means of saving an evaluated result for later use.

Examples

Here is an example of the assign opcode. It uses the files assign.orc and assign.sco.

Example 15-1. Example of the assign opcode.

[* assign.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Assign a value to the variable il.

i1 = 1234

; Print the value of the il variable.

print il
endin
[* assign.orc */

/* assign.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

/* assign.sco */

Its output should include a line like this:

instr 1: i1l = 1234.000

106

Chapter 15. Orchestra Opcodes and Operators

See Also

divz, init, tival

== — Compares two values for equality.

Description
Compares two values for equality.

Syntax
(@a==b?2vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For

n_n

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[]).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the == opcode. It uses the files equal.orc and equal.sco.

Example 15-1. Example of the == opcode.

[* equal.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

107

Chapter 15. Orchestra Opcodes and Operators

; Is it equal to 3? (1 = true, 0 = false)
k2 = (p4 == 3?2 1 :0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
[* equal.orc */

/* equal.sco */
[* Written by Kevin Conder */

; Call Instrument #1 with a p4 = 2.
i10052
; Call Instrument #1 with a p4 = 3.
il11053
; Call Instrument #1 with a p4 = 4.
il12054

e
/* equal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 0.000000
See Also

>z, >, <5, <, =

— “Power of” operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

108

Chapter 15. Orchestra Opcodes and Operators

with * taking b and ¢ and then + taking a and b = c.

2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c|d

is taken as

(@&&(b-c)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(@a-b)-c

Parentheses may be used as above to force particular groupings.

The operator "raises a to the b power. b may not be audio-rate. Use with caution as precedence may not
work correctly. See pow. (New in Csound version 3.493.)

Syntax
a” b (b not audio-rate)

where the arguments a and b may be further expressions.

Examples
Here is an example of the ~ operator. It uses the files raises.orc and raises.sco.

Example 15-1. Example of the " operator.

/* raises.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
i1=2"12
print il
endin

109

/* raises.orc */

[* raises.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* raises.sco */

Its output should include a line like this:

instr 1: i1l = 4096.000

See Also
B +7 &&7 ||) *, /; %

|| — Logical OR operator.

Description

Chapter 15. Orchestra Opcodes and Operators

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with * taking b and c and then + takinga and b = c.

2. 4 and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

110

Chapter 15. Orchestra Opcodes and Operators

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a || b (logical OR; not audio-rate)

where the arguments a and b may be further expressions.

See Also
D +) &&) *, /) A) %

Odbfs

0dbfs — Sets the value of 0 decibels using full scale amplitude.

Description

Sets the value of 0 decibels using full scale amplitude.

Syntax
0dbfs = iarg

Initialization

iarg -- the value of 0 decibels using full scale amplitude.

111

Performance
The default is 32767, so all existing orcs should work.
These calls should all work:

ipeak = Odbfs

asig oscil 0dbfs,freq,1
out asig * 0.3 * Odbfs

and so on.

Chapter 15. Orchestra Opcodes and Operators

As for documentation: the usage should be obvious - the main thing is for people to start to code
0dbfs-relatively (and use the ampdb() opcodes a lot more!), rather than use explicit sample values.

Floats written to a file, when 0dbfs = 1, will in effect go through no range translation at all. So the nunbers in

the file are exactly what the orc says they are.

BIG NB: All the main sample formats are supported, but | haven’'t got around to dealing with the char formats. Probably

it’s straight-forward...

I have tried to cover the main utils - adsyn,Ipanal etc. But there are bound to be things missing, sorry.

Some of the parsing code is a bit grungy because | have a variable with a leading digit!

Examples

Here is an example of the 0dbfs opcode. It uses the files 0dbfs.orc and 0dbfs.sco.

Example 15-1. Example of the 0dbfs opcode.

/* Odbfs.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Set the 0dbfs to the 16-bit maximum.
Odbfs = 32767

. Instrument #1.

instr 1
; Linearly increase the amplitude value "kamp" from
; 0 to 1 over the duration defined by p3.
kamp line 0, p3, 1

; Generate a basic tone using our amplitude value.
al oscil kamp, 440, 1

; Multiply the basic tone (with its amplitude between
; 0 and 1) by the full-scale 0dbfs value.
out al * Odbfs

endin

/* 0dbfs.orc */

112

Chapter 15. Orchestra Opcodes and Operators

/* Odbfs.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for three seconds.
i103

e
/* Odbfs.sco */

Credits

Author: Richard Dobson
May 2002

New in version 4.20

a

a — Converts a k-rate parameter to an a-rate value with interpolation.

Description

Converts a k-rate parameter to an a-rate value with interpolation.

Syntax
a(x) (control-rate args only)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the a opcode. It uses the files a.orc and a.sco.

Example 15-1. Example of the a opcode.

/* a.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Create a sine wave at k-rate.
kwave oscil 20000, 440, 1

113

; Convert the k-rate sine wave to the audio-rate.

awave = a(kwave)

; Output the audio-rate version of sine wave.
out awave

endin

/* a.orc */

[* a.sco */
[* Written by Kevin Conder */

; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one second.
i101

e

/* a.sco */

See Also

i

Credits
Author: Gabriel Maldonado

New in version 4.21

abetarand

abetarand — Deprecated.

Description

Deprecated as of version 3.49. Use the betarand opcode instead.

abexprnd

abexprnd — Deprecated.

Description

Deprecated as of version 3.49. Use the bexprnd opcode instead.

Chapter 15. Orchestra Opcodes and Operators

114

abs

abs — Returns an absolute value.

Description

Returns the absolute value of x.

Syntax

abs(x) (no rate restriction)

Chapter 15. Orchestra Opcodes and Operators

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the abs opcode. It uses the files abs.orc and abs.sco.

Example 15-1. Example of the abs opcode.

[* abs.orc */
[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

. Instrument #1.
instr 1
i1
i2

-6
abs(il)

print i2
endin
/* abs.orc */

[* abs.sco */
/* Written by Kevin Conder */

; Play Instrument #1 for one second.

i101
e
/* abs.sco */

Its output should include lines like:

instr 1: i2 = 6.000

115

Chapter 15. Orchestra Opcodes and Operators

See Also
exp, frac, int, log, logl0, i, sqrt

acauchy

acauchy — Deprecated.

Description
Deprecated as of version 3.49. Use the cauchy opcode instead.

active
active — Returns the number of active instances of an instrument.
Description

Returns the number of active instances of an instrument.

Syntax
ir active insnum

kr active kinsnum

Initialization

insnum -- number of the instrument to be reported

Performance
kinsnum -- number of the instrument to be reported

active returns the number of active instances of instrument number insnum/kinsnum. As of Csound4.17 the
output is updated at k-rate (if input arg is k-rate), to allow running count of instr instances.

Examples

Here is a simple example of the active opcode. It uses the files active.orc and active.sco.

Example 15-1. Simple example of the active opcode.

/* active.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr 44100

kr 4410

116

10
1

ksmps
nchnls

; Instrument #1 - a noisy waveform.
instr 1
; Generate a really noisy waveform.
anoisy rand 44100
; Turn down its amplitude.
aoutput gain anoisy, 2500
; Send it to the output.
out aoutput
endin

; Instrument #2 - counts active instruments.
instr 2
; Count the active instances of Instrument #1.
icount active 1
;. Print the number of active instances.
print icount
endin
/* active.orc */

/* active.sco */

/* Written by Kevin Conder */

; Start the first instance of Instrument #1 at 0:00 seconds.
i 100 30

; Start the second instance of Instrument #1 at 0:015 seconds.

il11515

; Play Instrument #2 at 0:01 seconds, when we have only
; one active instance of Instrument #1.
i 210 0.1

; Play Instrument #2 at 0:02 seconds, when we have
; two active instances of Instrument #1.

i 22001

e

/* active.sco */

Its output should include lines like this:

1.000
2.000

instr 2: icount
instr 2: icount

Chapter 15. Orchestra Opcodes and Operators

Here is a more advanced example of the active opcode. It displays the results of the active opcode at k-rate

instead of i-rate. It uses the files active_k.orc and active_k.sco.

Example 15-2. Example of the active opcode at k-rate.

/* active_k.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - a noisy waveform.

117

Chapter 15. Orchestra Opcodes and Operators

instr 1
; Generate a really noisy waveform.
anoisy rand 44100
; Turn down its amplitude.
aoutput gain anoisy, 2500
; Send it to the output.
out aoutput
endin

. Instrument #2 - counts active instruments at k-rate.
instr 2
; Count the active instances of Instrument #1.
kcount active 1
; Print the number of active instances.
printk2 kcount
endin
/* active_k.orc */

/* active_k.sco */

/* Written by Kevin Conder */

; Start the first instance of Instrument #1 at 0:00 seconds.
i 100 3.0

; Start the second instance of Instrument #1 at 0:015 seconds.
il115 15

; Play Instrument #2 at 0:01 seconds, when we have only
; one active instance of Instrument #1.
i210 01

; Play Instrument #2 at 0:02 seconds, when we have
; two active instances of Instrument #1.

i 22001

e

/* active_k.sco */

Its output should include lines like:

i2 1.00000
i2 2.00000
Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

July, 1999

New in Csound version 3.57

adsr

adsr — Calculates the classical ADSR envelope using linear segments.

118

Chapter 15. Orchestra Opcodes and Operators

Description

Calculates the classical ADSR envelope using linear segments.

Syntax
ar adsr iatt, idec, islev, irel [, idel]

kr adsr iatt, idec, islev, irel [, idel]

Initialization

iatt -- duration of attack phase
idec -- duration of decay

islev -- level for sustain phase
irel -- duration of release phase

idel -- period of zero before the envelope starts

Performance

The envelope is the range 0 to 1 and may need to be scaled further. The envelope may be described as:

1sler

)% ia:t%{%ida: %I <—irel %‘

Picture of an ADSR envelope.

The length of the sustain is calculated from the length of the note. This means adsr is not suitable for use with
MIDI events. The opcode madsr uses the linsegr mechanism, and so can be used in MIDI applications.

adsr is new in Csound version 3.49.

Examples

Here is an example of the adsr opcode. It uses the files adsr.orc and adsr.sco.

Example 15-1. Example of the adsr opcode.

/* adsr.orc */

119

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - a simple instrument.
instr 1
; Set the amplitude.
kamp init 20000
; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

al vco kamp, kecps, 1
out al
endin

; Instrument #2 - instrument with an ADSR envelope.

instr 2
iatt = 0.05
idec = 0.5
islev = 0.08
irel = 0.008

; Create an amplitude envelope.
kenv adsr iatt, idec, islev, irel
kamp = kenv * 20000

; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

al vco kamp, kecps, 1
out al

endin

/* adsr.orc */

/* adsr.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

; Set the tempo to 120 beats per minute.
t 0 120

; Play a melody with Instrument #1.
; p4 = frequency in pitch-class notation.
i 8.04

i 8.04

8.05

8.07

8.07

8.05

8.04

8.02

8.00

8.00

8.02

8.04

8.04

8.02

e

OCoO~NOOUOPAAWNEO

RPRRRPRRPRRRPRRRRERRRRER

NNRRRRRRRRRR

; Repeat the melody with Instrument #2.
; p4 = frequency in pitch-class notation.

Chapter 15. Orchestra Opcodes and Operators

120

Chapter 15. Orchestra Opcodes and Operators

i 2 16 1 8.04
i 2 17 1 8.04
i 2 18 1 8.05
i 2 19 1 8.07
i 2 20 1 8.07
i 2 21 1 8.05
i 2 22 1 8.04
i 2 23 1 802
i 2 24 1 8.00
i 2 25 1 8.00
i 2 26 1 8.02
i 2 27 1 8.04
i 2 28 2 8.04
i 2 30 2 8.02

/* adsr.sco */

See Also

madsr, mxadsr, xadsr

adsyn

adsyn — Qutput is an additive set of individually controlled sinusoids, using an oscillator bank.

Description

Output is an additive set of individually controlled sinusoids, using an oscillator bank.

Syntax
ar adsyn kamod, kfmod, ksmod, ifilcod

Initialization

ifilcod -- integer or character-string denoting a control-file derived from analysis of an audio signal. An
integer denotes the suffix of a file adsyn.m or pvoc.m; a character-string (in double quotes) gives a filename,
optionally a full pathname. If not fullpath, the file is sought first in the current directory, then in the one given
by the environment variable SADIR (if defined). adsyn control contains breakpoint amplitude- and
frequency-envelope values organized for oscillator resynthesis, while pvoc control contains similar data
organized for fft resynthesis. Memory usage depends on the size of the files involved, which are read and held
entirely in memory during computation but are shared by multiple calls (see also Ipread).

121

Chapter 15. Orchestra Opcodes and Operators

Performance
kamod -- amplitude factor of the contributing partials.

kfmod -- frequency factor of the contributing partials. It is a control-rate transposition factor: a value of 1
incurs no transposition, 1.5 transposes up a perfect fifth, and .5 down an octave.

ksmod -- speed factor of the contributing partials.

adsyn synthesizes complex time-varying timbres through the method of additive synthesis. Any number of
sinusoids, each individually controlled in frequency and amplitude, can be summed by high-speed
arithmetic to produce a high-fidelity result.

Component sinusoids are described by a control file describing amplitude and frequency tracks in
millisecond breakpoint fashion. Tracks are defined by sequences of 16-bit binary integers:

-1, time, amp, time, amp,...
-2, time, freq, time, freq,...

such as from hetrodyne filter analysis of an audio file. (For details see hetro.) The instantaneous amplitude
and frequency values are used by an internal fixed-point oscillator that adds each active partial into an
accumulated output signal. While there is a practical limit (limit removed in version 3.47) on the number of
contributing partials, there is no restriction on their behavior over time. Any sound that can be described in
terms of the behavior of sinusoids can be synthesized by adsyn alone.

Sound described by an adsyn control file can also be modified during re-synthesis. The signals kamod,
kfmod, ksmod will modify the amplitude, frequency, and speed of contributing partials. These are
multiplying factors, with kfmod modifying the frequency and ksmod modifying the speed with which the
millisecond breakpoint line-segments are traversed. Thus .7, 1.5, and 2 will give rise to a softer sound, a
perfect fifth higher, but only half as long. The values 1,1,1 will leave the sound unmodified. Each of these
inputs can be a control signal.

Examples

Here is an example of the adsyn opcode. It uses the files adsyn.orc, adsyn.sco, and kickroll.het. The file
“kickroll.het” was created by using the hetro utility with the audio file kickroll.wav.

Example 15-1. Example of the adsyn opcode.

/* adsyn.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.

instr 1
; If the modulation amounts are set to 1, adsyn
; will not perform any special modulation.
kamod init 1
kfmod init 1
ksmod init 1

; Re-synthesizes the file "kickroll.het".
al adsyn kamod, kfmod, ksmod, "kickroll.het"

out al * 32768

endin
/* adsyn.orc */

122

Chapter 15. Orchestra Opcodes and Operators

/* adsyn.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

[* adsyn.sco */

adsynt
adsynt — Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.
Description

Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.

Syntax
ar adsynt kamp, kcps, iwfn, ifreqfn, iampfn, icnt [, iphs]

Initialization

iwfn -- table containing a waveform, usually a sine. Table values are not interpolated for performance
reasons, so larger tables provide better quality.

ifreqfn -- table containing frequency values for each partial. ifreqfrn may contain beginning frequency values
for each partial, but is usually used for generating parameters at runtime with tablew. Frequencies must be
relative to kcps. Size must be at least icnt.

iampfn -- table containing amplitude values for each partial. iampfn may contain beginning amplitude
values for each partial, but is usually used for generating parameters at runtime with tablew. Amplitudes
must be relative to kamp. Size must be at least icnt.

icnt -- number of partials to be generated

iphs -- initial phase of each oscillator, if iphs = -1, initialization is skipped. If iphs > 1, all phases will be
initialized with a random value.

Performance
kamp -- amplitude of note
kcps -- base frequency of note. Partial frequencies will be relative to kcps.

Frequency and amplitude of each partial is given in the two tables provided. The purpose of this opcode is to
have an instrument generate synthesis parameters at k-rate and write them to global parameter tables with
the tablew opcode.

123

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the adsynt opcode. It uses the files adsynt.orc and adsynt.sco. These two instruments
perform additive synthesis. The output of each sounds like a Tibetan bowl. The first one is static, as
parameters are only generated at init-time. In the second one, parameters are continuously changed.

Example 15-1. Example of the adsynt opcode.

[* adsynt.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Generate a sinewave table.

giwave ftgen 1, 0, 1024, 10, 1

; Generate two empty tables for adsynt.
gifrgs ftgen 2, 0, 32, 7, 0, 32, O

; A table for freqency and amp parameters.
giamps ftgen 3, 0, 32, 7, 0, 32, O

; Generates parameters at init time
instr 1

; Generate 10 voices.

icnt = 10

; Init loop index.

index = 0

; Loop only executed at init time.
loop:

; Define non-harmonic partials.

ifreq pow index + 1, 1.5

; Define amplitudes.

iamp = 1 / (index+1)

;. Write to tables.

tableiw ifreq, index, gifrgs

; Used by adsynt.

tableiw iamp, index, giamps

index = index + 1
; Do loop/
if (index < icnt) igoto loop

asig adsynt 5000, 150, giwave, gifrgs, giamps, icnt
out asig
endin

; Generates parameters every k-cycle.

instr 2
; Generate 10 voices.
icnt = 10
; Reset loop index.
kindex = 0

; Loop executed every k-cycle.
loop:
; Generate Ifo for frequencies.
kspeed pow kindex + 1, 1.6
; Individual phase for each voice.
kphas phasorbnk kspeed * 0.7, kindex, icnt
kifo table kphas, giwave, 1
; Arbitrary parameter twiddling...

124

Chapter 15. Orchestra Opcodes and Operators

kdepth pow 1.4, kindex
kfreq pow kindex + 1, 1.5
kfreq = kfreq + klIfo*0.006*kdepth

; Write freqs to table for adsynt.
tablew kfreq, kindex, gifrgs

; Generate Ifo for amplitudes.

kspeed pow kindex + 1, 0.8

; Individual phase for each voice.

kphas phasorbnk kspeed*0.13, kindex, icnt, 2
kifo table kphas, giwave, 1

; Arbitrary parameter twiddling...

kamp pow 1 / (kindex + 1), 0.4

kamp = kamp * (0.3+0.35*(klfo+1))

; Write amps to table for adsynt.
tablew kamp, kindex, giamps

kindex = kindex + 1
; Do loop.
if (kindex < icnt) kgoto loop

asig adsynt 5000, 150, giwave, gifrgs, giamps, icnt
out asig

endin

[* adsynt.orc */

[* adsynt.sco */

; Play Instrument #1 for 2.5 seconds.
il1025

; Play Instrument #2 for 2.5 seconds.
i2325

e

/* adsynt.sco */

Credits

Author: Peter Neubicker
Munich, Germany

August, 1999

New in Csound version 3.58

aexprand

aexprand — Deprecated.

Description

Deprecated as of version 3.49. Use the exprand opcode instead.

125

Chapter 15. Orchestra Opcodes and Operators

aftouch

aftouch — Get the current after-touch value for this channel.

Description
Get the current after-touch value for this channel.

Syntax

kaft aftouch [imin] [, imax]

Initialization
imin (optional, default=0) -- minimum limit on values obtained.

imax (optional, default=127) -- maximum limit on values obtained.

Performance

Get the current after-touch value for this channel. Note that this access to pitch-bend data is independent of
the MIDI pitch, enabling the value here to be used for any arbitrary purpose.

Examples

Here is an example of the aftouch opcode. It uses the files aftouch.orc and aftouch.sco.

Example 15-1. Example of the aftouch opcode.

/* aftouch.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
k1l aftouch

printk2 k1
endin
/* aftouch.orc */

/* aftouch.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 12 seconds.
i1012

e

/* aftouch.sco */

126

Chapter 15. Orchestra Opcodes and Operators

See Also

ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry
MIT - Mills
May 1997

agauss
agauss — Deprecated.

Description

Deprecated as of version 3.49. Use the gauss opcode instead.

agogobel
agogobel — Deprecated.

Description

Deprecated as of version 3.52. Use the gogobel opcode instead.

alinrand
alinrand — Deprecated.

Description

Deprecated as of version 3.49. Use the linrand opcode instead.

alpass

alpass — Reverberates an input signal with a flat frequency response.

127

Description

Reverberates an input signal with a flat frequency response.

Syntax
ar alpass asig, krvt, ilpt [, iskip] [, insmps]

Initialization

Chapter 15. Orchestra Opcodes and Operators

ilpt -- loop time in seconds, which determines the “echo density” of the reverberation. This in turn
characterizes the “color” of the filter whose frequency response curve will contain ilpt * sr/2 peaks spaced
evenly between 0 and sr/2 (the Nyquist frequency). Loop time can be as large as available memory will
permit. The space required for an n second loop is 47*sr bytes. The delay space is allocated and returned as in

delay.

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

insmps (optional, default=0) -- delay amount, as a number of samples.

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down

from its original amplitude).

This filter reiterates the input with an echo density determined by loop time ilpt. The attenuation rate is
independent and is determined by krvt, the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Output will begin to appear immediately.

Examples

Here is an example of the alpass opcode. It uses the files alpass.orc and alpass.sco.

Example 15-1. Example of the alpass opcode.

[* alpass.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Initialize the audio mixer.
gamix init O

. Instrument #1.

instr 1
; Generate a source signal.
al oscili 30000, cpspch(p4), 1
; Output the direct sound.
out al

; Add the source signal to the audio mixer.
gamix = gamix + al
endin

; Instrument #99 (highest instr number executed last)

128

Chapter 15. Orchestra Opcodes and Operators

instr 99
krvt = 1.5
ilpt = 0.1

; Filter the mixed signal.
a99 alpass gamix, krvt, ilpt
; Output the result.

out a99

; Empty the mixer for the next pass.
gamix = 0

endin

/* alpass.orc */

/* alpass.sco */
; Table #1, a sine wave.
10128 10 1

—_—

; p4 = frequency (in a pitch-class)

Play Instrument #1 for a tenth of a second, p4=7.00
10 0.1 7.00

; Play Instrument #1 for a tenth of a second, p4=7.02
il11017.02

; Play Instrument #1 for a tenth of a second, p4=7.04
i12017.04

; Play Instrument #1 for a tenth of a second, p4=7.06
i130.17.06

; Make sure the filter remains active.
i 99 05

/* alpass.sco */

See Also

comb, reverb, valpass, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)
University of Texas at Austin

Austin, Texas USA

January 2002

ampdb

ampdb — Returns the amplitude equivalent of the decibel value x.

129

Description

Returns the amplitude equivalent of the decibel value x. Thus:

« 60dB=1000

» 66 dB =1995.262
« 72dB=3891.07

» 78dB =7943.279
« 84 dB=15848.926
+ 90dB =31622.764

Syntax
ampdb(x) (no rate restriction)

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the ampdb opcode. It uses the files ampdb.orc and ampdb.sco.

Example 15-1. Example of the ampdb opcode.

/* ampdb.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1
idb = 90
iamp = ampdb(idb)

print iamp
endin
/* ampdb.orc */

/* ampdb.sco */
[* Written by Kevin Conder */

; Play Instrument #1 for one second.

i101
e
/* ampdb.sco */

Its output should include lines like:

instr 1. iamp = 31622.764

130

Chapter 15. Orchestra Opcodes and Operators

See Also
ampdbfs, db, dbamp, dbfsamp

ampdbfs

ampdbfs — Returns the amplitude equivalent of the decibel value x, which is relative to full scale amplitude.

Description

Returns the amplitude equivalent of the decibel value x, which is relative to full scale amplitude. Full scale is
assumed to be 16 bit. New is Csound version 4.10.

Syntax

ampdbfs(x) (no rate restriction)

Examples
Here is an example of the ampdbfs opcode. It uses the files ampdbfs.orc and ampdbfs.sco.

Example 15-1. Example of the ampdbfs opcode.

[* ampdbfs.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
idb = -1
iamp = ampdbfs(idb)
print iamp

endin

/* ampdbfs.orc */

/* ampdbfs.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* ampdbfs.sco */

Its output should include lines like:

instr 1. iamp = 29203.621

131

Chapter 15. Orchestra Opcodes and Operators

See Also
ampdb, dbamp, dbfsamp

ampmidi

ampmidi — Get the velocity of the current MIDI event.

Description
Get the velocity of the current MIDI event.

Syntax

iamp ampmidi iscal [, ifn]

Initialization
iscal -- i-time scaling factor

ifn (optional, default=0) -- function table number of a normalized translation table, by which the incoming
value is first interpreted. The default value is 0, denoting no translation.

Performance

Get the velocity of the current MIDI event, optionally pass it through a normalized translation table, and
return an amplitude value in the range 0 - iscal.

Examples

Here is an example of the ampmidi opcode. It uses the files ampmidi.orc and ampmidi.sco.

Example 15-1. Example of the ampmidi opcode.

[* ampmidi.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.

instr 1
; Scale the amplitude between 0 and 1.
i1 ampmidi 1
print i1

endin

/* ampmidi.orc */

[* ampmidi.sco */
/* Written by Kevin Conder */

132

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for 12 seconds.
i10 12

e

/* ampmidi.sco */

See Also

aftouch, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills
May 1997

apcauchy

apcauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the pcauchy opcode instead.

apoisson

apoisson — Deprecated.

Description

Deprecated as of version 3.49. Use the poisson opcode instead.

apow
apow — Deprecated.

Description

Deprecated as of version 3.48. Use the pow opcode instead.

133

Chapter 15. Orchestra Opcodes and Operators

areson

areson — A notch filter whose transfer functions are the complements of the reson opcode.

Description
A notch filter whose transfer functions are the complements of the reson opcode.

Syntax

ar areson asig, kcf, kbw [, iscl] [, iskip]

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white
noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

ar -- the output signal at audio rate.

asig -- the input signal at audio rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

areson is a filter whose transfer functions is the complement of reson. Thus areson is a notch filter whose
transfer functions represents the “filtered out” aspects of their complements. However, power scaling is not
normalized in areson but remains the true complement of the corresponding unit. Thus an audio signal,
filtered by parallel matching reson and areson units, would under addition simply reconstruct the original
spectrum.

This property is particularly useful for controlled mixing of different sources (see Ipreson). Complex response
curves such as those with multiple peaks can be obtained by using a bank of suitable filters in series. (The
resultant response is the product of the component responses.) In such cases, the combined attenuation may
result in a serious loss of signal power, but this can be regained by the use of balance.

Examples

Here is an example of the areson opcode. It uses the files areson.orc and areson.sco.

Example 15-1. Example of the areson opcode.

/* areson.orc */
; Initialize the global variables.

sr = 22050
kr = 2205
ksmps = 10

134

nchnls = 1

. Instrument #1 - an unfiltered noise waveform.
instr 1

; Generate a white noise signal.

asig rand 20000

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; Generate a white noise signal.

asig rand 20000

; Filter it using the areson opcode.
kef init 1000

kbw init 100

afilt areson asig, kcf, kbw

; Clip the filtered signal's amplitude to 85 dB.
al clip afilt, 2, ampdb(85)
out al

endin

[* areson.orc */

/* areson.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* areson.sco */

See Also

aresonk, atone, atonek, port, portk, reson, resonk, tone, tonek

aresonk

Chapter 15. Orchestra Opcodes and Operators

aresonk — A notch filter whose transfer functions are the complements of the reson opcode.

Description

A notch filter whose transfer functions are the complements of the reson opcode.

Syntax
kr aresonk ksig, kcf, kbw [, iscl] [, iskip]

135

Chapter 15. Orchestra Opcodes and Operators

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white
noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

aresonk is a filter whose transfer functions is the complement of reson. Thus aresonk is a notch filter whose
transfer functions represents the “filtered out” aspects of their complements. However, power scaling is not
normalized in aresonk but remains the true complement of the corresponding unit.

See Also
areson, atone, atonek, port, portk, reson, resonk, tone, tonek

atone

atone — A notch filter whose transfer functions are the complements of the tone opcode.

Description

A notch filter whose transfer functions are the complements of the tone opcode.

Syntax
ar atone asig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

136

Chapter 15. Orchestra Opcodes and Operators

Performance

ar -- the output signal at audio rate.

asig -- the input signal at audio rate.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

atone is a filter whose transfer functions is the complement of fone. atone is thus a form of high-pass filter
whose transfer functions represent the “filtered out” aspects of their complements. However, power scaling is
not normalized in atone but remains the true complement of the corresponding unit. Thus an audio signal,
filtered by parallel matching tone and atone units, would under addition simply reconstruct the original
spectrum.

This property is particularly useful for controlled mixing of different sources (see Ipreson). Complex response
curves such as those with multiple peaks can be obtained by using a bank of suitable filters in series. (The
resultant response is the product of the component responses.) In such cases, the combined attenuation may
result in a serious loss of signal power, but this can be regained by the use of balance.

Examples

Here is an example of the atone opcode. It uses the files atone.orc and atone.sco.

Example 15-1. Example of the atone opcode.

/* atone.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1
. Instrument #1 - an unfiltered noise waveform.
instr 1

; Generate a white noise signal.

asig rand 20000

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; Generate a white noise signal.

asig rand 20000

; Filter it using the atone opcode.
khp init 2000
afilt atone asig, khp

; Clip the filtered signal's amplitude to 85 dB.
al clip afilt, 2, ampdb(85)
out al

endin

[* atone.orc */

/* atone.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* atone.sco */

137

Chapter 15. Orchestra Opcodes and Operators

See Also

areson, aresonk, atonek, port, portk, reson, resonk, tone, tonek

atonek

atonek — A notch filter whose transfer functions are the complements of the tone opcode.

Description
A notch filter whose transfer functions are the complements of the tone opcode.

Syntax
kr atonek ksig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

atonek is a filter whose transfer functions is the complement of fonek. atonek is thus a form of high-pass filter
whose transfer functions represent the “filtered out” aspects of their complements. However, power scaling is
not normalized in atonek but remains the true complement of the corresponding unit.

See Also

areson, aresonk, atone, port, portk, reson, resonk, tone, tonek

atonex

atonex — Emulates a stack of filters using the atone opcode.

138

Chapter 15. Orchestra Opcodes and Operators

Description

atonex is equivalent to a filter consisting of more layers of atone with the same arguments, serially connected.
Using a stack of a larger number of filters allows a sharper cutoff. They are faster than using a larger number
instances in a Csound orchestra of the old opcodes, because only one initialization and k- cycle are needed at
time and the audio loop falls entirely inside the cache memory of processor.

Syntax

ar atonex asig, khp [, inumlayer] [, iskip]

Initialization
inumlayer (optional) -- number of elements in the filter stack. Default value is 4.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance
asig -- input signal

khp -- the response curve’s half-power point. Half power is defined as peak power / root 2.

See Also

resonx, tonex

Credits

Author: Gabriel Maldonado (adapted by John ffitch)
Italy

New in Csound version 3.49

atrirand

atrirand — Deprecated.

Description
Deprecated as of version 3.49. Use the trirand opcode instead.

aunirand

aunirand — Deprecated.

139

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the unirand opcode instead.

aweibull

aweibull — Deprecated.

Description
Deprecated as of version 3.49. Use the weibull opcode instead.

babo

babo — A physical model reverberator.

Description

babo stands for ball-within-the-box. It is a physical model reverberator based on the paper by Davide
Rocchesso "The Ball within the Box: a sound-processing metaphor", Computer Music Journal, Vol 19, N .4,
pp-45-47, Winter 1995.

The resonator geometry can be defined, along with some response characteristics, the position of the listener
within the resonator, and the position of the sound source.

Syntax

al, a2 babo asig, ksrcx, ksrcy, ksrcz, irx, iry, irz [, idiff] [, ifno]

Initialization
irx, iry, irz -- the coordinates of the geometry of the resonator (length of the edges in meters)

idiff -- is the coefficient of diffusion at the walls, which regulates the amount of diffusion (0-1, where 0 =no
diffusion, 1 = maximum diffusion - default: 1)

ifno -- expert values function: a function number that holds all the additional parameters of the resonator.
This is typically a GEN2--type function used in non-rescaling mode. They are as follows:

« decay -- main decay of the resonator (default: 0.99)
 hydecay -- high frequency decay of the resonator (default: 0.1)

 rcvx, rcvy, revz -- the coordinates of the position of the receiver (the listener) (in meters; 0,0,0 is the
resonator center)

« rdistance -- the distance in meters between the two pickups (your ears, for example - default: 0.3)
« direct -- the attenuation of the direct signal (0-1, default: 0.5)
« early_diff -- the attenuation coefficient of the early reflections (0-1, default: 0.8)

140

Chapter 15. Orchestra Opcodes and Operators

Performance
asig -- the input signal

ksrcx, ksrcy, ksrcz -- the virtual coordinates of the source of sound (the input signal). These are allowed to
move at k-rate and provide all the necessary variations in terms of response of the resonator.

Examples

Here is a simple example of the babo opcode. It uses the files babo.orc, babo.sco, and beats.wav.

Example 15-1. A simple example of the babo opcode.

/* babo.orc */

[* Written by Nicola Bernardini */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 2

; minimal babo instrument

instr 1

ix = p4 ; x position of source
iy = p5 ; y position of source
iz = p6 ; z position of source
ixsize p7 ; width of the resonator

iysize = p8 ; depth of the resonator
izsize = p9 ; height of the resonator

ainput diskin "beats.wav", 1

al,ar babo ainput*0.7, ix, iy, iz, ixsize, iysize, izsize
outs al,ar

endin

/* babo.orc */

/* babo.sco */

/* Written by Nicola Bernardini */
; simple babo usage:

p4 : X position of source
;p5 .y position of source
;p6 . z position of source
p7 : width of the resonator
;p8 . depth of the resonator
P9 . height of the resonator

i 1 0 106 4 3 14.39 11.86 10

VAVAYAVAVAVAVAN ANANNNNNNNNNNN

M ++++++++++++++ optimal room dims according to
I Milner and Bernard JASA 85(2), 1989
+++++++++: source position

@ =

/* babo.sco */

Here is an advanced example of the babo opcode. It uses the files babo_expert.orc, babo_expert.sco, and
beats.wav.

141

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. An advanced example of the babo opcode.

/* babo_expert.orc */

/* Written by Nicola Bernardini */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

; full blown babo instrument with movement

instr 2

ixstart = p4 ; start x position of source (left-right)
ixend = p7 ; end x position of source
iystart = p5 ; start y position of source (front-back)
iyend = p8 ; end y position of source
izstart = p6 ; start z position of source (up-down)
izend = p9 ; end z position of source
ixsize = pl0 ; width of the resonator
iysize = pll ; depth of the resonator
izsize = pl2 ; height of the resonator
idiff = p13 ; diffusion coefficient
iexpert = pl4 ; power user values stored in this function
ainput diskin "beats.wav", 1
ksource_x line ixstart, p3, ixend
ksource_y line iystart, p3, iyend
ksource_z line izstart, p3, izend
al,ar babo ainput*0.7, ksource_x, ksource_y, ksource_z, ixsize, iysize, izsize, idiff, iexpert
outs al,ar
endin

/* babo_expert.orc */

/* babo_expert.sco */
[* Written by Nicola Bernardini */
; full blown instrument

pa . start x position of source (left-right)
p5 . end X position of source

;p6 . start y position of source (front-back)
p7 : end y position of source

;p8 . start z position of source (up-down)
P9 : end z position of source

;p10 : width of the resonator

pll : depth of the resonator

;p12 . height of the resonator

pl13 . diffusion coefficient

;pla . power user values stored in this function

; decay hidecay rx ry rz rdistance direct early_diff

fl 08 -2 0.95 0.95 0O 0 O 0.3 0.5 0.8 ; brighter

f2 08 -2 0.95 0.5 0 0 O 0.3 0.5 0.8 ; default (to be set as)

f3 08 -2 095 0.01 0O 0 O 0.3 0.5 0.8 ; darker

f4 08 -2 0.95 0.7 0O 0 O 0.3 0.1 0.4 ; to hear the effect of diffusion
f5 08 -2 09 0.5 0O 0 O 0.3 2.0 0.98 ; to hear the movement

f6 08 -2 0.99 0.1 0 0 O 0.3 0.5 0.8 ; default vals

. N

e gen. number: negative to avoid rescaling

i2010 6 4 3 6 4 3 1439 1186 10 1 6 ; defaults

2+ 4 6 4 3 6 4 3 1439 1186 10 1 1 ; hear brightness 1

142

Chapter 15. Orchestra Opcodes and Operators

2+ 4 6 4 3 -6 -4 3 1439 1186 10 1 2 ; hear brightness 2
2+ 4 6 4 3 -6 -4 3 1439 1186 10 1 3 ; hear brightness 3
2+ 3.6 .4.3-6-4.3 1439 1.186 1.0 0.0 4 ; hear diffusion 1

2+ 3.6 .4.3-6-4.3 1439 1186 1.0 1.0 4 ; hear diffusion 2

2+ 412 4 3 -12 -4 -3 2439 2186 20 1 5 ; hear movement

52 + 4 6 4 3 6 4 3 1439 11.86 10 1 1 ; hear brightness 1
2+ 4 6 4 3 -6 -4 3 1439 11.86 10 1 2 ; hear brightness 2
2+ 4 6 4 3 -6 -4 3 1439 11.86 10 1 3 ; hear brightness 3
2+ 3.6 .4.3-6-4.3 1439 1.186 1.0 0.0 4 ; hear diffusion 1

2+ 3.6 .4.3-6-4.3 1439 1186 1.0 1.0 4 ; hear diffusion 2

2+ 412 4 3 -12 -4 -3 2439 21.86 20 1 5 ; hear movement

. NANNNNNNNNNNNNNNNNNN NANNNNNNNNNNNNNNNN N N

; (HUTHIIRE IV 1 - expert values function

; (THTIUTIRT (e +-: diffusion _ _

; T e —— . optimal room dims according to Milner and Bernard JASA 85(2), 1989
; N

T e . source position start and end

e

/* babo_expert.sco */

Credits

Author: Paolo Filippi
Padova, Italy
1999

Nicola Bernardini
Rome, Italy

2000

New in Csound version 4.09

balance

balance — Adjust one audio signal according to the values of another.

Description

The rms power of asig can be interrogated, set, or adjusted to match that of a comparator signal.

Syntax
ar balance asig, acomp [, ihp] [, iskip]

Initialization
ihp (optional) -- half-power point (in Hz) of a special internal low-pass filter. The default value is 10.

iskip (optional, default=0) -- initial disposition of internal data space (see reson). The default value is 0.

143

Chapter 15. Orchestra Opcodes and Operators

Performance

asig -- input audio signal

acomp -- the comparator signal

balance outputs a version of asig, amplitude-modified so that its rms power is equal to that of a comparator
signal acomp. Thus a signal that has suffered loss of power (eg., in passing through a filter bank) can be

restored by matching it with, for instance, its own source. It should be noted that gain and balance provide
amplitude modification only - output signals are not altered in any other respect.

Examples
Here is an example of the balance opcode. It uses the files balance.orc and balance.sco.

Example 15-1. Example of the balance opcode.

/* balance.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Generate a band-limited pulse train.
asrc buzz 30000, 440, sr/440, 1

; Send the source signal through 2 filters.
al reson asrc, 1000, 100
a2 reson al, 3000, 500

; Balance the filtered signal with the source.
afin balance a2, asrc

out afin
endin
/* balance.orc */

/* balance.sco */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for two seconds.
i102

e

/* balance.sco */

See Also

gain, rms

144

Chapter 15. Orchestra Opcodes and Operators

bamboo

bamboo — Semi-physical model of a bamboo sound.

Description

bamboo is a semi-physical model of a bamboo sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax
ar bamboo kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization
idettack -- period of time over which all sound is stopped
inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 1.25.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.9999 + (idamp * 0.002)

The default damping _amount is 0.9999 which means that the default value of idamp is 0. The maximum
damping amount is 1.0 (no damping). This means the maximum value for idamp is 0.05.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 2800.
ifreq1 (optional) -- the first resonant frequency. The default value is 2240.

ifreq2 (optional) -- the second resonant frequency. The default value is 3360.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

Examples
Here is an example of the bamboo opcode. It uses the files bamboo.orc and bamboo.sco.

Example 15-1. Example of the bamboo opcode.

/* bamboo.orc */
Sr 44100

kr 4410
ksmps = 10
nchnls = 1

instr 01 ;example of bamboo
al bamboo p4, 0.01
out al

145

Chapter 15. Orchestra Opcodes and Operators

endin
bamboo.orc */

~
*

/* bamboo.sco */
i1 0 1 20000

/* bamboo.sco */

See Also

dripwater, guiro, sleighbells, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)
Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07
Added notes by Rasmus Ekman on May 2002.

bbcutm

bbcutm — Generates breakbeat-style cut-ups of a mono audio stream.

Description

The BreakBeat Cutter automatically generates cut-ups of a source audio stream in the style of drum and
bass/jungle breakbeat manipulations. There are two versions, for mono (bbcutm) or stereo (bbcuts) sources.
Whilst originally based on breakbeat cutting, the opcode can be applied to any type of source audio.

The prototypical cut sequence favoured over one bar with eighth note subdivisions would be

3+3R+2

where we take a 3 unit block from the source’s start, repeat it, then 2 units from the 7th and 8th eighth notes of
the source.

We talk of rendering phrases (a sequence of cuts before reaching a new phrase at the beginning of a bar) and
units (as subdivision th notes).

The opcode comes most alive when multiple synchronised versions are used simultaneously.

Syntax

al bbcutm asource, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats |, istutterspeed] [, istutterchance] |,
ienvchoice |

146

Chapter 15. Orchestra Opcodes and Operators

Initialization

ibps -- Tempo to cut at, in beats per second.

isubdiv -- Subdivisions unit, for a bar. So 8 is eighth notes (of a 4/4 bar).

ibarlength -- How many beats per bar. Set to 4 for default 4/4 bar behaviour.

iphrasebars -- The output cuts are generated in phrases, each phrase is up to iphrasebars long

inumrepeats -- In normal use the algorithm would allow up to one additional repeat of a given cut at a time.
This parameter allows that to be changed. Value 1 is normal- up to one extra repeat. 0 would avoid repeating,
and you would always get back the original source except for enveloping and stuttering.

istutterspeed -- (optional, default=1) The stutter can be an integer multiple of the subdivision speed. For
instance, if subdiv is 8 (quavers) and stutterspeed is 2, then the stutter is in semiquavers (sixteenth notes=
subdiv 16). The defaultis 1.

istutterchance -- (optional, default=0) The tail of a phrase has this chance of becoming a single repeating one
unit cell stutter (0.0 to 1.0). The default is 0.

ienvchoice -- (optional, default=1) choose 1 for on (exponential envelope for cut grains) or 0 for off. Off will
cause clicking, but may give good noisy results, especially for percussive sources. The default is 1, on.

Performance
asource -- The audio signal to be cut up. This version runs in real-time without knowledge of future audio.

Examples
Here is a simple example of the bbcutm opcode. It uses the files bbcutm.orc, bbcutm.sco, and beats.wav.

Example 15-1. A simple example of the bbcutm opcode.

/* bbcutm.orc */

; Initialize the global variables.
sr = 44100

kr = 44100

ksmps 1

nchnls 1

; Instrument #1 - Play an audio file normally.
instr 1

asource diskin "beats.wav"’, 1

out asource
endin

; Instrument #2 - Cut-up an audio file.
instr 2
asource diskin "beats.wav", 1

ibps = 4
isubdiv =
ibarlength
iphrasebars
inumrepeats

8
=4

1

2

al bbcutm asource, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats
out al

endin
/* bbcutm.orc */

147

Chapter 15. Orchestra Opcodes and Operators

/* bbcutm.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i232

e

/* bbcutm.sco */

Here are some more advanced examples...

Example 15-2. First steps- mono and stereo versions

<CsoundSynthesizer >
<Cslnstruments >

Sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

instr 1
asource diskin "break7.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!
; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; ho enveloping
asig bbcutm asource, 2.6937, 8,4,4,1, 2,0.1,0
outs asig,asig

endin

instr 2 ;stereo version
asourcel,asource?2 diskin "break7stereo.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!

; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; ho enveloping

asigl,asig2 bbcuts asourcel, asource2, 2.6937, 8,4,4,1, 2,0.1,0

outs asigl,asig2
endin

</Cslnstruments >
<CsScore >

i1 0 10

i2 11 10

e

</CsScore >
</CsoundSynthesizer >

148

Example 15-3. Multiple simultaneous synchronised breaks

<CsoundSynthesizer
<Cslnstruments >
sr =
kr

ksmps
nchnls =

instr 1
ibps = 2.6937

>

44100
4410
10
1

iplaybackspeed = ibps/p5
asource diskin p4,iplaybackspeed,0,1

asig bbcutm asource, 2.6937, p6,4,4,p7, 2,011

out asig
endin

</Cslnstruments >
<CsScore >

; source bps
il 0 10 "breakl.wav"
il 0 10 "break2.wav"
il 0 10 "break3.wav"
e

<ICsScore >
</CsoundSynthesizer

cut repeats

Chapter 15. Orchestra Opcodes and Operators

23 8 2 //2.3 is the source original tempo

248 3
2516 4
>

Example 15-4. Cutting up any old audio- much more interesting noises than this should be possible!

<CsoundSynthesizer
<Cslnstruments >
sr
kr
ksmps
nchnls =

instr 1

>

44100
4410
10
1

asource oscil 20000,70,1

; ain,bps,subdiv,barlength,phrasebars,numrepeats,
;Stutterspeed,stutterchance,envelopingon

asig bbcutm asource, 2, 32,1,1,2, 4,0.6,1

outs asig
endin

</Cslnstruments >
<CsScore >

fl1 0 256 10 1

i1 0 10

e

</CsScore >
</CsoundSynthesizer

>

149

Chapter 15. Orchestra Opcodes and Operators

Example 15-5. Constant stuttering- faked, not possible since can only stutter in last half bar could make
extra stuttering option parameter

<CsoundSynthesizer >
<Cslnstruments >

Sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

asource diskin "break7.wav",1,0,1

:16th note cuts- but cut size 2 over half a beat.
;each half beat will eiather survive intact or be turned into
;the first sixteenth played twice in succession

asig bbcutm asource,2.6937,2,0.5,1,2, 2,1.0,0
outs asig
endin

</Cslnstruments >
<CsScore >

i1 0 30

e

</CsScore >
</CsoundSynthesizer >

See Also
bbcuts

Credits

Author: Nick Collins
London
August 2001

New in version 4.13

bbcuts
bbcuts — Generates breakbeat-style cut-ups of a stereo audio stream.
Description

The BreakBeat Cutter automatically generates cut-ups of a source audio stream in the style of drum and
bass/jungle breakbeat manipulations. There are two versions, for mono (bbcutm) or stereo (bbcuts) sources.
Whilst originally based on breakbeat cutting, the opcode can be applied to any type of source audio.

The prototypical cut sequence favoured over one bar with eighth note subdivisions would be

150

Chapter 15. Orchestra Opcodes and Operators

3+3R+2

where we take a 3 unit block from the source’s start, repeat it, then 2 units from the 7th and 8th eighth notes of
the source.

We talk of rendering phrases (a sequence of cuts before reaching a new phrase at the beginning of a bar) and
units (as subdivision th notes).

The opcode comes most alive when multiple synchronised versions are used simultaneously.

Syntax

al,a2 bbcuts asourcel, asource2, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats [, istutterspeed] [,
istutterchance] [, ienvchoice]

Initialization

ibps -- Tempo to cut at, in beats per second.

isubdiv -- Subdivisions unit, for a bar. So 8 is eighth notes (of a 4/4 bar).

ibarlength -- How many beats per bar. Set to 4 for default 4/4 bar behaviour.

iphrasebars -- The output cuts are generated in phrases, each phrase is up to iphrasebars long

inumrepeats -- In normal use the algorithm would allow up to one additional repeat of a given cut at a time.
This parameter allows that to be changed. Value 1 is normal- up to one extra repeat. 0 would avoid repeating,
and you would always get back the original source except for enveloping and stuttering.

istutterspeed -- (optional, default=1) The stutter can be an integer multiple of the subdivision speed. For
instance, if subdiv is 8 (quavers) and stutterspeed is 2, then the stutter is in semiquavers (sixteenth notes=
subdiv 16). The defaultis 1.

istutterchance -- (optional, default=0) The tail of a phrase has this chance of becoming a single repeating one
unit cell stutter (0.0 to 1.0). The default is 0.

ienvchoice -- (optional, default=1) choose 1 for on (exponential envelope for cut grains) or 0 for off. Off will
cause clicking, but may give good noisy results, especially for percussive sources. The default is 1, on.

Performance

asource -- The audio signal to be cut up. This version runs in real-time without knowledge of future audio.

Examples

See the advanced examples for the bbcutm opcode.

See Also
bbcutm

Credits

Author: Nick Collins
London
August 2001

151

Chapter 15. Orchestra Opcodes and Operators

New in version 4.13

betarand

betarand — Beta distribution random number generator (positive values only).

Description

Beta distribution random number generator (positive values only). This is an x-class noise generator.

Syntax

ar betarand krange, kalpha, kbeta
ir betarand krange, kalpha, kbeta
kr betarand krange, kalpha, kbeta

Performance

krange -- range of the random numbers (0 - krange).

kalpha -- alpha value. If kalpha is smaller than one, smaller values favor values near 0.
kbeta -- beta value. If kbeta is smaller than one, smaller values favor values near krange.

If both kalpha and kbeta equal one we have uniform distribution. If both kalpha and kbeta are greater than
one we have a sort of Gaussian distribution. Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples
Here is an example of the betarand opcode. It uses the files betarand.orc and betarand.sco.

Example 15-1. Example of the betarand opcode.

/* betarand.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

;. Instrument #1.

instr 1
; Generate a number between 0 and 1 with a
; uniform distribution.

152

Chapter 15. Orchestra Opcodes and Operators

; krange
; kalpha
; kbeta = 1

1
1

il betarand 1, 1, 1

print il
endin
/* betarand.orc */

/* betarand.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* betarand.sco */

Its output should include lines like:

instr 1. i1l = 24583.412

See Also

bexprnd, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis
MIT, Cambridge
1995

bexprnd

bexprnd — Exponential distribution random number generator.

Description

Exponential distribution random number generator. This is an x-class noise generator.

Syntax
ar bexprnd krange
ir bexprnd krange

kr bexprnd krange

153

Chapter 15. Orchestra Opcodes and Operators

Performance
krange -- the range of the random numbers (-krange to +krange)

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the bexprnd opcode. It uses the files bexprnd.orc and bexprnd.sco.

Example 15-1. Example of the bexprnd opcode.

[* bexprnd.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls = 1

. Instrument #1.

instr 1
: Generate a random number between -1 and 1.
; krange = 1

i1 bexprnd 1
print i1
endin
/* bexprnd.orc */
[* bexprnd.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101
e
/* bexprnd.sco */

Its output should include lines like:

instr 1: i1 = 1.141

See Also

betarand, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

154

Chapter 15. Orchestra Opcodes and Operators

Author: Paris Smaragdis
MIT, Cambridge
1995

biquad

biguad — A sweepable general purpose biquadratic digital filter.

Description
A sweepable general purpose biquadratic digital filter.

Syntax
ar biquad asig, kb0, kb1, kb2, ka0, kal, ka2 [, iskip]

Initialization

iskip (optional, default=0) -- if non-zero, intialization will be skipped. Default value 0. (New in Csound
version 3.50)

Performance
asig -- input signal
biquad is a general purpose biquadratic digital filter of the form:

a0*y(n) + al*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2]

This filter has the following frequency response:
B(Z) b0 +Dbl1*Z"' +b2*Z?

H(Z) = ---- = -~
A(Z) a0+al*Z*' +a2*Z?

This type of filter is often encountered in digital signal processing literature. It allows six user-defined k-rate
coefficients.

Examples
Here is an example of the biquad opcode. It uses the files biquad.orc and biquad.sco.

Example 15-1. Example of the biquad opcode.

[* biquad.orc */
; Initialize the global variables.

155

sr = 44100
kr = 4410

ksmps
nchnls

10
2

; Instrument #1.

instr 1
;. Get the values from the score.
idur = p3
iamp = p4
icps = cpspch(pb)
kfco = p6
krez = p7

; Calculate the biquadratic filter's coefficients

kfcon = 2*3.14159265*kfco/sr

kalpha = 1-2*krez*cos(kfcon)*cos(kfcon)+krez*krez*cos(2*kfcon)
kbeta = krez*krez*sin(2*kfcon)-2*krez*cos(kfcon)*sin(kfcon)
kgama = 1+cos(kfcon)

kml = kalpha*kgama+kbeta*sin(kfcon)

km2 = kalpha*kgama-kbeta*sin(kfcon)

kden = sgrt(km1*km1+km2*km?2)

kb0 = 1.5*(kalpha*kalpha+kbeta*kbeta)/kden
kbl = kbo

kb2 = 0

ka0 = 1

kal = -2*krez*cos(kfcon)

ka2 = krez*krez

; Generate an input signal.
axn vco 1, icps, 1

; Filter the input signal.
ayn biquad axn, kb0, kbl, kb2, kaO, kal, ka2
outs ayn*iamp/2, ayn*iamp/2

endin
[* biquad.orc */

/* biquad.sco */

f

|
|
e

/*

; Table #1, a sine wave.

10 16384 10 1

Sta Dur Amp Pitch Fco Rez

il 00 1.0 20000 6.00 1000 .8
il 1.0 1.0 20000 6.03 2000 .95

biquad.sco */

See Also

biquada, moogucf, rezzy

Credits

Author: Hans Mikelson
October 1998

New in Csound version 3.49

Chapter 15. Orchestra Opcodes and Operators

156

Chapter 15. Orchestra Opcodes and Operators

biquada

biqguada — A sweepable general purpose biquadratic digital filter with a-rate parameters.

Description

A sweepable general purpose biquadratic digital filter.

Syntax
ar biquada asig, ab0, ab1, ab2, aa0, aal, aa2 |, iskip]

Initialization

iskip (optional, default=0) -- if non-zero, intialization will be skipped. Default value 0. (New in Csound
version 3.50)

Performance
asig -- input signal
biquada is a general purpose biquadratic digital filter of the form:

a0*y(n) + al*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2]

This filter has the following frequency response:
B(Z) b0+bl1*Z' +b2*Z*

12 (4 S
A(Z) a0+ al*Z' +a2*7?

This type of filter is often encountered in digital signal processing literature. It allows six user-defined a-rate
coefficients.

See Also
biquad

Credits

Author: Hans Mikelson
October 1998

New in Csound version 3.49

157

Chapter 15. Orchestra Opcodes and Operators

birnd
birnd — Returns a random number in a bi-polar range.
Description

Returns a random number in a bi-polar range.

Syntax
birnd(x) (init- or control-rate only)

Where the argument within the parentheses may be an expression. These value converters sample a global
random sequence, but do not reference seed. The result can be a term in a further expression.

Performance

Returns a random number in the bipolar range -x to x. rnd and birnd obtain values from a global
pseudo-random number generator, then scale them into the requested range. The single global generator will
thus distribute its sequence to these units throughout the performance, in whatever order the requests arrive.

Examples

Here is an example of the birnd opcode. It uses the files birnd.orc and birnd.sco.

Example 15-1. Example of the birnd opcode.

/* birnd.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
; Generate a random number from -1 to 1.
il = birnd(1)
print i1

endin

/* birnd.orc */

/* birnd.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

; Play Instrument #1 for one second.
i111

e

/* birnd.sco */

Its output should include lines like:

instr 1: il
instr 1: il

0.947
-0.721

158

See Also

rnd

Credits

Author: Barry L. Vercoe
MIT

Cambridge, Massachussetts
1997

butbp

butbp — Same as the butterbp opcode.

Description
Same as the butterbp opcode.

Syntax
ar butbp asig, kfreq, kband [, iskip]

butbr
butbr — Same as the butterbr opcode.

Description

Same as the butterbr opcode.
Syntax

ar butbr asig, kfreq, kband [, iskip]

buthp

buthp — Same as the butterhp opcode.

Chapter 15. Orchestra Opcodes and Operators

159

Chapter 15. Orchestra Opcodes and Operators

Description
Same as the butterhp opcode.

Syntax
ar buthp asig, kfreq |, iskip]

butlp

butlp — Same as the butterlp opcode.

Description

Same as the butterlp opcode.

Syntax
ar butlp asig, kfreq [, iskip]

butterbp

butterbp — A band-pass Butterworth filter.

Description

Implementation of a second-order band-pass Butterworth filter. This opcode can also be written as butbp.

Syntax
ar butterbp asig, kfreq, kband [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.
kband -- Bandwidth of the bandpass and bandreject filters.

160

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the butterbp opcode. It uses the files butterbp.orc and butterbp.sco.

Example 15-1. Example of the butterbp opcode.

/* butterbp.orc */

; Initialize the global variables.
sr = 22050

kr = 2205

ksmps 10

nchnls 1

. Instrument #1 - an unfiltered noise waveform.

instr 1
; White noise signal
asig rand 22050

out asig
endin

. Instrument #2 - a filtered noise waveform.

instr 2
; White noise signal
asig rand 22050

; Filter it, passing only 1950 to 2050 Hz.

abp butterbp asig, 2000, 100

out abp
endin
[* butterbp.orc */

/* butterbp.sco */

; Play Instrument #1 for two seconds.
il102

; Play Instrument #2 for two seconds.
i222

e

[* butterbp.sco */

See Also
butterbr, butterhp, butterlp

Credits

Author: Paris Smaragdis
MIT, Cambridge
1995

161

Chapter 15. Orchestra Opcodes and Operators

butterbr

butterbor — A band-reject Butterworth filter.

Description
Implementation of a second-order band-reject Butterworth filter. This opcode can also be written as butbr.

Syntax
ar butterbr asig, kfreq, kband [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.
kband -- Bandwidth of the bandpass and bandreject filters.

Examples

Here is an example of the butterbr opcode. It uses the files butterbr.orc and butterbr.sco.

Example 15-1. Example of the butterbr opcode.

/* butterbr.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1
. Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal

asig rand 22050

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Filter it, cutting 2000 to 6000 Hz.
abr butterbr asig, 4000, 2000

162

Chapter 15. Orchestra Opcodes and Operators

out abr
endin
/* butterbr.orc */

/* butterbr.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* butterbr.sco */

See Also
butterbp, butterhp, butterlp

Credits

Author: Paris Smaragdis
MIT, Cambridge
1995

butterhp

butterhp — A high-pass Butterworth filter.

Description

Implementation of second-order high-pass Butterworth filter. This opcode can also be written as buthp.

Syntax
ar butterhp asig, kfreq [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.

163

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the butterhp opcode. It uses the files butterhp.orc and butterhp.sco.

Example 15-1. Example of the butterhp opcode.

[* butterhp.orc */

; Initialize the global variables.
sr = 22050

kr = 2205

ksmps 10

nchnls 1

. Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal

asig rand 22050

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Filter it, passing frequencies above 250 Hz.
ahp butterhp asig, 250

out ahp
endin
[* butterhp.orc */

/* butterhp.sco */

; Play Instrument #1 for two seconds.
il102

; Play Instrument #2 for two seconds.
i222

e

[* butterhp.sco */

See Also
butterbp, butterbr, butterlp

Credits

Author: Paris Smaragdis
MIT, Cambridge
1995

164

Chapter 15. Orchestra Opcodes and Operators

butterlp

butterlp — A low-pass Butterworth filter.

Description
Implementation of a second-order low-pass Butterworth filter. This opcode can also be written as butip.

Syntax
ar butterlp asig, kfreq [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.

Examples
Here is an example of the butterlp opcode. It uses the files butterlp.orc and butterlp.sco.

Example 15-1. Example of the butterlp opcode.

/* butterlp.orc */

; Initialize the global variables.
sr = 22050

kr = 2205

ksmps = 10

nchnls = 1

. Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal

asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Filter it, cutting frequencies above 1 KHz.
alp butterlp asig, 1000

out alp
endin

165

Chapter 15. Orchestra Opcodes and Operators

/* butterlp.orc */

/* butterlp.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* butterlp.sco */

See Also
butterbp, butterbr, butterhp

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995
button
button — Sense on-screen controls.
Description

Sense on-screen controls. Requires Winsound or TCL/TK.

Syntax

kr button knum

Performance

kr -- value of the button control. If the button has been pushed since the last k-period, then return 1,
otherwise return 0.

knum -- the number of the button. If it does not exist, it is made on-screen at initialization.

See Also
checkbox

Credits

Author: John ffitch

166

Chapter 15. Orchestra Opcodes and Operators

University of Bath, Codemist. Ltd.
Bath, UK
September 2000

New in Csound version 4.08

buzz

buzz — Output is a set of harmonically related sine partials.

Description
Output is a set of harmonically related sine partials.

Syntax
ar buzz xamp, xcps, knh, ifn [, iphs]

Initialization

ifn -- table number of a stored function containing a sine wave. A large table of at least 8192 points is
recommended.

iphs (optional, default=0) -- initial phase of the fundamental frequency, expressed as a fraction of a cycle (0 to
1). A negative value will cause phase initialization to be skipped. The default value is zero

Performance
xamp -- amplitude
xcps -- frequency in cycles per second

The buzz units generate an additive set of harmonically related cosine partials of fundamental frequency
xcps, and whose amplitudes are scaled so their summation peak equals xamp. The selection and strength of
partials is determined by the following control parameters:

knh -- total number of harmonics requested. New in Csound version 3.57, knh defaults to one. If knh is
negative, the absolute value is used.

buzz and gbuzz are useful as complex sound sources in subtractive synthesis. buzz is a special case of the
more general gbuzz in which klh = kr=1; it thus produces a set of knh equal-strength harmonic partials,
beginning with the fundamental. (This is a band-limited pulse train; if the partials extend to the Nyquist, i.e.
knh =int (sr / 2 / fundamental freq.), the result is a real pulse train of amplitude xamp.)

Although both knh and klh may be varied during performance, their internal values are necessarily integer
and may cause “pops” due to discontinuities in the output; kr, however, can be varied during performance to
good effect. Both buzz and gbuzz can be amplitude- and/or frequency-modulated by either control or audio
signals.

N.B. These two units have their analogs in GEN11, in which the same set of cosines can be stored in a
function table for sampling by an oscillator. Although computationally more efficient, the stored pulse train
has a fixed spectral content, not a time-varying one as above.

167

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the buzz opcode. It uses the files buzz.orc and buzz.sco.

Example 15-1. Example of the buzz opcode.

[* buzz.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
kamp = 20000
kcps = 440
knh = 3
ifn =1

al buzz kamp, kcps, knh, ifn
out al

endin

/* buzz.orc */

/* buzz.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one second.
i101

e

/* buzz.sco */

See Also
ghuzz

cabasa

cabasa — Semi-physical model of a cabasa sound.

Description

cabasa is a semi-physical model of a cabasa sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

168

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar cabasa iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.
idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 512.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping amount is 0.997 which means that the default value of idamp is -0.5. The maximum
damping amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.

Examples

Here is an example of the cabasa opcode. It uses the files cabasa.orc and cabasa.sco.

Example 15-1. Example of the cabasa opcode.

/* cabasa.orc */

;orchestra ---------------
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
instr 01 ;an example of a cabasa
al cabasa p4, 0.01
out al
endin

/* cabasa.orc */

/* cabasa.sco */
;SCOre =—-=-=-mmmmmmmeme

il 0 1 26000
e
/* cabasa.sco */

See Also

crunch, sandpaper, sekere, stix

169

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)
Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07
Added notes by Rasmus Ekman on May 2002.

cauchy

cauchy — Cauchy distribution random number generator.

Description

Cauchy distribution random number generator. This is an x-class noise generator.

Syntax

ar cauchy kalpha
ir cauchy kalpha
kr cauchy kalpha

Performance

kalpha -- controls the spread from zero (big kalpha = big spread). Outputs both positive and negative
numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the cauchy opcode. It uses the files cauchy.orc and cauchy.sco.

Example 15-1. Example of the cauchy opcode.

/* cauchy.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

170

Chapter 15. Orchestra Opcodes and Operators

; Instrument #1.

instr 1
; Generate a random number, spread from 10.
; kalpha = 10
i1 cauchy 10
print il
endin

/* cauchy.orc */

/* cauchy.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

/* cauchy.sco */

Its output should include lines like:

instr 1: i1l = -0.106

See Also

betarand, bexprnd, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis
MIT, Cambridge
1995

cent

cent — Calculates a factor to raise/lower a frequency by a given amount of cents.

Description

Calculates a factor to raise/lower a frequency by a given amount of cents.

Syntax
cent(x)

This function works at a-rate, i-rate, and k-rate.

171

Chapter 15. Orchestra Opcodes and Operators

Initialization

X -- a value expressed in cents.

Performance

The value returned by the cent function is a factor. You can multiply a frequency by this factor to raise/lower
it by the given amount of cents.

Examples

Here is an example of the cent opcode. It uses the files cent.orc and cent.sco.

Example 15-1. Example of the cent opcode.

[* cent.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; The root note is A above middle-C (440 Hz)
iroot = 440

; Raise the root note by 300 cents to C.
icents = 300

; Calculate the new note.
ifactor = cent(icents)
inew = iroot * ifactor

; Print out of all of the values.
print iroot
print ifactor
print inew
endin
/* cent.orc */

/* cent.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cent.sco */

Its output should include lines like:
instr 1: iroot = 440.000

instr 1. ifactor = 1.189
instr 1:. inew = 523.229

172

Chapter 15. Orchestra Opcodes and Operators

See Also

db, octave, semitone

Credits

New in version 4.16

cggoto

cggoto — Conditionally transfer control on every pass.

Description

Transfer control to label on every pass. (Combination of cigoto and ckgoto)

Syntax
cggoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, /=) (and = for convenience, see also under Conditional Values).

Examples
Here is an example of the cggoto opcode. It uses the files cggoto.orc and cggoto.sco.

Example 15-1. Example of the cggoto opcode.

[* cggoto.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1
i1 =1

; If i1 is equal to one, play a high note.
; Otherwise play a low note.
cggoto (i1 == 1), highnote

lownote:
al oscil 10000, 220, 1
goto playit

highnote:
al oscil 10000, 440, 1
goto playit

playit:

173

Chapter 15. Orchestra Opcodes and Operators

out al
endin
[* cggoto.orc */

/* cggoto.sco */

[* Written by Kevin Conder */

; Table #1: a simple sine wave.
f 10 32768 10 1

; Play Instrument #1 for one second.
il101

e

/* cggoto.sco */

See Also

cigoto, ckgoto, cngoto, if, igoto, kgoto, tigoto, timout

Credits
Added a note by Jim Aikin.

chanctrl

chanctrl — Get the current value of a MIDI channel controller.

Description

Get the current value of a controller and optionally map it onto specified range.

Syntax
ival chanctrl ichnl, ictlno [, ilow] [, ihigh]

kval chanctrl ichnl, ictlno [, ilow] [, ihigh]

Initialization
ichnl -- the MIDI channel (1-16).
ictlno -- the MIDI controller number (0-127).

ilow, ihigh -- low and high ranges for mapping

Credits

Author: Mike Berry
Mills College
May, 1997

174

Chapter 15. Orchestra Opcodes and Operators

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

checkbox

checkbox — Sense on-screen controls.

Description

Sense on-screen controls. Requires Winsound or TCL/TK.

Syntax
kr checkbox knum

Performance
kr -- value of the checkbox control. If the checkbox is set (pushed) then return 1, if not, return 0.

knum -- the number of the checkbox. If it does not exist, it is made on-screen at initialization.

Examples

Here is a simple example of the checkbox opcode. It uses the files checkbox.orc and checkbox.sco.

Example 15-1. Simple example of the checkbox opcode.

/* checkbox.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps 1

nchnls 1

instr 1
; Get the value from the checkbox.
k1l checkbox 1

. If the checkbox is selected then k2=440, otherwise k2=880.
k2 = (k1 == 0 ? 440 : 880)

al oscil 10000, k2, 1
out al

endin

/* checkbox.orc */

/* checkbox.sco */

/* Written by Kevin Conder */

; Just generate a nice, ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for ten seconds.
i1010
e

175

Chapter 15. Orchestra Opcodes and Operators

/* checkbox.sco */

See Also
button

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.
Bath, UK

September, 2000

New in Csound version 4.08

cigoto
cigoto — Conditionally transfer control during the i-time pass.
Description

During the i-time pass only, unconditionally transfer control to the statement labeled by label.

Syntax
cigoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, /=) (and =for convenience, see also under Conditional Values).

Examples

Here is an example of the cigoto opcode. It uses the files cigoto.orc and cigoto.sco.

Example 15-1. Example of the cigoto opcode.

/* cigoto.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Get the value of the 4th p-field from the score.
iparam = p4

176

; If iparam is 1 then play the high note.
; If not then play the low note.
cigoto (iparam ==1), highnote

igoto lownote

highnote:
ifreq = 880
goto playit

lownote:
ifreq = 440
goto playit

playit:
; Print the values of iparam and ifreq.
print iparam
print ifreq

al oscil 10000, ifreq, 1
out al

endin

/* cigoto.orc */

/* cigoto.sco */

/* Written by Kevin Conder */

; Table #1: a simple sine wave.
f 10 32768 10 1

; p4: 1 = high note, anything else = low note

; Play Instrument #1 for one second, a low note.
il1010

; Play a Instrument #1 for one second, a high note.
i1111

e

[* cigoto.sco */

Its output should include lines like:

instr 1: iparam = 0.000
instr 1. ifreq = 440.000
instr 1. iparam = 1.000
instr 1. ifreq = 880.000
See Also

cggoto, ckgoto, cngoto, goto, if, kgoto, rigoto, tigoto, timout

Credits
Added a note by Jim Aikin.

Chapter 15. Orchestra Opcodes and Operators

177

Chapter 15. Orchestra Opcodes and Operators

ckgoto

ckgoto — Conditionally transfer control during the p-time passes.

Description
During the p-time passes only, unconditionally transfer control to the statement labeled by label.

Syntax
ckgoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, /=) (and =for convenience, see also under Conditional Values).

Examples

Here is an example of the ckgoto opcode. It uses the files ckgoto.orc and ckgoto.sco.

Example 15-1. Example of the ckgoto opcode.

/* ckgoto.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
; Change kval linearly from 0 to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

; If kval is greater than or equal to 1 then play the high note.
; If not then play the low note.
ckgoto (kval >= 1), highnote

kgoto lownote

highnote:
kfreq = 880
goto playit
lownote:
kfreq = 440
goto playit
playit:

; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\n", 1, kval, kfreq

al oscil 10000, kfreq, 1
out al

endin

/* ckgoto.orc */

/* ckgoto.sco */
[* Written by Kevin Conder */

178

Chapter 15. Orchestra Opcodes and Operators

; Table: a simple sine wave.
f10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

[* ckgoto.sco */

Its output should include lines like:

kval = 0.000000, kfreq = 440.000000
kval = 0.999732, kfreq = 440.000000
kval = 1.999639, kfreq = 880.000000
See Also

cggoto, cigoto, cngoto, goto, if, igoto, tigoto, timout

Credits
Added a note by Jim Aikin.

clear

clear — Zeroes a list of audio signals.

Description

clear zeroes a list of audio signals.

Syntax

clear avarl [, avar?] [, avar3] [...]

Performance
avarl, avar2, avar3, ... -- signals to be zeroed

vincr (variable increment) and clear are intended to be used together. vincr stores the result of the sum of two
audio variables into the first variable itself (which is intended to be used as an accumulator in polyphony).
The accumulator variable can be used for output signal by means of fout opcode. After the disk writing
operation, the accumulator variable should be set to zero by means of clear opcode (or it will explode).

Examples
See the fout opcode for an example.

179

Chapter 15. Orchestra Opcodes and Operators

See Also

vincr

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

clfilt
clfilt — Implements low-pass and high-pass filters of different styles.
Description

Implements the classical standard analog filter types: low-pass and high-pass. They are implemented with
the four classical kinds of filters: Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptical. The
number of poles may be any even number from 2 to 80.

Syntax
ar clfilt asig, kfreq, itype, inpol [, ikind] [, ipbr] [, isba] [, iskip]

Initialization
itype -- 0 for low-pass, 1 for high-pass.
inpol -- The number of poles in the filter. It must be an even number from 2 to 80.

ikind (optional) -- 0 for Butterworth, 1 for Chebyshev Type I, 2 for Chebyshev Type 11, 3 for Elliptical. Defaults
to 0 (Butterworth)

ipbr (optional) -- The pass-band ripple in dB. Must be greater than 0. It is ignored by Butterworth and
Chebyshev Type II. The defaultis 1 dB.

isba (optional) -- The stop-band attenuation in dB. Must be less than 0. It is ignored by Butterworth and
Chebyshev Type I. The default is -60 dB.

iskip (optional) -- 0 initializes all filter internal states to 0. 1 skips initialization. The default is 0.

Performance
asig -- The input audio signal.

kfreq -- The corner frequency for low-pass or high-pass.

180

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the clfilt opcode as a low-pass filter. It uses the files clfilt_lowpass.orc and

clfilt_lowpass.sco.

Example 15-1. Example of the clfilt opcode as a low-pass filter.

[* clfilt_lowpass.orc */
; Initialize the global variables.
sr = 22050

kr = 2205
ksmps = 10
nchnls = 1

. Instrument #1 - an unfiltered noise waveform.

instr 1
; White noise signal
asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.

instr 2
; White noise signal
asig rand 22050

; Lowpass filter signal asig with a
; 10-pole Butterworth at 500 Hz.
al clfilt asig, 500, 0, 10

out al
endin
[* clfilt_lowpass.orc */

/* clfilt_lowpass.sco */

; Play Instrument #1 for two seconds.

i102

; Play Instrument #2 for two seconds.

i222
e
/* clfilt_lowpass.sco */

Here is an example of the clfilt opcode as a high-pass filter. It uses the files clfilt_highpass.orc and

clfilt_highpass.sco.

Example 15-2. Example of the clfilt opcode as a high-pass filter.

[* clfilt_highpass.orc */
; Initialize the global variables.
sr = 22050

kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.

instr 1
; White noise signal
asig rand 22050

181

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Highpass filter signal asig with a 6-pole Chebyshev
; Type | at 20 Hz with 3 dB of passband ripple.
al clfilt asig, 20, 1, 6, 1, 3

out al
endin
[* clfilt_highpass.orc */
[* clfilt_highpass.sco */
; Play Instrument #1 for two seconds.
il102
; Play Instrument #2 for two seconds.
i222

e
[* clfilt_highpass.sco */

Credits
Author: Erik Spjut
New in version 4.20

clip
clip — Clips a signal to a predefined limit.

Description

Chapter 15. Orchestra Opcodes and Operators

Clips an a-rate signal to a predefined limit, in a “soft” manner, using one of three methods.

Syntax

ar clip asig, imeth, ilimit [, iarg]

Initialization

imeth -- selects the clipping method. The default is 0. The methods are:

« 0=Bram de Jong method (default)
« 1=sine clipping

182

Chapter 15. Orchestra Opcodes and Operators

+ 2 =tanh clipping

ilimit -- limiting value

iarg (optional, default=0.5) -- when imeth = 0, indicates the point at which clipping starts, in the range 0 - 1.
Not used when imeth =1 or imeth = 2. Default is 0.5.

Performance
asig -- a-rate input signal
The Bram de Jong method (imeth = 0) applies the algorithm:

| x| > a: f(x) = sin(x) * (a+(xa)(@+(xa))@- a) % |x| > 1. f(x) =sin(x) * (a+l)/2

This method requires that asig be normalized to 1.

The second method (imeth = 1) is the sine clip:

x| < limit : f(x) = limit * sin(#*x/(2* lmit)) f(x) = lmit * sin(x)

The third method (imeth = 0) is the tanh clip:

x| < limit : f(x) = lmit * tanh(xlimit)tanh(1) f(x) = lmit * sin(x)

Note: Method 1 appears to be non-functional at release of Csound version 4.07.

Examples

Here is an example of the clip opcode. It uses the files clip.orc and clip.sco.

Example 15-1. Example of the clip opcode.

[* clip.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1
; Generate a noisy waveform.
arnd rand 44100
; Clip the noisy waveform’s amplitude to 20,000
al clip arnd, 2, 20000

183

Chapter 15. Orchestra Opcodes and Operators

out al
endin
/* clip.orc */
[* clip.sco */
; Play Instrument #1 for one second.
i101
e
/* clip.sco */

Credits

Author: John ffitch

University of Bath, Codemist Ltd.
Bath, UK

August, 2000

New in Csound version 4.07

clock

clock — Deprecated.

Description
Deprecated. Use the rtclock opcode instead.

clockoff
clockoff ~— Stops one of a number of internal clocks.

Description

Stops one of a number of internal clocks.

Syntax

clockoff inum

Initialization

inum -- the number of a clock. There are 32 clocks numbered 0 through 31. All other values are mapped to
clock number 32.

184

Chapter 15. Orchestra Opcodes and Operators

Performance

Between a clockon and a clockoff opcode, the CPU time used is accumulated in the clock. The precision is

machine dependent but is the millisecond range on UNIX and Windows systems. The readclock opcode reads
the current value of a clock at initialization time.

Examples

See the readclock opcode for an example.

See Also

clockon, readclock

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

July, 1999

New in Csound version 3.56

clockon

clockon — Starts one of a number of internal clocks.

Description

Starts one of a number of internal clocks.

Syntax

clockon inum

Initialization

inum -- the number of a clock. There are 32 clocks numbered 0 through 31. All other values are mapped to
clock number 32.

Performance

Between a clockon and a clockoff opcode, the CPU time used is accumulated in the clock. The precision is
machine dependent but is the millisecond range on UNIX and Windows systems. The readclock opcode reads
the current value of a clock at initialization time.

185

Chapter 15. Orchestra Opcodes and Operators

Examples

See the readclock opcode for an example.

See Also
clockoff, readclock

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

July, 1999

New in Csound version 3.56

cngoto

cngoto — Transfers control on every pass when a condition is not true.

Description

Transfers control on every pass when the condition is not true.

Syntax
cngoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, /=) (and =for convenience, see also under Conditional Values).

Examples

Here is an example of the cngoto opcode. It uses the files cngoto.orc and cngoto.sco.

Example 15-1. Example of the cngoto opcode.

/* cngoto.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Change kval linearly from 0 to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

186

; If kval *is not* greater than or equal to 1 then play

; the high note. Otherwise, play the low note.
cngoto (kval >= 1), highnote
kgoto lownote

highnote:
kfreq = 880
goto playit
lownote:
kfreq = 440
goto playit
playit:

; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\n", 1, kval, kfreq

al oscil 10000, kfreq, 1
out al

endin

/* cngoto.orc */

/* cngoto.sco */

/* Written by Kevin Conder */
; Table: a simple sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* cngoto.sco */

Its output should include lines like:

kval = 0.000000, kfreq = 880.000000
kval = 0.999732, kfreq = 880.000000
kval = 1.999639, kfreq = 440.000000
See Also

cggoto, cigoto, ckgoto, goto, if, igoto, tigoto, timout

Credits

New in version 4.21

comb

Chapter 15. Orchestra Opcodes and Operators

comb — Reverberates an input signal with a “colored” frequency response.

187

Chapter 15. Orchestra Opcodes and Operators

Description

Reverberates an input signal with a “colored” frequency response.

Syntax
ar comb asig, krvt, ilpt [, iskip] [, insmps]

Initialization

ilpt -- loop time in seconds, which determines the “echo density” of the reverberation. This in turn
characterizes the “color” of the comb filter whose frequency response curve will contain ilpt * sr/2 peaks
spaced evenly between 0 and s7/2 (the Nyquist frequency). Loop time can be as large as available memory
will permit. The space required for an n second loop is 4n*sr bytes. Delay space is allocated and returned as
in delay.

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

insmps (optional, default=0) -- delay amount, as a number of samples.

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

This filter reiterates input with an echo density determined by loop time ilpt. The attenuation rate is
independent and is determined by krvt, the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Output from a comb filter will appear only after
ilpt seconds.

Examples
Here is an example of the comb opcode. It uses the files comb.orc and comb.sco.

Example 15-1. Example of the comb opcode.

/* comb.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Initialize the audio mixer.
gamix init 0

; Instrument #1.

instr 1
; Generate a source signal.
al oscili 30000, cpspch(p4), 1
; Output the direct sound.
out al

; Add the source signal to the audio mixer.

gamix = gamix + al
endin

188

Chapter 15. Orchestra Opcodes and Operators

; Instrument #99 (highest instr number executed last)

instr 99
krvt = 1.5
ilpt = 0.1

; Comb-filter the mixed signal.
a99 comb gamix, krvt, ilpt

; Output the result.

out a99

; Empty the mixer for the next pass.
gamix = 0

endin

/* comb.orc */

/* comb.sco */
; Table #1, a sine wave.
10128 10 1

[

= frequency (in a pitch-class)

y Instrument #1 for a tenth of a second, p4=7.00
0 0.1 7.00

lay Instrument #1 for a tenth of a second, p4=7.02
1 0.1 7.02

lay Instrument #1 for a tenth of a second, p4=7.04
2 0.1 7.04

lay Instrument #1 for a tenth of a second, p4=7.06
3 0.1 7.06

ie]
Iy

Q

g UOgroOrT

; Make sure the comb-filter remains active.
i99 05

/* comb.sco */

See Also

alpass, reverb, valpass, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)
University of Texas at Austin

Austin, Texas USA

January 2002

control

control — Configurable slider controls for realtime user input.

Description

Configurable slider controls for realtime user input. Requires Winsound or TCL/TK. control reads a slider’s

189

Chapter 15. Orchestra Opcodes and Operators

value.

Syntax

kr control knum

Performance
knum -- number of the slider to be read.

Calling control will create a new slider on the screen. There is no theoretical limit to the number of sliders.
Windows and TCL/TK use only integers for slider values, so the values may need rescaling. GUIs usually pass
values at a fairly slow rate, so it may be advisable to pass the output of control through port.

Examples

See the setctrl opcode for an example.

See Also

setctrl

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.
Bath, UK

May, 2000

New in Csound version 4.06

convle
convle — Same as the convolve opcode.
Description

Same as the convolve opcode.

Syntax

arl [, ar2] [, ar3] [, ar4] convle ain, ifilcod [, ichannel]

190

Chapter 15. Orchestra Opcodes and Operators

convolve

convolve — Convolves a signal and an impulse response.

Description

Output is the convolution of signal ain and the impulse response contained in ifilcod. If more than one
output signal is supplied, each will be convolved with the same impulse response. Note that it is considerably
more efficient to use one instance of the operator when processing a mono input to create stereo, or quad,
outputs.

Note: this opcode can also be written as convle.

Syntax
arl [, ar2] [, ar3] [, ar4] convolve ain, ifilcod [, ichannel]

Initialization

ifilcod -- integer or character-string denoting an impulse response data file. An integer denotes the suffix of a
file convolve.m; a character string (in double quotes) gives a filename, optionally a full pathname. If nota
fullpath, the file is sought first in the current directory, then in the one given by the environment variable
SADIR (if defined). The data file contains the Fourier transform of an impulse response. Memory usage
depends on the size of the data file, which is read and held entirely in memory during computation, but
which is shared by multiple calls.

ichannel (optional) -- which channel to use from the impulse response data file.

Performance
ain -- input audio signal.

convolve implements Fast Convolution. The output of this operator is delayed with respect to the input. The
following formulas should be used to calculate the delay:

For (1/kr) <= IRdur:
Delay = ceil(IRdur * kr) / kr
For (1/kr) IRdur:
Delay = IRdur * ceil(1/(kr*IRdur))
Where:
kr = Csound control rate
IRdur = duration, in seconds, of impulse response
ceil(n) = smallest integer not smaller than n

One should be careful to also take into account the initial delay, if any, of the impulse response. For example,
if an impulse response is created from a recording, the soundfile may not have the initial delay included.
Thus, one should either ensure that the soundfile has the correct amount of zero padding at the start, or,
preferably, compensate for this delay in the orchestra. (the latter method is more efficient). To compensate
for the delay in the orchestra, subtract the initial delay from the result calculated using the above formula(s),
when calculating the required delay to introduce into the 'dry’ audio path.

For typical applications, such as reverb, the delay will be in the order of 0.5 to 1.5 seconds, or even longer. This
renders the current implementation unsuitable for real time applications. It could conceivably be used for
real time filtering however, if the number of taps is small enough.

191

Chapter 15. Orchestra Opcodes and Operators

The author intends to create a higher-level operator at some stage, that would mix the wet & dry signals,
using the correct amount of delay automatically.

Examples

Create frequency domain impulse response file using the cvanal utility:

csound -Ucvanal 11_44.wav 11_44.cv

Determine duration of impulse response. For high accuracy, determine the number of sample frames in the
impulse response soundfile, and then compute the duration with:

duration = (sample frames)/(sample rate of soundfile)

This is due to the fact that the sndinfo utility only reports the duration to the nearest 10ms. If you have a
utility that reports the duration to the required accuracy, then you can simply use the reported value directly.

sndinfo 11_44.wav

length = 60822 samples, sample rate = 44100

Duration = 60822/44100 = 1.379s.

Determine initial delay, if any, of impulse response. If the impulse response has not had the initial delay
removed, then you can skip this step. If it has been removed, then the only way you will know the initial delay
is if the information has been provided separately. For this example, let’s assume that the initial delay is 60ms.
(0.06s)

Determine the required delay to apply to the dry signal, to align it with the convolved signal:

If kr = 441:
1/kr = 0.0023, which is <= IRdur (1.379s), so:
Delayl = ceil(IRdur * kr) / kr
= ceil(608.14) / 441
=609/441
=1.38s

Accounting for the initial delay:
Delay2 =0.06s
Total delay = delayl - delay2
=1.38 - 0.06
=1.32s

Create .orcfile, e.g.:

; Simple demonstration of CONVOLVE operator, to apply reverb.
sr = 44100

192

Chapter 15. Orchestra Opcodes and Operators

kr = 441
ksmps = 100
nchnls = 2
instr 1
imix = 0.22 ; Wet/dry mix. Vary as desired.
; NB: 'Small’ reverbs often require a much higher
; percentage of wet signal to sound interesting. ’'Large’
; reverbs seem require less. Experiment! The wet/dry mix is

; very important - a small change can make a large difference.

ivol = 0.9 ; Overall volume level of reverb. May need to adjust
; when wet/dry mix is changed, to avoid clipping.
idel = 1.32 ; Required delay to align dry audio with output of convolve.
; This can be automatically calculated within the orc file,
; if desired.
adry soundin "anechoic.wav" ; input (dry) audio
awetl,awet2 convolve adry,"l1_44.cv" ; stereo convolved (wet) audio
adrydel delay (1-imix)*adry,idel ; Delay dry signal, to align it with
; convolved signal. Apply level
; adjustment here too.
outs ivol*(adrydel+imix*awetl),ivol*(adrydel+imix*awet2)
; Mix wet & dry signals, and output
endin
Credits
Author: Greg Sullivan
1996
COos

cos — Performs a cosine function.

Description

Returns the cosine of x (x in radians).

Syntax
cos(x) (no rate restriction)

Examples
Here is an example of the cos opcode. It uses the files cos.orc and cos.sco.

Example 15-1. Example of the cos opcode.

/* cos.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

193

Chapter 15. Orchestra Opcodes and Operators

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1
irad = 25
i1 = cos(irad)
print il
endin
/* cos.orc */

/* cos.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cos.sco */

Its output should include lines like this:

instr 1: i1l = 0.991

See Also

cosh, cosinv, sin, sinh, sininv, tan, tanh, taninv

cosh

cosh — Performs a hyperbolic cosine function.

Description
Returns the hyperbolic cosine of x (x in radians).

Syntax

cosh(x) (no rate restriction)

Examples

Here is an example of the cosh opcode. It uses the files cosh.orc and cosh.sco.

Example 15-1. Example of the cosh opcode.

/* cosh.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

194

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 1

i1 = cosh(irad)

print il

endin
/* cosh.orc */

/* cosh.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cosh.sco */

Its output should include lines like this:

instr 1: i1l = 1.543

See Also

cos, cosinv, sin, sinh, sininv, tan, tanh, taninv

cosinv
cosinv — Performs a arccosine function.
Description

Returns the arccosine of x (x in radians).

Syntax

cosinv(x) (no rate restriction)

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the cosinv opcode. It uses the files cosinv.orc and cosinv.sco.

Example 15-1. Example of the cosinv opcode.

/* cosinv.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

195

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 0.5

i1 = cosinv(irad)

print il
endin
/* cosinv.orc */

/* cosinv.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cosinv.sco */

Its output should include lines like this:

instr 1: i1 = 1.047

See Also

cos, cosh, sin, sinh, sininv, tan, tanh, taninv

cps2pch

Chapter 15. Orchestra Opcodes and Operators

cps2pch — Converts a pitch-class value into cycles-per-second for equal divisions of the octave.

Description

Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of the octave.

Syntax
icps cps2pch ipch, iequal

Initialization

ipch -- Input number of the form 8ve.pc, indicating an ’octave’ and which note in the octave.

iequal -- if positive, the number of equal intervals into which the 'octave’ is divided. Must be less than or
equal to 100. If negative, is the number of a table of frequency multipliers.

Note:

1. The following are essentially the same

196

Chapter 15. Orchestra Opcodes and Operators

ia = cpspch(8.02)
ib cps2pch 8.02, 12
ic cpsxpch 8.02, 12, 2, 1.02197503906

2. These are opcodes not functions
3. Negative values of ipch are allowed.

Examples
Here is an example of the cps2pch opcode. It uses the files cps2pch.orc and cps2pch.sco.

Example 15-1. Example of the cps2pch opcode.

[* cps2pch.orc */

; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

. Instrument #1.

instr 1
; Use a normal twelve-tone scale.
ipch = 8.02
iequal = 12

icps cps2pch ipch, iequal
print icps
endin
[* cps2pch.orc */
/* cps2pch.sco */
; Play Instrument #1 for one second.
i101

e
/* cps2pch.sco */

Its output should include lines like this:

instr 1: icps = 293.666

Here is an example of the cps2pch opcode using a table of frequency multipliers. It uses the files
cps2pch_ftable.orc and cps2pch_ftable.sco.

197

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. Example of the cps2pch opcode using a table of frequency multipliers.

[* cps2pch_ftable.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
ipch = 8.02

; Use Table #1, a table of frequency multipliers.

icps cps2pch ipch, -1
print icps
endin
[* cps2pch_ftable.orc */
/* cps2pch_ftable.sco */
; Table #1: a table of frequency multipliers.
; Creates a 10-note scale of unequal divisions.
f1016 -2 11112131416 17 1.8 1.9

; Play Instrument #1 for one second.
i101

e
[* cps2pch_ftable.sco */

Its output should include lines like this:

instr 1. icps = 313.951

Here is an example of the cps2pch opcode using a 19ET scale. It uses the files cps2pch_19et.orc and

cps2pch_19et.sco.

Example 15-3. Example of the cps2pch opcode using a 19ET scale.

[* cps2pch_19et.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.

instr 1
; Use 19ET scale.
ipch = 8.02
iequal = 19

icps cps2pch ipch, iequal
print icps

endin

[* cps2pch_19et.orc */

/* cps2pch_19et.sco */

198

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for one second.
i101

e

/* cps2pch_19et.sco */

Its output should include lines like this:

instr 1: icps = 281.429

See Also
cpspch, cpsxpch

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

1997

Author: Gabriel Maldonado
Italy

1998

New in Csound version 3.492

cpsmidi
cpsmidi — Get the note number of the current MIDI event, expressed in cycles-per-second.

Description

Get the note number of the current MIDI event, expressed in cycles-per-second.

Syntax

icps cpsmidi

Performance

Get the note number of the current MIDI event, expressed in cycles-per-second units, for local processing.

199

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the cpsmidi opcode. It uses the files cpsmidi.orc and cpsmidi.sco.

Example 15-1. Example of the cpsmidi opcode.

/* cpsmidi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1

il cpsmidi

print il
endin
[* cpsmidi.orc */
[* cpsmidi.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
il1012

e
/* cpsmidi.sco */

See Also

aftouch, ampmidi, cpsmidib, cpstmid, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib,
veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills
May 1997

cpsmidib

cpsmidib — Get the note number of the current MIDI event and modify it by the current pitch-bend value,
express it in cycles-per-second.

Description

Get the note number of the current MIDI event and modify it by the current pitch-bend value, express it in
cycles-per-second.

200

Chapter 15. Orchestra Opcodes and Operators

Syntax
icps cpsmidib [irange]
kcps cpsmidib [irange]

Initialization

irange (optional) -- the pitch bend range in semitones.

Performance

Get the note number of the current MIDI event, modify it by the current pitch-bend value, and express the
result in cycles-per-second units. Available as an i-time value or as a continuous k-rate value.

Examples

Here is an example of the cpsmidib opcode. It uses the files cpsmidib.orc and cpsmidib.sco.

Example 15-1. Example of the cpsmidib opcode.

/* cpsmidib.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1

il cpsmidib

print il
endin
[* cpsmidib.orc */

/* cpsmidib.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 12 seconds.
i10 12

e

/* cpsmidib.sco */

See Also

aftouch, ampmidi, cpsmidi, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits
Author: Barry L. Vercoe - Mike Berry

MIT - Mills
May 1997

201

Chapter 15. Orchestra Opcodes and Operators

cpsoct
cpsoct — Converts an octave-point-decimal value to cycles-per-second.
Description

Converts an octave-point-decimal value to cycles-per-second.

Syntax
cpsoct (oct) (no rate restriction)

where the argument within the parentheses may be a further expression.

Performance
These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

Table 15-1. Pitch and Frequency Values

Name Abbreviation
octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct, the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which kI varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

202

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the cpsoct opcode. It uses the files cpsoct.orc and cpsoct.sco.

Example 15-1. Example of the cpsoct opcode.

/* cpsoct.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
; Convert an octave-point-decimal value into a
; cycles-per-second value.
ioct = 8.75
icps = cpsoct(ioct)
print icps
endin
[* cpsoct.orc */
/* cpsoct.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101
e
[* cpsoct.sco */

Its output should include lines like this:

instr 1. icps = 440.000

See Also
cpspch, octeps, octpch, pchoct

cpspch
cpspch — Converts a pitch-class value to cycles-per-second.

Description

Converts a pitch-class value to cycles-per-second.

203

Chapter 15. Orchestra Opcodes and Operators

Syntax
cpspch (pch) (init- or control-rate args only)

where the argument within the parentheses may be a further expression.

Performance
These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

Table 15-1. Pitch and Frequency Values

Name Abbreviation
octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct, the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which kI varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples
Here is an example of the cpspch opcode. It uses the files cpspch.orc and cpspch.sco.

Example 15-1. Example of the cpspch opcode.

[* cpspch.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

204

Chapter 15. Orchestra Opcodes and Operators

instr 1
; Convert a pitch-class value into a
; cycles-per-second value.

ipch = 8.09
icps = cpspch(ipch)
print icps

endin

[* cpspch.orc */

/* cpspch.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cpspch.sco */

Its output should include lines like this:

instr 1. icps = 440.000

See Also
cps2pch, cpsoct, cpsxpch, octeps, octpch, pchoct

cpstmid

cpstmid — Get a MIDI note number (allows customized micro-tuning scales).

Description

This unit is similar to cpsmidi, but allows fully customized micro-tuning scales.

Syntax

icps cpstmid ifn

Initialization

ifn -- function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

205

Chapter 15. Orchestra Opcodes and Operators

Performance
Init-rate only

cpsmid requires five parameters, the first, ifn, is the function table number of the tuning ratios, and the other
parameters must be stored in the function table itself. The function table ifi1 should be generated by GEN02,
with normalization inhibited. The first four values stored in this function are:

1. numgrades -- the number of grades of the micro-tuning scale

2. interval -- the frequency range covered before repeating the grade ratios, for example 2 for one octave,
1.5 for a fifth etc.

3. basefreq -- the base frequency of the scale in Hz
4. basekeymidi -- the MIDI note number to which basefreq is assigned unmodified

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12 note scale
with the base frequency of 261 Hz assigned to the key number 60, the corresponding f-statement in the score
to generate the table should be:

; numgrades interval basefreq basekeymidi tuning ratios (equal temp)
floe64-2 12 2 261 60 1 1.059463094359 1.122462048309 1.189207115003 ..etc...

Another example with a 24 note scale with a base frequency of 440 assigned to the key number 48, and a
repetition interval of 1.5:

; numgrades interval basefreq basekeymidi tuning-ratios (equal temp)
flo064-2 24 1.5 440 48 1 1.01 1.02 1.03 ..etc...

Examples

Here is an example of the cpstmid opcode. It uses the files cpstmid.orc and cpstmid.sco.

Example 15-1. Example of the cpstmid opcode.

/* cpstmid.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Table #1, a normal 12-tone equal temperament scale.

; numgrades = 12 (twelve tones)

; interval = 2 (one octave)

; basefreq = 261.659 (Middle C)

; basekeymidi = 60 (Middle C)

gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \
1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

. Instrument #1.
instr 1

206

; Use Table #1.
ifn =1
i1 cpstmid ifn

print il
endin
[* cpstmid.orc */

/* cpstmid.sco */
[* Written by Kevin Conder */

; Play Instrument #1 for 12 seconds.

i10 12
e
/* cpstmid.sco */

See Also
cpsmidi, GENO2

Credits

Author: Gabriel Maldonado
Italy

1998
New in Csound version 3.492

cpstun
cpstun — Returns micro-tuning values at k-rate.
Description

Returns micro-tuning values at k-rate.

Syntax
kcps cpstun ktrig, kindex, kfn

Performance

kcps -- Return value in cycles per second.
ktrig -- A trigger signal used to trigger the evaluation.

kindex -- An integer number denoting an index of scale.

Chapter 15. Orchestra Opcodes and Operators

kfn -- Function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning

ratios.

These opcodes are similar to cpstmid, but work without necessity of MIDI.

207

Chapter 15. Orchestra Opcodes and Operators

cpstun works at k-rate. It allows fully customized micro-tuning scales. It requires a function table number
containing the tuning ratios, and some other parameters stored in the function table itself.

kindex arguments should be filled with integer numbers expressing the grade of given scale to be converted
in cps. In cpstun, a new value is evaluated only when ktrig contains a non-zero value. The function table kfn
should be generated by GEN02 and the first four values stored in this function are parameters that express:

« numgrades -- The number of grades of the micro-tuning scale.

- interval -- The frequency range covered before repeating the grade ratios, for example 2 for one octave, 1.5
for a fifth etcetera.

« basefreq -- The base frequency of the scale in cycles per second.

» basekey -- The integer index of the scale to which to assign basefreq unmodified.

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12-grade
scale with the base-frequency of 261 cps assigned to the key-number 60, the corresponding f-statement in the
score to generate the table should be:

; numgrades basefreq tuning-ratios (eq.temp)
; interval basekey
fi 064 -2 12 2 261 60 1 1.059463 1.12246 1.18920 ..etc...

Another example with a 24-grade scale with a base frequency of 440 assigned to the key-number 48, and a
repetition interval of 1.5:

numgrades basefreq tuning-ratios
interval basekey
fi 0 64 -2 24 15 440 48 1 101 102 103 ..etc..

Examples
Here is an example of the cpstun opcode. It uses the files cpstun.orc and cpstun.sco.

Example 15-1. Example of the cpstun opcode.

[* cpstun.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Table #1, a normal 12-tone equal temperament scale.

; numgrades = 12 (twelve tones)

; interval = 2 (one octave)

; basefreq = 261.659 (Middle C)

; basekeymidi = 60 (Middle C)

gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \
1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

208

; Instrument #1.
instr 1
; Set the trigger.
ktrig init 1

; Use Table #1.
kfn init 1

; If the base key (note #60) is C, then 9 notes
; above it (note #60 + 9 = note #69) should be A.
kindex init 69

k1l cpstun ktrig, kindex, kfn

printk2 k1
endin
[* cpstun.orc */

[* cpstun.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cpstun.sco */

Its output should include lines like this:

il 440.11044

See Also
cpstmid, cpstuni, GEN0O2

cpstuni

cpstuni — Returns micro-tuning values at init-rate.

Description

Returns micro-tuning values at init-rate.

Syntax
icps cpstuni index, ifn

Chapter 15. Orchestra Opcodes and Operators

209

Chapter 15. Orchestra Opcodes and Operators

Initialization
icps -- Return value in cycles per second.
index -- An integer number denoting an index of scale.

ifn -- Function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

Performance
These opcodes are similar to cpstmid, but work without necessity of MIDI.

cpstuni works at init-rate. It allows fully customized micro-tuning scales. It requires a function table number
containing the tuning ratios, and some other parameters stored in the function table itself.

The index argument should be filled with integer numbers expressing the grade of given scale to be converted
in cps. The function table ifn should be generated by GEN02 and the first four values stored in this function
are parameters that express:

« numgrades -- The number of grades of the micro-tuning scale.

« interval -- The frequency range covered before repeating the grade ratios, for example 2 for one octave, 1.5
for a fifth etcetera.

« basefreq -- The base frequency of the scale in cycles per second.
» basekey -- The integer index of the scale to which to assign basefreq unmodified.

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12-grade
scale with the base-frequency of 261 cps assigned to the key-number 60, the corresponding f-statement in the
score to generate the table should be:

; numgrades basefreq tuning-ratios (eq.temp)
; interval basekey
fl 064 -2 12 2 261 60 1 1.059463 1.12246 1.18920 ..etc...

Another example with a 24-grade scale with a base frequency of 440 assigned to the key-number 48, and a
repetition interval of 1.5:

numgrades basefreq tuning-ratios
interval basekey
fi 0 64 -2 24 15 440 48 1 101 102 103 ..etc..

Examples
Here is an example of the cpstuni opcode. It uses the files cpstuni.orc and cpstuni.sco.

Example 15-1. Example of the cpstuni opcode.

[* cpstuni.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

210

Chapter 15. Orchestra Opcodes and Operators

kr = 4410
ksmps = 10
nchnls = 1

; Table #1, a normal 12-tone equal temperament scale.

; numgrades = 12 (twelve tones)

; interval = 2 (one octave)

; basefreq = 261.659 (Middle C)

; basekeymidi = 60 (Middle C)

gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \
1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

; Instrument #1.
instr 1
; Use Table #1.
ifn = 1
; If the base key (note #60) is C, then 9 notes
; above it (note #60 + 9 = note #69) should be A.
index = 69
il cpstuni index, ifn
print il
endin
[* cpstuni.orc */
/* cpstuni.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101
e
/* cpstuni.sco */

Its output should include lines like this:

instr 1: i1 = 440.110

See Also
cpstmid, cpstun, GENO2

cpsxpch
cpsxpch — Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of any interval.
Description

Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of any interval. There is a
restriction of no more than 100 equal divisions.

211

Chapter 15. Orchestra Opcodes and Operators

Syntax

icps cpsxpch ipch, iequal, irepeat, ibase

Initialization
ipch -- Input number of the form 8ve.pc, indicating an 'octave’ and which note in the octave.

iequal -- if positive, the number of equal intervals into which the 'octave’ is divided. Must be less than or
equal to 100. If negative, is the number of a table of frequency multipliers.

irepeat -- Number indicating the interval which is the 'octave.’ The integer 2 corresponds to octave divisions,
3 to a twelfth, 4 is two octaves, and so on. This need not be an integer, but must be positive.

ibase -- The frequency which corresponds to pitch 0.0
Note:

1. The following are essentially the same

ia = cpspch(8.02)
ib cps2pch 8.02, 12
ic cpsxpch 8.02,12, 2, 1.02197503906

2. These are opcodes not functions
3. Negative values of ipch are allowed, but not negative irepeat, iequal or ibase.

Examples

Here is an example of the cpsxpch opcode. It uses the files cpsxpch.orc and cpsxpch.sco.

Example 15-1. Example of the cpsxpch opcode.

[* cpsxpch.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
; Use a normal twelve-tone scale.
ipch = 8.02
iequal = 12
irepeat = 2
ibase = 1.02197503906

icps cpsxpch ipch, iequal, irepeat, ibase
print icps
endin

/* cpsxpch.orc */

[* cpsxpch.sco */
; Play Instrument #1 for one second.

212

i101
e
/* cpsxpch.sco */

Its output should include lines like this:

instr 1: icps = 293.666

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the cpsxpch opcode using a 10.5 ET scale. It uses the files cpsxpch_105et.orc and

cpsxpch_105et.sco.

Example 15-2. Example of the cpsxpch opcode using a 10.5 ET scale.

/* cpsxpch_105et.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.
instr 1
: Use a 10.5ET scale.
ipch = 4.02
iequal = 21
irepeat = 4
ibase = 16.35160062496

icps cpsxpch ipch, iequal, irepeat, ibase
print icps
endin
/* cpsxpch_105et.orc */
/* cpsxpch_105et.sco */
; Play Instrument #1 for one second.
i101

e
/* cpsxpch_105et.sco */

Its output should include lines like this:

instr 1. icps = 4776.824

Here is an example of the cpsxpch opcode using a Pierce scale centered on middle A. It uses the files

cpsxpch_pierce.orc and cpsxpch_pierce.sco.

Example 15-3. Example of the cpsxpch opcode using a Pierce scale centered on middle A.

/* cpsxpch_pierce.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

213

Chapter 15. Orchestra Opcodes and Operators

; Instrument #1.
instr 1
; Use a Pierce scale centered on middle A.
ipch = 2.02
iequal = 12
irepeat = 3
ibase = 261.62561

icps cpsxpch ipch, iequal, irepeat, ibase
print icps

endin

[* cpsxpch_pierce.orc */

/* cpsxpch_pierce.sco */

; Play Instrument #1 for one second.

i101

e

[* cpsxpch_pierce.sco */

Its output should include lines like this:

instr 1. icps = 2827.762

See Also
cpspch, cps2pch

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

1997

Author: Gabriel Maldonado
Italy

1998

New in Csound version 3.492

cpuprc
cpuprc — Control allocation of cpu resources on a per-instrument basis, to optimize realtime output.

Description

Control allocation of cpu resources on a per-instrument basis, to optimize realtime output.

214

Chapter 15. Orchestra Opcodes and Operators

Syntax

cpuprc insnum, ipercent

Initialization
insnum -- instrument number

ipercent -- percent of cpu processing-time to assign. Can also be expressed as a fractional value.

Performance

cpuprc sets the cpu processing-time percent usage of an instrument, in order to avoid buffer underrun in
realtime performances, enabling a sort of polyphony theshold. The user must set ipercent value for each
instrument to be activated in realtime. Assuming that the total theoretical processing time of the cpu of the
computer is 100%, this percent value can only be defined empirically, because there are too many factors that
contribute to limiting realtime polyphony in different computers.

For example, if ipercent is set to 5% for instrument 1, the maximum number of voices that can be allocated in
realtime, is 20 (5% * 20 = 100%). If the user attempts to play a further note while the 20 previous notes are still
playing, Csound inhibits the allocation of that note and will display the following warning message:

can't allocate last note because it exceeds 100% of cpu time

In order to avoid audio buffer underruns, it is suggested to set the maximum number of voices slightly lower
than the real processing power of the computer. Sometimes an instrument can require more processing time
than normal. If, for example, the instrument contains an oscillator which reads a table that doesn’t fit in
cache memory, it will be slower than normal. In addition, any program running concurrently in multitasking,
can subtract processing power to varying degrees.

At the start, all instruments are set to a default value of ipercent = 0.0% (i.e. zero processing time or rather
infinite cpu processing-speed). This setting is OK for deferred-time sessions.

All instances of cpuprc must be defined in the header section, not in the instrument body.

Examples

Here is an example of the cpuprc opcode. It uses the files cpuprc.orc and cpupre.sco.

Example 15-1. Example of the cpuprc opcode.

[* cpuprc.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Limit Instrument #1 to 5% of the CPU processing time.
cpuprc 1, 5

. Instrument #1

instr 1
al oscil 10000, 440, 1
out al

endin

215

Chapter 15. Orchestra Opcodes and Operators

[* cpuprc.orc */
/* cpuprc.sco */
/* Written by Kevin Conder */

; Just generate a nice, ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for one second.
i101

e

/* cpuprc.sco */

See Also

maxalloc, prealloc

Credits

Author: Gabriel Maldonado
Italy

July, 1999

New in Csound version 3.57

cross?

cross2 — Cross synthesis using FFT’s.

Description

This is an implementation of cross synthesis using FFT’s.

Syntax

ar cross2 ainl, ain2, isize, ioverlap, iwin, kbias

Initialization

isize -- This is the size of the FFT to be performed. The larger the size the better the frequency response but a
sloppy time response.

ioverlap -- This is the overlap factor of the FFT’s, must be a power of two. The best settings are 2 and 4. A big
overlap takes a long time to compile.

iwin -- This is the function table that contains the window to be used in the analysis. One can use the GEN20
routine to create this window.

216

Chapter 15. Orchestra Opcodes and Operators

Performance
ainl -- The stimulus sound. Must have high frequencies for best results.
ain2 -- The modulating sound. Must have a moving frequency response (like speech) for best results.

kbias -- The amount of cross synthesis. 1 is the normal, 0 is no cross synthesis.

Examples

Here is an example of the cross2 opcode. It uses the files cross2.orc, cross2.sco and beats.wav.

Example 15-1. Example of the cross2 opcode.

/* cross2.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - Play an audio file.
instr 1
; Use the "beats.wav" audio file.
aout diskin "beats.wav", 1
out aout
endin

; Instrument #2 - Cross-synthesize!
instr 2
; Use the "ahh" sound stored in Table #1.
ainl loscil 30000, 1, 1, 1
; Use the "beats.wav" audio file.
ain2 diskin "beats.wav", 1

isize = 4096
ioverlap = 2
iwin = 2

kbias init 1

aout cross2 ainl, ain2, isize, ioverlap, iwin, kbias

out aout
endin
/* cross2.orc */

[* cross2.sco */

[* Written by Kevin Conder */

; Table #1: An audio file.

f 10 128 1 "ahh.aiff* 0 4 0

; Table #2: A windowing function.
f 2 0 2048 20 2

; Play Instrument #1 for 2 seconds.
i102

; Play Instrument #2 for 2 seconds.
i222

e

/* cross2.sco */

217

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Paris Smaragdis
MIT, Cambridge
1997

crunch

crunch — Semi-physical model of a crunch sound.

Description

crunch is a semi-physical model of a crunch sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar crunch iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.
idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 7.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping amount is 0.99806 which means that the default value of idamp is 0.03. The maximum
damping _amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.
Examples
Here is an example of the crunch opcode. It uses the files crunch.orc and crunch.sco.

Example 15-1. Example of the crunch opcode.

/* crunch.orc */

;orchestra ------------—---
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

218

instr 01 ;an example of a crunch
al crunch p4, 0.01

out al

endin

/* crunch.orc */

/* crunch.sco */
1SCOI@ =m-=mmmmmmmmmmmeeee

i1 0 1 26000

e
/* crunch.sco */

See Also

cabasa, sandpaper, sekere, stix

Credits

Chapter 15. Orchestra Opcodes and Operators

Author: Perry Cook, part of the PhOLIES (Physically-Oriented Library of Imitated Environmental Sounds)

Adapted by John ffitch
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 4.07
Added notes by Rasmus Ekman on May 2002.

ctrl14
ctrll4 — Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.
Description

Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.

Syntax
idest ctrl14 ichan, ictlnol, ictlno2, imin, imax [, ifn]

kdest ctrl14 ichan, ictlnol, ictlno2, kmin, kmax [, ifn]

Initialization

idest -- output signal

ichan -- MIDI channel number (1-16)

ictinlo -- most-significant byte controller number (0-127)

ictlno2 -- least-significant byte controller number (0-127)

219

Chapter 15. Orchestra Opcodes and Operators

imin -- user-defined minimum floating-point value of output
imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output
kmax -- user-defined maximum floating-point value of output

ctrl14 (i- and k-rate 14 bit MIDI control) allows a floating-point 14-bit MIDI signal scaled with a minimum
and a maximum range. The minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires two MIDI controllers as input.

ctrl14 differs from midic14 becase it can be included in score-oriented instruments without Csound crashes.
It needs the additional parameter ichan containing the MIDI channel of the controller. MIDI channel is the
same for all the controllers used in a single ctrl14 opcode.

See Also
ctrl7, ctri2l, initc7, initcl4, initc21, midic7, midicl4, midic21

Credits

Author: Gabriel Maldonado
Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrl21
ctrl21 — Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.
Description

Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.

Syntax
idest ctrl21 ichan, ictlnol, ictlno2, ictlno3, imin, imax [, ifn]

kdest ctrl21 ichan, ictlnol, ictlno2, ictlno3, kmin, kmax [, ifn]

Initialization

idest -- output signal

220

Chapter 15. Orchestra Opcodes and Operators

ichan -- MIDI channel number (1-16)

ictlno -- MIDI controller number (0-127)

ictinlo -- most-significant byte controller number (0-127)
ictlno2 -- mid-significant byte controller number (0-127)
ictlno3 -- least-significant byte controller number (0-127)
imin -- user-defined minimum floating-point value of output
imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output
kmax -- user-defined maximum floating-point value of output

ctrl21 (i- and k-rate 21 bit MIDI control) allows a floating-point 21-bit MIDI signal scaled with a minimum
and a maximum range. Minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires three MIDI controllers as input.

ctrl21 differs from midic21 because it can be included in score oriented instruments without Csound crashes.
It needs the additional parameter ichan containing the MIDI channel of the controller. MIDI channel is the
same for all the controllers used in a single ctrl21 opcode.

See Also
ctrl7, ctrl14, initc7, initcl4, initc21, midic7, midicl4, midic21

Credits

Author: Gabriel Maldonado
Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrl7
ctrl7 — Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.
Description

Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.

Syntax

idest ctrl7 ichan, ictlno, imin, imax [, ifn]

221

Chapter 15. Orchestra Opcodes and Operators

kdest ctrl7 ichan, ictlno, kmin, kmax [, ifn]

Initialization

idest -- output signal

ichan -- MIDI channel (1-16)

ictlno -- MIDI controller number (0-127)

imin -- user-defined minimum floating-point value of output
imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output
kmax -- user-defined maximum floating-point value of output

ctrl7 (i- and k-rate 7 bit MIDI control) allows a floating-point 7-bit MIDI signal scaled with a minimum and a
maximum range. It also allows optional non-interpolated table indexing. Minimum and maximum values
can be varied at k-rate.

ctrl7 differs from midic7 because it can be included in score-oriented instruments without Csound crashes. It
also needs the additional parameter ichan containing the MIDI channel of the controller.

See Also
ctrll4, ctrl21, initc7, initcl4, initc21, midic7, midicl4, midic21

Credits

Author: Gabriel Maldonado
Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrlinit

ctrlinit — Sets the initial values for a set of MIDI controllers.

Description
Sets the initial values for a set of MIDI controllers.

222

Chapter 15. Orchestra Opcodes and Operators

Syntax

ctrlinit ichnl, ictlnol, ivall [, ictlno?2] [, ival?] [, ictlno3] [, ival3] [,...ival32]

Initialization

ichnl -- MIDI channel number (1-16)

ictlnol, ictlnol, etc. -- MIDI controller numbers (0-127)

ivall, ival2, etc. -- initial value for corresponding MIDI controller number

Performance

Sets the initial values for a set of MIDI controllers.

See Also

massign

Credits

Author: Barry L. Vercoe - Mike Berry
MIT, Cambridge, Mass.

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

cuserrnd

cuserrnd — Continuous USER-defined-distribution RaNDom generator.

Description

Continuous USER-defined-distribution RaNDom generator.

Syntax
aout cuserrnd kmin, kmax, ktableNum
iout cuserrnd imin, imax, itableNum

kout cuserrnd kmin, kmax, ktableNum

Initialization
imin -- minimum range limit
imax -- maximum range limit

itableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

223

Chapter 15. Orchestra Opcodes and Operators

Performance

ktableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

kmin -- minimum range limit
kmax -- maximum range limit

cuserrnd (continuous user-defined-distribution random generator) generates random values according to a
continuous random distribution created by the user. In this case the shape of the distribution histogram can
be drawn or generated by any GEN routine. The table containing the shape of such histogram must then be
translated to a distribution function by means of GEN40 (see GEN40 for more details). Then such function
must be assigned to the XtableNum argument of cuserrnd. The output range can then be rescaled according
to the Xmin and Xmax arguments. cuserrnd linearly interpolates between table elements, so it is not
recommended for discrete distributions (GEN41 and GEN42).

For a tutorial about random distribution histograms and functions see:

« D. Lorrain. "A panoply of stochastic cannons". In C. Roads, ed. 1989. Music machine. Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

See Also

duserrnd, urd

Credits
Author: Gabriel Maldonado

New in Version 4.16

dam

dam— A dynamic compressor/expander.

Description

This opcode dynamically modifies a gain value applied to the input sound ain by comparing its power level to
a given threshold level. The signal will be compressed/expanded with different factors regarding that it is over
or under the threshold.

Syntax
ar dam asig, kthreshold, icomp1, icomp2, irtime, iftime

Initialization
icompl -- compression ratio for upper zone.
icomp2 -- compression ratio for lower zone

irtime -- gain rise time in seconds. Time over which the gain factor is allowed to raise of one unit.

224

Chapter 15. Orchestra Opcodes and Operators

iftime -- gain fall time in seconds. Time over which the gain factor is allowed to decrease of one unit.

Performance
asig -- input signal to be modified
kthreshold -- level of input signal which acts as the threshold. Can be changed at k-time (e.g. for ducking)

Note on the compression factors: A compression ratio of one leaves the sound unchanged. Setting the ratio to
a value smaller than one will compress the signal (reduce its volume) while setting the ratio to a value greater
than one will expand the signal (augment its volume).

Examples

Because the results of the dam opcode can be subtle, I recommend looking at them in a graphical audio
editor program like audacity. audacity is available for Linux, Windows, and the MacOS and may be
downloaded from http://audacity.sourceforge.net.

Here is an example of the dam opcode. It uses the files dam.orc, dam.sco, and beats.wav.

Example 15-1. An example of the dam opcode compressing an audio signal.

/* dam.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1, uncompressed signal.
instr 1
; Use the "beats.wav" audio file.
asig diskin "beats.wav", 1

out asig
endin

; Instrument #2, compressed signal.
instr 2
; Use the "beats.wav" audio file.
asig diskin "beats.wav", 1

; Compress the audio signal.
kthreshold init 25000

icompl = 0.5
icomp2 = 0.763
itime = 0.1
ifime = 0.1
al dam asig, kthreshold, icompl, icomp2, irtime, iftime
out al
endin

/* dam.orc */

/* dam.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

; Play Instrument #2 for 2 seconds.
i222

225

Chapter 15. Orchestra Opcodes and Operators

e
/* dam.sco */

This example compresses the audio file “beats.wav”. You should hear a drum pattern repeat twice. The
second time, the sound should be quieter (compressed) than the first.

Here is another example of the dam opcode. It uses the files dam_expanded.orc, dam_expanded.sco, and
mary.wav.

Example 15-2. An example of the dam opcode expanding an audio signal.

/* dam_expanded.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls = 1

; Instrument #1, normal audio signal.
instr 1
; Use the "mary.wav" audio file.
asig diskin "mary.wav", 1

out asig
endin

; Instrument #2, expanded audio signal.
instr 2

; Use the "mary.wav" audio file.

asig diskin "mary.wav”, 1

; Expand the audio signal.
kthreshold init 7500

icompl = 2.25
icomp2 = 2.25
itime = 0.1
ifime = 0.6
al dam asig, kthreshold, icompl, icomp2, irtime, iftime
out al
endin

/* dam_expanded.orc */

/* dam_expanded.sco */

[* Written by Kevin Conder */
; Play Instrument #1.

i100 35

; Play Instrument #2.

i 23535

e

/* dam_expanded.sco */

This example expands the audio file “mary.wav”. You should hear a melody repeat twice. The second time,
the sound should be louder (expanded) than the first.

226

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Marc Resibois
Belgium
1997

db

db — Returns the amplitude equivalent for a given decibel amount.

Description

Returns the amplitude equivalent for a given decibel amount. This opcode is the same as db.

Syntax
db(x)
This function works at a-rate, i-rate, and k-rate.

Initialization

x -- a value expressed in decibels.

Performance

Returns the amplitude for a given decibel amount.

Examples

Here is an example of the db opcode. It uses the files db.orc and db.sco.

Example 15-1. Example of the db opcode.

/* db.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1
; Calculate the amplitude of 40 decibels.
idecibels = 40
iamp = db(idecibels)
print iamp
endin
/* db.orc */

/* db.sco */

227

Chapter 15. Orchestra Opcodes and Operators

[* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101

e
/* db.sco */

Its output should include lines like:

instr 1. iamp = 100.000

See Also

ampdb, cent, octave, semitone

Credits

New in version 4.16

dbamp

dbamp — Returns the decibel equivalent of the raw amplitude x.

Description

Returns the decibel equivalent of the raw amplitude x.

Syntax

dbamp(x) (init-rate or control-rate args only)

Examples

Here is an example of the dbamp opcode. It uses the files dbamp.orc and dbamp.sco.

Example 15-1. Example of the dbamp opcode.

/* dbamp.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
iamp = 30000
idb = dbamp(iamp)

228

Chapter 15. Orchestra Opcodes and Operators

print idb
endin
/* dbamp.orc */

/* dbamp.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* dbamp.sco */

Its output should include lines like this:

instr 1: idb = 89.542

See Also
ampdb, ampdbfs, dbfsamp

dbfsamp

dbfsamp — Returns the decibel equivalent of the raw amplitude x, relative to full scale amplitude.

Description

Returns the decibel equivalent of the raw amplitude x, relative to full scale amplitude. Full scale is assumed to
be 16 bit. New is Csound version 4.10.

Syntax

dbfsamp(x) (init-rate or control-rate args only)

Examples

Here is an example of the dbfsamp opcode. It uses the files dbfsamp.orc and dbfsamp.sco.

Example 15-1. Example of the dbfsamp opcode.

/* dbfsamp.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls = 1

. Instrument #1.
instr 1
iamp = 30000

229

Chapter 15. Orchestra Opcodes and Operators

idb = dbfsamp(iamp)
print idb
endin
/* dbfsamp.orc */
/* dbfsamp.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101
e
/* dbfsamp.sco */

Its output should include lines like this:

instr 1: idb = -0.767

See Also
ampdb, ampdbfs, dbamp

dcblock

dcblock — A DC blocking filter.

Description
Implements the DC blocking filter

Y[i] = X[i] - X[i-1] + (igain * Y[i=1])

Based on work by Perry Cook.

Syntax

ar dcblock ain [, igain]

Initialization
igain -- the gain of the filter, which defaults to 0.99

Performance

ain -- audio signal input

230

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the dcblock opcode. It uses the files dcblock.orc, dcblock.sco, and beats.wav.

Example 15-1. Example of the dcblock opcode.

/* dcblock.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1 -- normal audio signal.
instr 1

asig diskin "beats.wav", 1

out asig
endin

; Instrument #2 -- dcblock-ed audio signal.
instr 2
asig diskin "beats.wav", 1

igain = 0.75
al dcblock asig, igain

out al
endin
/* dcblock.orc */

/* dcblock.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

; Play Instrument #2 for 2 seconds.
i222

e

/* dcblock.sco */

Credits

Author: John ffitch
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.49

dconv

dconv — A direct convolution opcode.

231

Chapter 15. Orchestra Opcodes and Operators

Description

A direct convolution opcode.

Syntax

ar dconv asig, isize, ifn

Initialization

isize -- the size of the convolution buffer to use. if the buffer size is smaller than the size of ifn, then only the
first isize values will be used from the table.

ifn -- table number of a stored function containing the impulse response for convolution.

Performance

Rather than the analysis/resynthesis method of the convolve opcode, dconv uses direct convolution to create
the result. For small tables it can do this quite efficiently, however larger table require much more time to run.
dconv does (isize * ksmps) multiplies on every k-cycle. Therefore, reverb and delay effects are best done with
other opcodes (unless the times are short).

dconv was designed to be used with time varying tables to facilitate new realtime filtering capabilities.

Examples

Here is an example of the dconv opcode. It uses the files dconv.orc and dconv.sco.

Example 15-1. Example of the dconv opcode.

/* dconv.orc */
Sr 44100
kr 4410
ksmps = 1
nchnls = 1

0

#define RANDI(A) #kout randi 1, kfg, $A*.001+iseed, 1
tablew kout, $A, itable#

instr 1

itable init 1

iseed init .6

isize init ftlen(itable)
kfq line 1, p3, 10

$RANDI(0)
$RANDI(1)
$RANDI(2)
$RANDI(3)
$RANDI(4)
$RANDI(5)
$RANDI(6)
$RANDI(7)
$RANDI(8)
$RANDI(9)
$RANDI(10)
$RANDI(11)
$RANDI(12)

232

Chapter 15. Orchestra Opcodes and Operators

$RANDI(13)
$RANDI(14)
$RANDI(15)

asig rand 10000, 5, 1
asig butlp asig, 5000
asig dconv asig, isize, itable

out asig *.5
endin
/* dconv.orc */

/* dconv.sco */
fl1 0 16 10 1
i1 0 10

e

/* dconv.sco */

Credits

Author: William “Pete” Moss
2001

New in version 4.12

delay

delay — Delays an input signal by some time interval.

Description

A signal can be read from or written into a delay path, or it can be automatically delayed by some time
interval.

Syntax
ar delay asig, idlt [, iskip]

Initialization

idlt -- requested delay time in seconds. This can be as large as available memory will permit. The space
required for n seconds of delay is 4n * sr bytes. It is allocated at the time the instrument is first initialized, and
returned to the pool at the end of a score section.

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance

asig -- audio signal

233

Chapter 15. Orchestra Opcodes and Operators

delay is a composite of delayr and delayw, both reading from and writing into its own storage area. It can thus
accomplish signal time-shift, although modified feedback is not possible. There is no minimum delay period.

Examples

Here is an example of the delay opcode. It uses the files delay.orc and delay.sco.

Example 15-1. Example of the delay opcode.

[* delay.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 2

; Instrument #1 -- Delayed beeps.
instr 1

; Make a basic sound.

abeep vco 20000, 440, 1

; Delay the beep by .1 seconds.
idlt = 0.1
adel delay abeep, idlt

; Send the beep to the left speaker and
; the delayed beep to the right speaker.
outs abeep, adel

endin

/* delay.orc */

/* delay.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Keep the score running for 2 seconds.
fo2

; Play Instrument #1.
i1l1000.2
i1l1050.2

e

/* delay.sco */

See Also
delayl, delayr, delayw

234

Chapter 15. Orchestra Opcodes and Operators

delayl

delayl — Delays an input signal by one sample.

Description
Delays an input signal by one sample.

Syntax
ar delayl1 asig [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance

delayl is a special form of delay that serves to delay the audio signal asig by just one sample. It is thus
functionally equivalent to the delay opcode but is more efficient in both time and space. This unit is
particularly useful in the fabrication of generalized non-recursive filters.

See Also
delay, delayr, delayw

delayr
delayr — Reads from an automatically established digital delay line.
Description

Reads from an automatically established digital delay line.

Syntax
ar delayr idlt [, iskip]

Initialization

idlt -- requested delay time in seconds. This can be as large as available memory will permit. The space
required for n seconds of delay is 4n * sr bytes. It is allocated at the time the instrument is first initialized, and
returned to the pool at the end of a score section.

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

235

Chapter 15. Orchestra Opcodes and Operators

Performance

delayr reads from an automatically established digital delay line, in which the signal retrieved has been
resident for idlt seconds. This unit must be paired with and precede an accompanying delayw unit. Any other
Csound statements can intervene.

Examples

See the example for delayw.

See Also
delay, delayl, delayw

delayw

delayw — Writes the audio signal to a digital delay line.

Description
Writes the audio signal to a digital delay line.

Syntax
delayw asig

Performance

delayw writes asig into the delay area established by the preceding delayr unit. Viewed as a pair, these two
units permit the formation of modified feedback loops, etc. However, there is a lower bound on the value of
idlt, which must be at least 1 control period (or 1/kr).

Examples

Here is an example of the delayw opcode. It uses the files delayw.orc and delayw.sco.

Example 15-1. Example of the delayw opcode.

/* delayw.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

; Instrument #1 -- Delayed beeps.
instr 1

; Make a basic sound.

abeep vco 20000, 440, 1

236

Chapter 15. Orchestra Opcodes and Operators

; Set up a delay line.
idit = 0.1
adel delayr idlt

; Write the beep to the delay line.
delayw abeep

; Send the beep to the left speaker and
; the delayed beep to the right speaker.
outs abeep, adel

endin

[* delayw.orc */

/* delayw.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

; Keep the score running for 2 seconds.
foz2

; Play Instrument #1.
i 10002
il1050.2

e

/* delayw.sco */

See Also
delay, delayl, delayr

deltap
deltap — Taps a delay line at variable offset times.
Description

Tap a delay line at variable offset times.

Syntax
ar deltap kdlt

Performance

kdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal.

deltap extracts sound by reading the stored samples directly.

237

Chapter 15. Orchestra Opcodes and Operators

This opcode can tap into a delayr/ delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2

ainputl
ainput2
kdlytl

kdlyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0
adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 -0.7 * adlyl + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbkl

;Feed back signal, associated with second delayr instance:

delayw afdbk2
outs adlyl, adly2

238

Chapter 15. Orchestra Opcodes and Operators

See Also
deltap3, deltapi, deltapn

deltap3
deltap — Taps a delay line at variable offset times, uses cubic interpolation.
Description

Taps a delay line at variable offset times, uses cubic interpolation.

Syntax
ar deltap3 xdlt

Performance

xdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal; the xdlf argument in
deltap3 implies that an audio-varying delay is permitted there.

deltap3 is experimental, and uses cubic interpolation. (New in Csound version 3.50.)

This opcode can tap into a delayr/ delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor

239

Chapter 15. Orchestra Opcodes and Operators

adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2
ainputl = ...
ainput2
kdlyt1
kdiyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0
adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 -0.7 * adlyl + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbkl

;Feed back signal, associated with second delayr instance:
delayw afdbk2
outs adlyl, adly2

See Also
deltap, deltapi, deltapn

deltapi

deltapi — Taps a delay line at variable offset times, uses interpolation.

Description

Taps a delay line at variable offset times, uses interpolation.

Syntax
ar deltapi xdlt

240

Chapter 15. Orchestra Opcodes and Operators

Performance

xdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal; the xdlt argument in
deltapi implies that an audio-varying delay is permitted there.

deltapi extracts sound by interpolated readout. By interpolating between adjacent stored samples deltapi
represents a particular delay time with more accuracy, but it will take about twice as long to run.

This opcode can tap into a delayr/ delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2

ainputl
ainput2
kdlytl

kdlyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0
adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:

afdbkl = 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 = -0.7 * adlyl + 0.7 * adly2 + ainput2

241

Chapter 15. Orchestra Opcodes and Operators

;Feed back signal, associated with first delayr instance:
delayw afdbkl

;Feed back signal, associated with second delayr instance:
delayw afdbk2
outs adlyl, adly2

See Also
deltap, deltap3, deltapn

deltapn

deltapn — Taps a delay line at variable offset times.

Description

Tap a delay line at variable offset times.

Syntax

ar deltapn xnumsamps

Performance

xnumsamps -- specifies the tapped delay time in number of samples. Each can range from 1 control period to
the full delay time of the read/write pair; however, since there is no internal check for adherence to this range,
the user is wholly responsible. Each argument can be a constant, a variable, or a time-varying signal.

deltapn is identical to deltapi, except delay time is specified in number of samples, instead of seconds (Hans
Mikelson).

This opcode can tap into a delayr/ delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

242

Chapter 15. Orchestra Opcodes and Operators

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2
ainputl = ...
ainput2
kdlytl
kdiyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0

adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0

adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 -0.7 * adlyl + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbkl

;Feed back signal, associated with second delayr instance:

delayw afdbk2
outs adlyl, adly2

See Also
deltap, deltap3, deltapi

deltapx

deltapx — Read to or write from a delay line with interpolation.

243

Chapter 15. Orchestra Opcodes and Operators

Description

deltapx is similar to deltapi or deltap3. However, it allows higher quality interpolation. This opcode can read
from and write to a delayr/delayw delay line with interpolation.

Syntax

aout deltapx adel, iwsize

Initialization

iwsize -- interpolation window size in samples. Allowed values are integer multiplies of 4 in the range 4 to
1024. iwsize = 4 uses cubic interpolation. Increasing iwsize improves sound quality at the expense of CPU

usage, and minimum delay time.

Performance

aout -- Output signal

adel -- Delay time in seconds.

al

a3

delayr idlr

deltapxw a2, adll, iwsl
deltapx adl2, iws2
deltapxw a4, adl3, iws3
delayw a5

Minimum and maximum delay times:

idlr

adll
adll

adl2
adl2
adl2
adl2

adl3
adl3

>=

>=
<=

>=

>=
>=

Note:

1/kr Delay line length

(iws1/2)/sr Write before read
idlr - (1 + iws1/2)/sr (allows shorter delays)

1/kr + (iws2/2)/sr Read time
idlr - (1 + iws2/2)/sr

adll + (iwsl + iws2) / (2*sr)

l/kr + adl3 + (iws2 + iws3) / (2*sr)

(iws3/2)/sr Write after read
idlr - (1 + iws3/2)/sr (allows feedback)

Window sizes for opcodes other than deltapx are: deltap, deltapn: 1, deltapi: 2 (linear), deltap3: 4 (cubic)

244

Chapter 15. Orchestra Opcodes and Operators

Examples

al phasor 300.0

al = al - 05

a_ delayr 1.0

adel phasor 4.0

adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2

deltapxw al, adel, 32
adel phasor 2.0

adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2
deltapxw al, adel, 32

adel = 03

a2 deltapx adel, 32

al = 0
delayw al

out a2 * 20000.0

See Also
deltapxw

Credits

Author: Istvan Varga
August 2001

New in version 4.13

deltapxw

deltapxw — Mixes the input signal to a delay line.

Description

deltapxw mixes the input signal to a delay line. This opcode can be mixed with reading units (deltap, deltapn,
deltapi, deltap3, and deltapx) in any order; the actual delay time is the difference of the read and write time.
This opcode can read from and write to a delayr/ delayw delay line with interpolation.

Syntax

deltapxw ain, adel, iwsize

Initialization

iwsize -- interpolation window size in samples. Allowed values are integer multiplies of 4 in the range 4 to
1024. iwsize = 4 uses cubic interpolation. Increasing iwsize improves sound quality at the expense of CPU
usage, and minimum delay time.

245

Chapter 15. Orchestra Opcodes and Operators

Performance

ain -- Input signal

adel -- Delay time in seconds.

al

a3

delayr idlr

deltapxw a2, adll, iwsl
deltapx adl2, iws2
deltapxw a4, adl3, iws3
delayw a5

Minimum and maximum delay times:

idlr -~ >= 1/kr Delay line length
adll >= (iwsl/2)/sr Write before read
adll <= idlr - (1 + iwsl/2)/sr (allows shorter delays)
adl2 >= 1/kr + (iws2/2)/sr Read time
adl2 <= idIr - (1 + iws2/2)/sr
adl2 >= adll + (iwsl + iws2) / (2*sr)
adl2 >= 1/kr + adI3 + (iws2 + iws3) / (2*sr)
adl3 >= (iws3/2)/sr Write after read
adl3 <= idlr - (1 + iws3/2)/sr (allows feedback)
Note: Window sizes for opcodes other than deltapx are: deltap, deltapn: 1, deltapi: 2 (linear), deltap3: 4 (cubic)
Examples
al phasor 300.0
al = al - 05
a_ delayr 1.0
adel phasor 4.0
adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2
deltapxw al, adel, 32
adel phasor 2.0
adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2
deltapxw al, adel, 32
adel = 03
a2 deltapx adel, 32
al = 0
delayw al

out a2 * 20000.0

246

Chapter 15. Orchestra Opcodes and Operators

See Also
deltapx

Credits
Author: Istvan Varga

August 2001

New in version 4.13

diff
diff — Modify a signal by differentiation.

Description
Modify a signal by differentiation.

Syntax
ar diff asig [, iskip]
kr diff ksig [, iskip]

Initialization

iskip (optional) -- initial disposition of internal save space (see reson). The default value is 0.

Performance

integ and diff perform integration and differentiation on an input control signal or audio signal. Each is the
converse of the other, and applying both will reconstruct the original signal. Since these units are special
cases of low-pass and high-pass filters, they produce a scaled (and phase shifted) output that is
frequency-dependent. Thus diff of a sine produces a cosine, with amplitude 2 * sin(pi * Hz / sr) that of the
original (for each component partial); integ will inversely affect the magnitudes of its component inputs.
With this understanding, these units can provide useful signal modification.

Examples
Here is an example of the diff opcode. It uses the files diff.orc and diff.sco.

Example 15-1. Example of the diff opcode.

/* diff.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

247

. Instrument #1 -- a normal instrument.
instr 1
; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

out asrc
endin

. Instrument #2 -- a differentiated instrument.
instr 2
; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

; Emphasize the highs.
al diff asrc

out al
endin
/* diff.orc */
/* diff.sco */
[* Written by Kevin Conder */

; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one second.
i101
; Play Instrument #2 for one second.
i211

e
/* diff.sco */

See Also

downsamp, integ, interp, samphold, upsamp

Chapter 15. Orchestra Opcodes and Operators

diskin
diskin — Reads audio data from an external device or stream and can alter its pitch.
Description

Reads audio data from an external device or stream and can alter its pitch.

Syntax

arl [,ar2] [, ar3] [, ar4] diskin ifilcod, kpitch [, iskiptim] [, iwraparound] [, iformat]

248

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifilcod -- integer or character-string denoting the source soundfile name. An integer denotes the file
soundin.filcod ; a character-string (in double quotes, spaces permitted) gives the filename itself, optionally a
full pathname. If not a full path, the named file is sought first in the current directory, then in that given by the
environment variable SSDIR (if defined) then by SFDIR. See also GENO1.

iskptim (optional) -- time in seconds of input sound to be skipped. The default value is 0.

iformat (optional) -- specifies the audio data file format:

1 = 8-bit signed char (high-order 8 bits of a 16-bit integer)
2 = 8-bit A-law bytes

« 3 =8-bit U-law bytes

4 = 16-bit short integers

« 5=32-bitlong integers
» 6=32-bit floats

iwraparound -- 1 = on, 0 = off (wraps around to end of file either direction)

If iformat = 0 it is taken from the soundfile header, and if no header from the Csound -0 command-line flag.
The default value is 0.

Performance

kpitch -- can be any real number. a negative number signifies backwards playback. The given number is a
pitch ratio, where:

« I=normal pitch

« 2=1 octave higher

« 3=12th higher, etc.

« .5=1 octave lower

« .25 =2 octaves lower, etc.

» -1=normal pitch backwards

« -2=1 octave higher backwards, etc.

diskin is identical to soundin except that it can alter the pitch of the sound that is being read.

Note to Windows users

Windows users typically use back-slashes, “\", when specifying the paths of their files. As an example, a
Windows user might use the path “c:\music\samples\loop001.wav". This is problematic because back-slashes
are normally used to specify special characters.

To correctly specify this path in Csound, one may alternately:

« Use forward slashes: c:/music/samples/loop001.wav
» Use back-slash special characters, “\\": c:\\music\\samples\\loop001.wav

249

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the diskin opcode. It uses the files diskin.orc, diskin.sco, beats.wav.

Example 15-1. Example of the diskin opcode.

[* diskin.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

; Instrument #1 - play an audio file.
instr 1
; Play the audio file backwards.
asig diskin "beats.wav", -1
out asig
endin
[* diskin.orc */
/* diskin.sco */
[* Written by Kevin Conder */
; Play Instrument #1, the audio file, for three seconds.
i103
e
[* diskin.sco */

See Also

in, inh, ino, inq, ins, soundin

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry
MIT, Mills College
1993-1997

Warning to Windows users added by Kevin Conder, April 2002

dispfft
displayfft — Displays the Fourier Transform of an audio or control signal.
Description

These units will print orchestra init-values, or produce graphic display of orchestra control signals and audio
signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ASCII characters.

250

Chapter 15. Orchestra Opcodes and Operators

Syntax
dispfft xsig, iprd, iwsiz [, iwtyp] [, idbout] [, iwtflg]

Initialization
iprd -- the period of display in seconds.

iwsiz -- size of the input window in samples. A window of iwsiz points will produce a Fourier transform of
iwsiz/2 points, spread linearly in frequency from 0 to sr/2. iwsiz must be a power of 2, with a minimum of 16
and a maximum of 4096. The windows are permitted to overlap.

iwtyp (optional, default=0) -- window type. 0 = rectangular, 1 = Hanning. The default value is 0 (rectangular).

idbout (optional, default=0) -- units of output for the Fourier coefficients. 0 = magnitude, 1 = decibels. The
default is 0 (magnitude).

iwtflg (optional, default=0) -- wait flag. If non-zero, each display is held until released by the user. The default
value is 0 (no wait).

Performance

dispfft -- displays the Fourier Transform of an audio or control signal (asig or ksig) every iprd seconds using
the Fast Fourier Transform method.

Examples
Here is an example of the dispfft opcode. It uses the files dispfft.orc, dispfft.sco and beats.wav.

Example 15-1. Example of the dispfft opcode.

[* dispfft.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
asig diskin "beats.wav", 1
dispfft asig, 1, 512
out asig
endin
[* dispfft.orc */

[* dispfft.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for three seconds.
i103

e

[* dispfft.sco */

251

Chapter 15. Orchestra Opcodes and Operators

See Also
display, print

Credits

Comments about the inprds parameter contributed by Rasmus Ekman.

display

display — Displays the audio or control signals as an amplitude vs. time graph.

Description

These units will print orchestra init-values, or produce graphic display of orchestra control signals and audio
signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ASCII characters.

Syntax
display xsig, iprd [, inprds] [, iwtflg]

Initialization
iprd -- the period of display in seconds.

inprds (optional, default=1) -- Number of display periods retained in each display graph. A value of 2 or more
will provide a larger perspective of the signal motion. The default value is 1 (each graph completely new).

inprds (optional, default=1) -- a scaling factor for the displayed waveform, controlling how many iprd-sized
frames of samples are drawn in the window (the default and minimum value is 1.0). Higher inprds values are
slower to draw (more points to draw) but will show the waveform scrolling through the window, which is
useful with low iprd values.

iwtflg (optional, default=0) -- wait flag. If non-zero, each display is held until released by the user. The default
value is 0 (no wait).

Performance

display -- displays the audio or control signal xsig every iprd seconds, as an amplitude vs. time graph.

Examples
Here is an example of the display opcode. It uses the files display.orc and display.sco.

Example 15-1. Example of the display opcode.

[* display.orc */
[* Written by Kevin Conder */
; Initialize the global variables.

sr = 44100
kr = 4410
ksmps = 10

252

Chapter 15. Orchestra Opcodes and Operators

nchnls = 1

; Instrument #1.

instr 1
; Go from 1000 to O linearly, over the period defined by p3.
klin line 1000, p3, 0

; Create a new display each second, wait for the user.
display klin, 1, 1, 1

endin

[* display.orc */

/* display.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 5 seconds.

i105

e

[* display.sco */

See Also
dispfft, print

Credits

Comments about the inprds parameter contributed by Rasmus Ekman.

distortl

distortl ~ — Modified hyperbolic tangent distortion.

Description

Implementation of modified hyperbolic tangent distortion. distortI can be used to generate wave shaping
distortion based on a modification of the tanh function.

exp(asig * (pregain + shapel)) - exp(asig*(pregain+shape2))
AOUL = === e m e e e e
exp(asig*pregain) + exp(-asig*pregain)

Syntax
ar distort1 asig, kpregain, kpostgain, kshapel, kshape2

253

Chapter 15. Orchestra Opcodes and Operators

Performance
asig - is the input signal.

kpregain -- determines the amount of gain applied to the signal before waveshaping. A value of 1 gives slight
distortion.

kpostgain -- determines the amount of gain applied to the signal after waveshaping.

kshapel -- determines the shape of the positive part of the curve. A value of 0 gives a flat clip, small positive
values give sloped shaping.

kshape2 -- determines the shape of the negative part of the curve.

Examples

Here is an example of the distort]l opcode. It uses the files distort1.orc and distortl.sco.

Example 15-1. Example of the distortl opcode.

/* distortl.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 2

gadist init 0

instr 1
iamp = p4
ifqc = cpspch(pb)
asig pluck iamp, ifgc, ifgc, 0, 1
gadist = gadist + asig
endin

instr 50
kpre init p4
kpost init p5
kshapl init p6
kshap2 init p7
aout distortl gadist, kpre, kpost, kshapl, kshap2

outs aout, aout
gadist = 0
endin

/* distortl.orc */

/* distortl.sco */

; Sta Dur Amp Pitch
il 0.0 3.0 10000 6.00
il 05 25 10000 7.00
il 1.0 2.0 10000 7.07
il 15 1.5 10000 8.00

; Sta Dur PreGain PostGain Shapel Shape2
i50 0 3 2 1 0 0

e

/* distortl.sco */

254

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Hans Mikelson
December 1998

New in Csound version 3.50

divz
divz — Safely divides two numbers.

Syntax

ar divz xa, xb, ksubst
ir divz ia, ib, isubst
kr divz ka, kb, ksubst

Description
Safely divides two numbers.

Initialization

Whenever b is not zero, set the result to the value a / b; when b is zero, set it to the value of subst instead.

Examples
Here is an example of the divz opcode. It uses the files divz.orc and divz.sco.

Example 15-1. Example of the divz opcode.

/* divz.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
: Define the numbers to be divided.
ka init 200
; Linearly change the value of kb from 200 to O.
kb line 0, p3, 200
; If a "divide by zero" error occurs, substitute -1.
ksubst init -1

; Safely divide the numbers.
kresults divz ka, kb, ksubst

; Print out the results.
printks "%f / %f = %f\n", 0.1, ka, kb, kresults

255

Chapter 15. Orchestra Opcodes and Operators

endin

/* divz.orc */

/* divz.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* divz.sco */

Its output should include lines like:
200.000000 / 0.000000 = -1.000000

200.000000 / 19.999887 = 10.000056
200.000000 / 40.000027 = 4.999997

See Also

=, init, tival

downsamp

downsamp — Modify a signal by down-sampling.

Description
Modify a signal by down-sampling.

Syntax

kr downsamp asig [, iwlen]

Initialization

iwlen (optional) -- window length in samples over which the audio signal is averaged to determine a
downsampled value. Maximum length is ksmps; 0 and 1 imply no window averaging. The default value is 0.

Performance

downsamp converts an audio signal to a control signal by downsampling. It produces one kval for each audio
control period. The optional window invokes a simple averaging process to suppress foldover.

256

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the downsamp opcode. It uses the files downsamp.orc and downsamp.sco.

Example 15-1. Example of the downsamp opcode.

/* downsamp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Create a noise signal at a-rate.
anoise noise 20000, 0.2

; Downsample the noise signal to k-rate.
knoise downsamp anoise

; Use the noise signal at k-rate.
al oscil 30000, knoise, 1
out anoise

endin

/* downsamp.orc */

/* downsamp.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one second.
i101

e

/* downsamp.sco */

See Also
diff, integ, interp, samphold, upsamp

dripwater

dripwater ~— Semi-physical model of a water drop.

Description

dripwater is a semi-physical model of a water drop. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

257

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar dripwater kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization
idettack -- period of time over which all sound is stopped
inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 10.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.996 + (idamp * 0.002)

The default damping amount is 0.996 which means that the default value of idamp is 0. The maximum
damping amount is 1.0 (no damping). This means the maximum value for idamp is 2.0.

The recommended range for idamp is usually below 75% of the maximum value. Rasmus Ekman suggests a
range of 1.4-1.75. He also suggests a maximum value of 1.9 instead of the theoretical limit of 2.0.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 450.
ifreql (optional) -- the first resonant frequency. The default value is 600.
ifreq2 (optional) -- the second resonant frequency. The default value is 750.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

Examples

Here is an example of the dripwater opcode. It uses the files dripwater.orc and dripwater.sco.

Example 15-1. Example of the dripwater opcode.

[* dripwater.orc */
sr = 44100

kr = 4410

ksmps 10
nchnls = 1

instr 01 ;example of a water drip
al line 5, p3, 5 ;preset an amplitude boost
a2 dripwater p4, 0.01, 0, .9 ;dripwater needs a little amplitude help at these values
a3 product al, a2 ;increase amplitude
out a3
endin
[* dripwater.orc */

[* dripwater.sco */
il 0 1 20000

[* dripwater.sco */

258

Chapter 15. Orchestra Opcodes and Operators

See Also

bamboo, guiro, sleighbells, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)
Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07
Added notes by Rasmus Ekman on May 2002.

dumpk

dumpk — Periodically writes an orchestra control-signal value to an external file.

Description

Periodically writes an orchestra control-signal value to a named external file in a specific format.

Syntax

dumpk ksig, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

1 = 8-bit signed char(high order 8 bits of a 16-bit integer
4 = 16-bit short integers

5 = 32-bit long integers
+ 6 =32-bit floats, 7=ASCII long integers
8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

259

Chapter 15. Orchestra Opcodes and Operators

Performance
ksig -- a control-rate signal

This opcode allows a generated control signal value to be saved in a named external file. The file contains no
self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk opcodes in an instrument or orchestra but each must write to a
different file.

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk2, dumpk3, dumpk4, readk, readk2, readk3, readk4

dumpk?2

dumpk2 — Periodically writes two orchestra control-signal values to an external file.

Description
Periodically writes two orchestra control-signal values to a named external file in a specific format.

Syntax
dumpk? ksigl, ksig2, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

+ 1=8-bit signed char(high order 8 bits of a 16-bit integer
» 4 =16-bit short integers

« 5=232-bitlong integers

» 6=32-bit floats, 7=ASCII long integers

8 = ASCII floats (2 decimal places)

260

Chapter 15. Orchestra Opcodes and Operators

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance
ksigl, ksig2 -- control-rate signals.

This opcode allows two generated control signal values to be saved in a named external file. The file contains

no self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk2 opcodes in an instrument or orchestra but each must write to
a different file.

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpks3, dumpk4, readk, readk2, readk3, readk4

dumpk3

dumpk3 — Periodically writes three orchestra control-signal values to an external file.

Description
Periodically writes three orchestra control-signal values to a named external file in a specific format.

Syntax
dumpk3 ksigl, ksig2, ksig3, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

261

Chapter 15. Orchestra Opcodes and Operators

1 = 8-bit signed char(high order 8 bits of a 16-bit integer
4 = 16-bit short integers

« 5=32-bit long integers
» 6=32-bit floats, 7=ASCII long integers
8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance
ksigl, ksig2, ksig3 -- control-rate signals

This opcode allows three generated control signal values to be saved in a named external file. The file
contains no self-defining header information. But it contains a regularly sampled time series, suitable for
later input or analysis. There may be any number of dumpk3 opcodes in an instrument or orchestra but each
must write to a different file.

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpk4, readk, readk2, readk3, readk4

dumpk4

dumpk4 — Periodically writes four orchestra control-signal values to an external file.

Description
Periodically writes four orchestra control-signal values to a named external file in a specific format.

262

Chapter 15. Orchestra Opcodes and Operators

Syntax
dumpk4 ksigl, ksig2, ksig3, ksig4, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

1 = 8-bit signed char(high order 8 bits of a 16-bit integer
4 = 16-bit short integers

« 5=32-bit long integers
» 6=32-bit floats, 7=ASCII long integers
8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance
ksigl, ksig2, ksig3, ksig4 -- control-rate signals

This opcode allows four generated control signal values to be saved in a named external file. The file contains
no self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk4 opcodes in an instrument or orchestra but each must write to
a different file.

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpks3, readk, readk?2, readks3, readk4

263

Chapter 15. Orchestra Opcodes and Operators

duserrnd

duserrnd — Discrete USER-defined-distribution RaNDom generator.

Description
Discrete USER-defined-distribution RaNDom generator.

Syntax
aout duserrnd ktableNum
iout duserrnd itableNum

kout duserrnd ktableNum

Initialization

itableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

Performance

ktableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

duserrnd (discrete user-defined-distribution random generator) generates random values according to a
discrete random distribution created by the user. The user can create the discrete distribution histogram by
using GEN41. In order to create that table, the user has to define an arbitrary amount of number pairs, the
first number of each pair representing a value and the second representing its probability (see GEN41 for
more details).

When used as a function, the rate of generation depends by the rate type of input variable XtableNum. In this
case it can be embedded into any formula. Table number can be varied at k-rate, allowing to change the
distribution histogram during the performance of a single note. duserrnd is designed be used in algorithmic
music generation.

duserrnd can also be used to generate values following a set of ranges of probabilities by using distribution
functions generated by GEN42 (See GEN42 for more details). In this case, in order to simulate continuous
ranges, the length of table XtableNum should be reasonably big, as duserrnd does not interpolate between
table elements.

For a tutorial about random distribution histograms and functions see:

« D. Lorrain. "A panoply of stochastic cannons". In C. Roads, ed. 1989. Music machine. Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

See Also

cuserrnd, urd

264

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado
New in Version 4.16

else

else — Executes a block of code when an "if...then" condition is false.

Description

Executes a block of code when an "if...then" condition is false.

Syntax

else

Performance

else is used inside of a block of code between the "if...then" and endif opcodes. It defines which statements
are executed when a "if...then" condition is false. Only one else statement may occur and it must be the last
conditional statement before the endif opcode.

Examples
See the example for the if opcode.

See Also
elseif, endif, goto, if, igoto, kgoto, tigoto, timout

Credits

New in version 4.21

elseif
elseif = — Defines another "if...then" condition when a "if...then" condition is false.
Description

Defines another "if...then" condition when a "if...then" condition is false.

265

Chapter 15. Orchestra Opcodes and Operators

Syntax
elseif xa R xb then

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, =) (and =for convenience, see also under Conditional Values).

Performance

elseif is used inside of a block of code between the "if...then" and endif opcodes. When a "if...then" condition
is false, it defines another "if...then" condition to be met. Any number of elseif statements are allowed.

Examples
See the example for the if opcode.

See Also
else, endif, goto, if, igoto, kgoto, tigoto, timout

Credits

New in version 4.21

endif
endif — Closes a block of code that begins with an "if...then" statement.
Description

Closes a block of code that begins with an "if...then" statement.

Syntax
endif

Performance

Any block of code that begins with an "if...then" statement must end with an endif statement.

Examples
See the example for the if opcode.

266

Chapter 15. Orchestra Opcodes and Operators

See Also
elseif, else, goto, if, igoto, kgoto, tigoto, timout

Credits

New in version 4.21

endin

endin — Ends the current instrument block.

Description

Ends the current instrument block.

Syntax

endin

Initialization
Ends the current instrument block.

Instruments can be defined in any order (but they will always be both initialized and performed in ascending
instrument number order). Instrument blocks cannot be nested (i.e. one block cannot contain another).

Note: There may be any number of instrument blocks in an orchestra.

Examples
Here is an example of the endin opcode. It uses the files endin.orc and endin.sco.

Example 15-1. Example of the endin opcode.

/* endin.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
iamp = 10000
icps = 440
iphs = 0

al oscils iamp, icps, iphs

267

out al
endin
/* endin.orc */

/* endin.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

e

/* endin.sco */

See Also

instr

endop

endop — Marks the end of an user-defined opcode block.

Description
Marks the end of an user-defined opcode block.

Syntax
endop

Performance

The syntax of a user-defined opcode block is as follows:

opcode name, outtypes, intypes

xinargl [, xinarg?] [, xinarg3] ... [xinargN] xin
[setksmps iksmps]

... the rest of the instrument’s code.

xout xoutargl [, xoutarg?2] [, xoutarg3] ... [xoutargN]
endop

The new opcode can then be used with the usual syntax:

[xinargl] [, xinarg2] ... [xinargN] name [xoutargl] [, xoutarg2]

Chapter 15. Orchestra Opcodes and Operators

... [xoutargN] [, iksmps]

268

Chapter 15. Orchestra Opcodes and Operators

Examples

See the example for the opcode opcode.

See Also

opcode, setksmps, xin, xout

Credits
Author: Istvan Varga, 2002; based on code by Matt J. Ingalls

New in version 4.22

envlpx

envipx — Applies an envelope consisting of 3 segments.

Description

envlpx -- apply an envelope consisting of 3 segments:

1. stored function rise shape
2. modified exponential pseudo steady state

3. exponential decay

Syntax
ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

kr envlpx kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.
idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.
ifn -- function table number of stored rise shape with extended guard point.

iatss -- attenuation factor, by which the last value of the envlpx rise is modified during the note’s pseudo
steady state. A factor greater than 1 causes an exponential growth and a factor less than 1 creates an
exponential decay. A factor of 1 will maintain a true steady state at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sensitive to a note’s duration. However, if iatss is negative
(or if steady state < 4 k-periods) a fixed attenuation rate of abs(iatss) per second will be used. 0 is illegal.

iatdec -- attenuation factor by which the closing steady state value is reduced exponentially over the decay
period. This value must be positive and is normally of the order of .01. A large or excessively small value is apt
to produce a cutoff which is audible. A zero or negative value is illegal.

269

Chapter 15. Orchestra Opcodes and Operators

ixmod (optional, between +- .9 or so0) -- exponential curve modifier, influencing the steepness of the
exponential trajectory during the steady state. Values less than zero will cause an accelerated growth or decay
towards the target (e.g. subito piano). Values greater than zero will cause a retarded growth or decay. The
default value is zero (unmodified exponential).

Performance
kamp, xamp -- input amplitude signal.

Rise modifications are applied for the first irise seconds, and decay from time idur - idec. If these periods are
separated in time there will be a steady state during which amp will be modified by the first exponential
pattern. If the rise and decay periods overlap then that will cause a truncated decay. If the overall duration
idur is exceeded in performance, the final decay will continue on in the same direction, tending
asymptotically to zero.

Examples

Here is an example of the envlpx opcode. It uses the files envipx.orc and envipx.sco.

Example 15-1. Example of the envlpx opcode.

[* envlpx.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1 - a simple instrument.
instr 1
; Set the amplitude.
kamp init 20000
; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

al vco kamp, kecps, 1
out al
endin

; Instrument #2 - instrument with an amplitude envelope.

instr 2
kamp = 20000
irise = 0.05
idur = p3 - .01
idec = 0.5
ifn = 2
jatss = 1
iatdec = 0.01

; Create an amplitude envelope.
kenv envlpx kamp, irise, idur, idec, ifn, iatss, iatdec

; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

al vco kenv, kcps, 1
out al

endin

[* envilpx.orc */

270

/* envilpx.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Table #2, a rising envelope.
f20129 -7 0 128 1

; Set the tempo to 120 beats per minute.
t 0 120

; Make sure the score plays for 33 seconds.

f 0 33

; Play a melody with Instrument #1.
; p4 = frequency in pitch-class notation.
i 8.04

i 8.04

8.05

8.07

8.07

8.05

8.04

8.02

8.00

8.00

8.02

8.04

8.04

8.02

OCoO~NOOOA~AWNEO

RPRRPRRPRRRREPRRRERRRER
NNRPRRRRPRRRERRRRER

; Repeat the melody with Instrument #2.
; p4 = frequency in pitch-class notation.
i 2 16 1 8.04
i 8.04
8.05
8.07
8.07
8.05
8.04
8.02
8.00
8.00
8.02
8.04
8.04
8.02

NNRONNRONNNONNNN
N
w
NNRRRPRRRPRRRRERRRRE

e
[* envlpx.sco */

See Also

envlpxr, linen, linenr

Chapter 15. Orchestra Opcodes and Operators

271

Chapter 15. Orchestra Opcodes and Operators

Credits

Thanks goes to Luis Jure for pointing out a mistake with iatss.

envipxr

envlpxr — The envlpx opcode with a final release segment.

Description

envlpxr is the same as envipx except that the final segment is entered only on sensing a MIDI note release.
The note is then extended by the decay time.

Syntax
ar envlpxr xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

kr envlpxr kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.
idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.
ifn -- function table number of stored rise shape with extended guard point.

iatss -- attenuation factor, by which the last value of the envipx rise is modified during the note’s pseudo
steady state. A factor greater than 1 causes an exponential growth and a factor less than 1 creates an
exponential decay. A factor of 1 will maintain a true steady state at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sensitive to a note’s duration. However, if iatss is negative
(or if steady state < 4 k-periods) a fixed attenuation rate of abs(iatss) per second will be used. 0 is illegal.

iatdec -- attenuation factor by which the closing steady state value is reduced exponentially over the decay
period. This value must be positive and is normally of the order of .01. A large or excessively small value is apt
to produce a cutoff which is audible. A zero or negative value is illegal.

ixmod (optional, between +- .9 or so) -- exponential curve modifier, influencing the steepness of the
exponential trajectory during the steady state. Values less than zero will cause an accelerated growth or decay
towards the target (e.g. subito piano). Values greater than zero will cause a retarded growth or decay. The
default value is zero (unmodified exponential).

irind (optional) -- independence flag. If left zero, the release time (idec) will influence the extended life of the
current note following a note-off. If non-zero, the idec time is quite independent of the note extension (see
below). The default value is 0.

Performance
kamp, xamp -- input amplitude signal.

envlpxr is an example of the special Csound “r” units that contain a note-off sensor and release time
extender. When each senses a score event termination or a MIDI noteoff, it will immediately extend the
performance time of the current instrument by idec seconds unless it is made independent by irind. Then it
will begin a decay from wherever it was at the time.

272

Chapter 15. Orchestra Opcodes and Operators

These “r” units can also be modified by MIDI noteoff velocities (see veloffs). If the irind flag is on (non-zero),
the overall performance time is unaffected by note-off and veloff data.

Multiple “r” units. When two or more “r” units occur in the same instrument it is usual to have only one of
them influence the overall note duration. This is normally the master amplitude unit. Other units controlling,
say, filter motion can still be sensitive to note-off commands while not affecting the duration by making them

“_»

independent (irind non-zero). Depending on their own idec (release time) values, independent “r” units may
or may not reach their final destinations before the instrument terminates. If they do, they will simply hold
their target values until termination. If two or more “r” units are simultaneously master, note extension is by
the greatest idec.

See Also

envlpx, linen, linenr

Credits

Thanks goes to Luis Jure for pointing out a mistake with iatss.

event

event — Generates a score event from an instrument.

Description

Generates a score event from an instrument.

Syntax

event iscorechar, kinsnum, kwhen, kdur, [, kp4] [, kp5] [, ...]

Initialization

iscorechar -- A string (in double-quotes) representing the first p-field in a score statement. This is usually “e”,

“sr

“f’ or “1”.

Performance
kinsnum -- The instrument to use for the event. This corresponds to the first p-field, p1, in a score statement.

kwhen -- When (in seconds) the event will occur. This corresponds to the second p-field, p2, in a score
statement.

kdur -- How long (in seconds) the event will happen. This corresponds to the third p-field, p3, in a score
statement.

kp4, kp5, ... (optional) -- Parameters representing additional p-field in a score statement. It starts with the
fourth p-field, p4.

273

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the event opcode. It uses the files event.orc and event.sco.

Example 15-1. Example of the event opcode.

[* event.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - an oscillator with a high note.
instr 1

; Create a trigger and set its initial value to 1.

ktrigger init 1

; If the trigger is equal to O, continue playing.

. If not, schedule another event.

if (ktrigger == 0) goto contin
; kscoreop="i", an i-statement.
; kinsnum=2, play Instrument #2.
; kwhen=1, start at 1 second.
; kdur=0.5, play for a half-second.
event "i", 2, 1, 0.5

; Make sure the event isn't triggered again.

ktrigger = 0
contin:
al oscils 10000, 440, 1
out al
endin

. Instrument #2 - an oscillator with a low note.
instr 2
al oscils 10000, 220, 1
out al
endin
/* event.orc */

/* event.sco */

[* Written by Kevin Conder */

; Make sure the score plays for two seconds.
fo2

; Play Instrument #1 for a half-second.
il1005

e

/* event.sco */

274

Chapter 15. Orchestra Opcodes and Operators

Credits
New in version 4.17

Thanks goes to Matt Ingalls for helping to fix the example.

exp

exp — Returns e raised to the x-th power.

Description

Returns e raised to the xth power.

Syntax
exp(x) (no rate restriction)

where the argument within the parentheses may be an expression. Value converters perform arithmetic

translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the exp opcode. It uses the files exp.orc and exp.sco.

Example 15-1. Example of the exp opcode.

[* exp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
il = exp(8)
print il
endin
[* exp.orc */

[* exp.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

[* exp.sco */

Its output should include a line like this:

instr 1: i1 = 2980.958

275

Chapter 15. Orchestra Opcodes and Operators

See Also
abs, frac, int, log, logl0, i, sqrt

expon

expon — Trace an exponential curve between specified points.

Description
Trace an exponential curve between specified points.

Syntax
ar expon ia, idurl, ib

kr expon ia, idurl, ib

Initialization
ia -- starting value. Zero is illegal for exponentials.
ib, ic, etc. -- value after durl seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Examples

Here is an example of the expon opcode. It uses the files expon.orc and expon.sco.

Example 15-1. Example of the expon opcode.

/* expon.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
. Instrument #1.
instr 1
; Define kcps as a frequency value that exponentially declines
; from 880 to 220. It declines over the period set by p3.
kcps expon 880, p3, 220

276

Chapter 15. Orchestra Opcodes and Operators

al oscil 20000, kecps, 1
out al

endin

/* expon.orc */

[* expon.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for two seconds.
i102

e

/* expon.sco */

See Also

expseg, expsegr, line, linseg, linsegr

exprand

exprand — Exponential distribution random number generator (positive values only).

Description

Exponential distribution random number generator (positive values only). This is an x-class noise generator.

Syntax
ar exprand krange
ir exprand krange

kr exprand krange

Performance
krange -- the range of the random numbers (0 - krange). Outputs only positive numbers.
For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

277

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the exprand opcode. It uses the files exprand.orc and exprand.sco.

Example 15-1. Example of the exprand opcode.

/* exprand.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 44100

kr = 4410

ksmps = 1
1

= 10
nchnls =

; Instrument #1.

instr 1
; Generate a random between 0 and 1.
; krange = 1

i1 exprand 1
print il
endin
[* exprand.orc */
/* exprand.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101
e
[* exprand.sco */

Its output should include a line like this:

instr 1: i1 = 0.174

See Also

betarand, bexprnd, cauchy, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis
MIT, Cambridge
1995

expseg

expseg — Trace a series of exponential segments between specified points.

278

Chapter 15. Orchestra Opcodes and Operators

Description

Trace a series of exponential segments between specified points.

Syntax

ar expseg ia, idurl, ib [, idur?] [, ic] [...]
kr expsegia, idurl, ib [, idur?] [, ic] [...]

Initialization
ia -- starting value. Zero is illegal for exponentials.
ib, ic, etc. -- value after durl seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Note that the expseg opcode does not operate correctly at audio rate when segments are shorter than a
k-period. Try the expsega opcode instead.

Examples
Here is an example of the expseg opcode. It uses the files expseg.orc and expseg.sco.

Example 15-1. Example of the expseg opcode.

[* expseg.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Create an amplitude envelope.
kenv expseg 0.01, p3*0.25, 1, p3*0.75, 0.01
kamp = kenv * 30000

al oscil kamp, kcps, 1

out al
endin

279

/* expseg.orc */

/* expseg.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for a half-second,
i 10 0.5 8.00

; Play Instrument #1 for a half-second,
il1058.01

; Play Instrument #1 for a half-second,
il1205 8.02

; Play Instrument #1 for a half-second,
i 1305 8.03

e

/* expseg.sco */

See Also

p4=8.00
p4=8.01
p4=8.02

p4=8.03

expon, expsega, expsegr, line, linseg, linsegr

Credits
Author: Gabriel Maldonado
New in Csound 3.57

expsega

Chapter 15. Orchestra Opcodes and Operators

expsega — An exponential segment generator operating at a-rate.

Description

An exponential segment generator operating at a-rate. This unit is almost identical to expseg, but more
precise when defining segments with very short durations (i.e., in a percussive attack phase) at audio rate.

Syntax

ar expsega ia, idurl, ib [, idur?] [, ic] [...]

Initialization

ia -- starting value. Zero is illegal.

ib, ic, etc. -- value after idurl seconds, etc. must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be

skipped.

280

Chapter 15. Orchestra Opcodes and Operators

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last defined line or curve to be continued

indefinitely in performance. The default is zero.

Performance

These units generate control or audio signals whose values can pass through two or more specified points.
The sum of dur values may or may not equal the instrument’s performance time. A shorter performance will
truncate the specified pattern, while a longer one will cause the last defined segment to continue on in the

same direction.

Examples

Here is an example of the expsega opcode. It uses the files expsega.orc and expsega.sco.

Example 15-1. Example of the expsega opcode.

/* expsega.orc */

/* Written by Kevin Conder */
; Initialize the global variables
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Define a short percussive amplitude envelope that
; goes from 0.01 to 20,000 and back.
aenv expsega 0.01, 0.1, 20000, 0.1, 0.01

al oscil aenv, 440, 1
out al

endin

/* expsega.orc */

[* expsega.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one
i101

; Play Instrument #1 for one
i111

; Play Instrument #1 for one
i121

; Play Instrument #1 for one
i131

e

[* expsega.sco */

second.
second.
second.

second.

281

Chapter 15. Orchestra Opcodes and Operators

See Also

expseg, expsegr

Credits
Author: Gabriel Maldonado
New in Csound 3.57

expsegr

expsegr — Trace a series of exponential segments between specified points including a release segment.

Description
Trace a series of exponential segments between specified points including a release segment.

Syntax

ar expsegr ia, idurl, ib [, idur?] [, ic] [...], irel, iz
kr expsegr ia, idurl, ib [, idur2] [, ic] [...], irel, iz
Initialization

ia -- starting value. Zero is illegal for exponentials.
ib, ic, etc. -- value after durl seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

irel, iz -- duration in seconds and final value of a note releasing segment.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

expsegr is amongst the Csound “r” units that contain a note-off sensor and release time extender. When each
senses an event termination or MIDI noteoff, it immediately extends the performance time of the current
instrument by irel seconds, and sets out to reach the value iz by the end of that period (no matter which
segment the unit is in). “r” units can also be modified by MIDI noteoff velocities. For two or more extenders
in an instrument, extension is by the greatest period.

282

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the expsegr opcode. It uses the files expsegr.orc and expsegr.sco.

Example 15-1. Example of the expsegr opcode.

/*
/*

Sr

expsegr.orc */
Written by Kevin Conder */

; Initialize the global variables.

= 44100

kr = 4410

ksmps
nchnls

)

10
1

; Instrument #1.

instr 1
; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Use an amplitude envelope with second-long release.

kenv expsegr 0.01, p3/2, 1, p3/2, 0.01, 1, 1
kamp = kenv * 30000

al oscil kamp, kcps, 1
out al

endin

/*
/*
/*

f

e
/*

expsegr.orc */

expsegr.sco */

Written by Kevin Conder */
Table #1, a sine wave.
10 16384 10 1

Make sure the score lasts for four seconds.
04

p4 = frequency (in pitch-class notation).

Play Instrument #1 for a half-second, p4=8.00
10 0.5 8.00

Play Instrument #1 for a half-second, p4=8.01
1105 801

Play Instrument #1 for a half-second, p4=8.02
12 05 802

Play Instrument #1 for a half-second, p4=8.03
13 05 8.03

expsegr.sco */

See Also

expon, expseg, expsega, line, linseg, linsegr

283

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Barry L. Vercoe
New in Csound 3.47

filelen

flelen — Returns the length of a sound file.

Description
Returns the length of a sound file.

Syntax
ir filelen ifilcod

Initialization
ifilcod -- sound file to be queried

Performance
filelen returns the length of the sound file ifilcod in seconds.

Examples
Here is an example of the filelen opcode. It uses the files filelen.orc, filelen.sco, and mary.wav.

Example 15-1. Example of the filelen opcode.

/* filelen.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1
; Print out the length of the audio file
; "mary.wav" in seconds.
ilen filelen "mary.wav"
print ilen
endin
/* filelen.orc */

[* filelen.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

284

Chapter 15. Orchestra Opcodes and Operators

e
/* filelen.sco */

The audio file “mary.wav” is 3.5 seconds long. So filelen’s output should include a line like this:

instr 1: ilen = 3.501

See Also
filenchnls, filepeak, filesr

Credits

Author: Matt Ingalls
July 1999

New in Csound version 3.57

filenchnls

filenchnls — Returns the number of channels in a sound file.

Description

Returns the number of channels in a sound file.

Syntax
ir filenchnls ifilcod

Initialization
ifilcod -- sound file to be queried

Performance

filenchnls returns the number of channels in the sound file ifilcod.

Examples
Here is an example of the filenchnls opcode. It uses the files filenchnlis.orc, filenchnls.sco, and mary.wav.

Example 15-1. Example of the filenchnls opcode.

/* filenchnls.orc */

285

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.
instr 1
; Print out the number of channels in the
; audio file "mary.wav".
ichnls filenchnls "mary.wav"
print ichnls
endin
/* filenchnls.orc */

/* filenchnls.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

e

/* filenchnls.sco */

Chapter 15. Orchestra Opcodes and Operators

The audio file “mary.wav” is monoaural (1 channel). So filenchnls’s output should include a line like this:

instr 1: ichnls = 1.000

See Also
filelen, filepeak, filesr

Credits

Author: Matt Ingalls
July 1999

New in Csound version 3.57

filepeak

filepeak — Returns the peak absolute value of a sound file.

Description

Returns the peak absolute value of a sound file.

Syntax
ir filepeak ifilcod [, ichnl]

286

Initialization
ifilcod -- sound file to be queried

Chapter 15. Orchestra Opcodes and Operators

ichnl (optional, default=0) -- channel to be used in calculating the peak value. Default is 0.

« ichnl =0 returns peak value of all channels

 ichnl > 0 returns peak value of ichnl

Performance

filepeak returns the peak absolute value of the sound file ifilcod. Currently, filepeak supports only AIFF-C

float files.

Examples

Here is an example of the filepeak opcode. It uses the files filepeak.orc, filepeak.sco, and mary.wav.

Example 15-1. Example of the filepeak opcode.

[* filepeak.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
; Print out the peak absolute value of the
; audio file "mary.wav".
ipeak filepeak "mary.wav"
print ipeak
endin
[* filepeak.orc */

[* filepeak.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

e

[* filepeak.sco */

The peak absolute value of the audio file “mary.wav” is 0.306902. So filepeak’s output should include a line

like this:

instr 1: ipeak = 0.307

287

Chapter 15. Orchestra Opcodes and Operators

See Also
filelen, filenchnls, filesr

Credits

Author: Matt Ingalls
July 1999

New in Csound version 3.57

filesr
filesr ~ — Returns the sample rate of a sound file.
Description

Returns the sample rate of a sound file.

Syntax
ir filesr ifilcod

Initialization
ifilcod -- sound file to be queried

Performance

filesr returns the sample rate of the sound file ifilcod.

Examples

Here is an example of the filesr opcode. It uses the files filesr.orc, filesr.sco, and mary.wav.

Example 15-1. Example of the filesr opcode.

[* filesr.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
; Print out the sampling rate of the
; audio file "mary.wav".
isr filesr "mary.wav"
print isr

288

Chapter 15. Orchestra Opcodes and Operators

endin
/* filesr.orc */

/* filesr.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

e

/* filesr.sco */

The audio file “mary.wav” was sampled at 44.1 KHz. So filesr’s output should include a line like this:

instr 1: isr = 44100.000

See Also
filelen, filenchnls, filepeak

Credits

Author: Matt Ingalls
July 1999

New in Csound version 3.57

filter2

filter2 — Performs filtering using a transposed form-II digital filter lattice with no time-varying control.

Description

General purpose custom filter with time-varying pole control. The filter coefficients implement the following
difference equation:

(1)*y(n) = b0*x[n] + b1*x[n-1] +...+ bM*x[n-M] - al*y[n-1] -...- aN*y[n-N]

the system function for which is represented by:
B(Z) b0+bl*Z* +..+bM*ZM

H(Z) = - = o
AZ) 1+al*Z!' +...+aN*ZN

289

Chapter 15. Orchestra Opcodes and Operators

Syntax
ar filter2 asig, iM, iN, ib0, ib1, ..., ibM, ial, ia2, ..., iaN
kr filter2 ksig, iM, iN, ib0, ib1, ..., ibM, ial, ia2, ..., iaN

Initialization

At initialization the number of zeros and poles of the filter are specified along with the corresponding zero
and pole coefficients. The coefficients must be obtained by an external filter-design application such as
Matlab and specified directly or loaded into a table via GENOI.

Performance

The filter2 opcodes perform filtering using a transposed form-II digital filter lattice with no time-varying
control.

Since filter2 implements generalized recursive filters, it can be used to specify a large range of general DSP
algorithms. For example, a digital waveguide can be implemented for musical instrument modeling using a
pair of delayr and delayw opcodes in conjunction with the filter2 opcode.

Examples

A first-order linear-phase lowpass linear-phase FIR filter operating on a k-rate signal:

k1 filter2 ksig, 2, 0, 0.5, 0.5 . k-rate FIR filter

See Also
zfilter2

Credits

Author: Michael A. Casey

M.LT.
Cambridge, Mass.

1997

fin
fin — Read signals from a file at a-rate.

Description

Read signals from a file at a-rate.

290

Chapter 15. Orchestra Opcodes and Operators

Syntax

fin ifilename, iskipframes, iformat, ainl1 [, ain2] [, ain3] [,...]

Initialization

ifilename -- input file name (can be a string or a handle number generated by fiopen)
iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)
iformat -- a number specifying the input file format.

« 0 - 32 bit floating points without header
« 1-16 bitintegers without header

Performance

fin (file input) is the complement of fout: it reads a multichannel file to generate audio rate signals. At the
present time no header is supported for the file format. The user must be sure that the number of channels of
the input file is the same as the number of ainX arguments.

See Also

fini, fink

Credits

Author: Gabriel Maldonado
Italy

1999
New in Csound version 3.56

fini
fini — Read signals from a file at i-rate.
Description

Read signals from a file at i-rate.

Syntax

fini ifilename, iskipframes, iformat, in1 [, in2] [, in3] [, ...]

Initialization

ifilename -- input file name (can be a string or a handle number generated by fiopen)

291

Chapter 15. Orchestra Opcodes and Operators

iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

+ 0 - floating points in text format (loop; see below)
« 1 -floating points in text format (no loop; see below)

+ 2 - 32 bit floating points in binary format (no loop)

Performance

fini is the complement of fouti and foutir. It reads the values each time the corresponding instrument note is
activated. When iformat is set to 0 and the end of file is reached, the file pointer is zeroed. This restarts the
scan from the beginning. When iformat is set to 1 or 2, no looping is enabled and at the end of file the
corresponding variables will be filled with zeroes.

See Also

fin, fink

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

fink
fink — Read signals from a file at k-rate.
Description

Read signals from a file at k-rate.

Syntax

fink ifilename, iskipframes, iformat, kin1 [, kin2] [, kin3] [,...]

Initialization
ifilename -- input file name (can be a string or a handle number generated by fiopen)
iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

« 0 - 32 bit floating points without header

292

Chapter 15. Orchestra Opcodes and Operators

+ 1-16 bitintegers without header

Performance

fink is the same as fin but operates at k-rate.

See Also

fin, fini

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

fiopen
fiopen — Opens a file in a specific mode.
Description

fiopen can be used to open a file in one of the specified modes.

Syntax

ihandle fiopen ifilename, imode

Initialization
ihandle -- a number which specifies this file.
ifilename -- the output file’s name (in double-quotes).

imode -- choose the mode of opening the file. imode can be a value chosen among the following:

+ 0 - open a text file for writing
« 1 - open a text file for reading
« 2 - open a binary file for writing

+ 3 -open a binary file for reading

293

Chapter 15. Orchestra Opcodes and Operators

Performance

fiopen opens a file to be used by the fout family of opcodes. It must be defined in the header section, external
to any instruments. It returns a number, ihandle, which unequivocally refers to the opened file.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir, the target file can be only specified by means of a handle-number.

See Also
fout, fouti, foutir, foutk

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

flanger

flanger — A user controlled flanger.

Description
A user controlled flanger.

Syntax

ar flanger asig, adel, kfeedback [, imaxd]

Initialization

imaxd(optional) -- maximum delay in seconds (needed for inital memory allocation)

Performance

asig -- input signal

adel -- delay in seconds

kfeedback -- feedback amount (in normal tasks this should not exceed 1, even if bigger values are allowed)

This unit is useful for generating choruses and flangers. The delay must be varied at a-rate connecting adel to
an oscillator output. Also the feedback can vary at k-rate. This opcode is implemented to allow kr different
than sr (else delay could not be lower than ksmps) enhancing realtime performance. This unit is very similar
to wguidel, the only difference is flanger does not have the lowpass filter.

294

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the flanger opcode. It uses the files flanger.orc, flanger.sco, and beats.wav.

Example 15-1. Example of the flanger opcode.

[* flanger.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Use the "beat.wav" audio file.
asig diskin "beats.wav", 1

; Vary the delay amount from 0 to 0.01 seconds.
adel line 0, p3, 0.01
kfeedback = 0.7

; Apply flange to the input signal.
aflang flanger asig, adel, kfeedback

; It can get loud, so clip its amplitude to 30,000.
al clip aflang, 1, 30000
out al

endin

[* flanger.orc */

[* flanger.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for two seconds.
i102

e

/* flanger.sco */

Credits

Author: Gabriel Maldonado
Italy

New in Csound version 3.49

flashtxt

flashtxt ~ — Allows text to be displayed from instruments like sliders

Description

Allows text to be displayed from instruments like sliders etc. (only on Unix and Windows at present)

295

Chapter 15. Orchestra Opcodes and Operators

Syntax
flashtxt iwhich, String

Initialization
iwhich -- the number of the window.

String -- the string to be displayed.

Performance

A window is created, identified by the iwhich argument, with the text string displayed. If the text is replaced
by a number then the window id deleted. Note that the text windows are globally numbered so different
instruments can change the text, and the window survives the instance of the instrument.

Examples

Here is an example of the flashtxt opcode. It uses the files flashtxt.orc and flashtxt.sco.

Example 15-1. Example of the flashtxt opcode.

/* flashtxt.orc */

; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

instr 1
flashtxt 1, "Instr 1 live"
ao oscil 4000, 440, 1
out ao

endin

/* flashtxt.orc */

/* flashtxt.sco */

; Table 1: an ordinary sine wave.

f 10 32768 10 1

; Play Instrument #1 for three seconds.
i103

e

/* flashtxt.sco */

FLbox

FLbox — A FLTK widget that displays text inside of a box.

296

Chapter 15. Orchestra Opcodes and Operators

Description
A FLTK widget that displays text inside of a box.

Syntax
ihandle FLbox "label", itype, ifont, isize, iwidth, iheight, ix, iy [, image]

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLbox and must not be set by the user label. (The user label is a double-quoted string
containing some user-provided text placed near the widget.)

“label” -- a double-quoted string containing some user-provided text, placed near corresponding widget.

Notice that with FLbox, it is not necessary to call the FLsetTextType opcode at all in order to use a symbol. In
this case, it is sufficient to set a label starting with “@” followed by the proper formatting string.

The following symbols are supported:

(G — (G (G | el |
| e - (e &< i |«
4 4] & — +
e | B e & — == E+

o i — ~
&= i | Earrow @returnarrow Esguare
[[\

— | W
Eeircle =2line Emeny @ Updrrow & Dndrrow

FLTK label supported symbols.

The @ sign may be followed by the following optional “formatting” characters, in this order:

1. “#” forces square scaling rather than distortion to the widget’s shape.

2. +[1-9] or -[1-9] tweaks the scaling a little bigger or smaller.

297

Chapter 15. Orchestra Opcodes and Operators

3. [1-9] rotates by a multiple of 45 degrees. “6” does nothing, the others point in the direction of that key

on a numeric keypad.

itype -- an integer number denoting the appearance of the widget.

The following values are legal for itype:

ifont -- an integer number denoting the font of FLbox.

1 - flat box

2 - up box

3 - down box

4 - thin up box

5 - thin down box

6 - engraved box

7 - embossed box

8 - border box

9 - shadow box

10 - rounded box

11 - rounded box with shadow
12 - rounded flat box

13 - rounded up box

14 - rounded down box
15 - diamond up box

16 - diamond down box
17 - oval box

18 - oval shadow box

19 - oval flat box

ifont argument to set the font type. The following values are legal for ifont:

1 - helvetica (same as "Arial" under Windows)

2 - helvetica bold

3 - helvetica italic

4 - helvetica bold italic
5 - courier

6 - courier bold

7 - courier italic

8 - courier bold italic
9 - times

10 - times bold

11 - times italic

12 - times bold italic

298

Chapter 15. Orchestra Opcodes and Operators

13 - symbol

e 14 - screen

« 15 -screen bold
16 - dingbats

isize -- size of the font.
iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of the upper left corner of the valuator, relative to the upper left corner of
corresponding window. (Expressed in pixels.)

iy -- vertical position of the upper left corner of the valuator, relative to the upper left corner of corresponding
window. (Expressed in pixels.)

image -- a handle referring to an eventual image opened with bmopen opcode. If it is set, it allows a skin for
that widget.

Note about the bmopen opcode: Although the documentation mentions the bmopen opcode, it has not been
implemented in Csound 4.22.

Performance

FLbox is useful to show some text in a window. The text is bounded by a box, whose aspect depends on itype
argument.

Note that FLbox is not a valuator and its value is fixed. Its value cannot be modified.

See Also
FLbutBank, FLbutton, FLprintk, FLprintk2, FLvalue

Credits
Author: Gabriel Maldonado

New in version 4.22

FLbutBank

FLbutBank — A FLTK widget opcode that creates a bank of buttons.

Description
A FLTK widget opcode that creates a bank of buttons.

299

Chapter 15. Orchestra Opcodes and Operators

Syntax

kout, ihandle FLbutBank itype, inumx, inumy, iwidth, iheight, ix, iy, iopcode [, kp1] [, kp2] [, kp3] [, kp4] [,
kp5] [....] [, kpN]

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLbutBank and must not be set by the user label. (The user label is a double-quoted
string containing some user-provided text placed near the widget.)

itype -- an integer number denoting the appearance of the widget. Its meaning is different for different types
of widget.

inumx -- number of buttons in each row of the bank.
inumy -- number of buttons in each column of the bank

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window, expressed in pixels

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window, expressed in pixels

iopcode -- score opcode type. You have to provide the ascii code of the letter corresponding to the score
opcode. At present time only “i” (ascii code 105) score statements are supported. A zero value refers to a
default value of “i”. So both 0 and 105 activates the i opcode. A value of -1 disables this opcode feature.

Performance
kout -- output value
kpl, kp2, ..., kpN -- arguments of the activated instruments.

The FLbutBank opcode creates a bank of buttons. For example, the following line:

gkButton,ihbl FLbutBank 12, 8, 8, 380, 180, 50, 350, 0, 7, 0, 0, 5000, 6000

will create the this bank:

fro-{re jfr1e|r2a fraz frao jjrae |rse |
[Cir e 17 =fir 25 lir 3a~ fir a1 |r ag~|r 57
FJLW}HB |['r??r?:;?:rﬁu res
ira=r e vg e 27 ffr as i ag | 51 58
ra '_Lriljr:m jre2giras |rad |2 |ren|
5 i |r21 |29 [ra7 ras |53 |Fe1 |
jrie|r1a|jr2z-[reo|rsa jras |[rsa|re2|
rr e s 2sjir s 39 47 |[r 55— 637

FLbutBank.
A click to a button checks that button. It may also uncheck a previous checked button belonging to the same

bank. So the behaviour is always that of radio-buttons. Notice that each button is labeled with a progressive
number. The kout argument is filled with that number when corresponding button is checked.

300

Chapter 15. Orchestra Opcodes and Operators

FLbutBank not only outputs a value but can also activate (or schedule) an instrument provided by the user
each time a button is pressed. If the iopcode argument is set to a negative number, no instrument is activated
so this feature is optional. In order to activate an instrument, iopcode must be set to 0 or to 105 (the ascii code

“sn

of character “i”, referring to the i score opcode). P-fields of the activated instrument are kp1 (instrument
number), kp2 (action time), kp3 (duration) and so on with user p-fields.

The itype argument sets the type of buttons identically to the FLbutton opcode. By adding 10 to the itype
argument (i.e. by setting 11 for type 1, 12 for type 2, 13 for type 3 and 14 for type 4), it is possible to skip the
current FLbutBank value when getting/setting snapshots (see General FLTK Widget-related Opcodes).

FLbutBank is very useful to retrieve snapshots.

See Also
FLbox, FLbutton, FLprintk, FLprintk2, FLvalue

Credits
Author: Gabriel Maldonado

New in version 4.22

FLbutton

FLbutton — A FLTK widget opcode that creates a button.

Description
A FLTK widget opcode that creates a button.

Syntax

kout, ihandle FLbutton "label", ion, ioff, itype, iwidth, iheight, ix, iy, iopcode [, kp1] [, kp2] [, kp3] [, kp4] [,
kp5] [....] [, kpN]

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLbutton and must not be set by the user label. (The user label is a double-quoted
string containing some user-provided text placed near the widget.)

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.

Notice that with FLbutton, it is not necessary to call the FLsetTextType opcode at all in order to use a symbol.
In this case, it is sufficient to set a label starting with “@” followed by the proper formatting string.

The following symbols are supported:

301

Chapter 15. Orchestra Opcodes and Operators

- (1 0o | el |
| i = vl (s =R
4 d| & — +
e | B e | L — == 0+
&=z | Earrow @returnarrow @scuare

[[\
Zcircle 22line Emeny @ Updrrow & Dndrrow

FLTK label supported symbols.

The @ sign may be followed by the following optional “formatting” characters, in this order:

1. “#” forces square scaling rather than distortion to the widget’s shape.
2. +[1-9] or -[1-9] tweaks the scaling a little bigger or smaller.

3. [1-9] rotates by a multiple of 45 degrees. “6” does nothing, the others point in the direction of that key
on a numeric keypad.

ion -- value output when the button is checked.
ioff -- value output when the button is unchecked.
itype -- an integer number denoting the appearance of the widget.

Several kind of buttons are possible, according to the value of ifype argument:

« 1-normal button
« 2 -light button

« 3 -check button

+ 4 - round button

This is the appearance of the buttons:

302

Chapter 15. Orchestra Opcodes and Operators

Monmal button

r Light button

= Cveck bution

O Round button

FLbutton.

iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iopcode -- score opcode type. You have to provide the ascii code of the letter corresponding to the score
opcode. At present time only “i” (ascii code 105) score statements are supported. A zero value refers to a
default value of “i”. So both 0 and 105 activates the i opcode. A value of -1 disables this opcode feature.

Performance
kout -- output value
kpl, kp2, ..., kpN -- arguments of the activated instruments.

Buttons of type 2, 3, and 4 also output (kout argument) the value contained in the ion argument when
checked, and that contained in ioff argument when unchecked.

By adding 10 to itype argument (i.e. by setting 11 for type 1, 12 for type 2, 13 for type 3 and 14 for type 4) it is
possible to skip the button value when getting/setting snapshots (see later section). FLbutton not only
outputs a value, but can also activate (or schedule) an instrument provided by the user each time a button is
pressed.

If the iopcode argument is set to a negative number, no instrument is activated. So this feature is optional. In
order to activate an instrument, iopcode must be set to 0 or to 105 (the ascii code of character “i”, referring to
the i score opcode).

P-fields of the activated instrument are kpI (instrument number), kp2 (action time), kp3 (duration) and so on
with user p-fields. Notice that in dual state buttons (light button, check button and round button), the
instrument is activated only when button state changes from unchecked to checked (not when passing from
checked to unchecked).

See Also
FLbox, FLbutBank, FLprintk, FLprintk2, FLvalue

303

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.22

FLcolor

FLcolor — A FLTK opcode that sets the primary colors.

Description

Sets the primary colors to RGB values given by the user.

Syntax
FLcolor ired, igreen, iblue

Initialization

ired -- The red color of the target widget. The range for each RGB component is 0-255
igreen -- The green color of the target widget. The range for each RGB component is 0-255
iblue -- The blue color of the target widget. The range for each RGB component is 0-255

Performance

These opcodes modify the appearance of other widgets. There are two types of such opcodes, those that don’'t
contain the ihandle argument which affect all subsequently declared widgets, and those without ihandle
which affect only a target widget previously defined.

FLcolor sets the primary colors to RGB values given by the user. This opcode affects the primary color of
(almost) all widgets defined next its location. User can put several instances of FLcolor in front of each widget
he intend to modify. However, to modify a single widget, it would be better to use the opcode belonging to the
second type (i.e. those containing ihandle argument).

FLcolor is designed to modify the colors of a group of related widgets that assume the same color. The
influence of FLcolor on subsequent widgets can be turned off by using -1 as the only argument of the opcode.
Also, using -2 (or -3) as the only value of FLcolor makes all next widget colors randomly selected. The
difference is that -2 selects a light random color, while -3 selects a dark random color.

See Also

FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

304

Chapter 15. Orchestra Opcodes and Operators

FLcolor2

FLcolor2 — A FLTK opcode that sets the secondary (selection) color.

Description

FLcolor2 is the same of FLcolor except it affects the secondary (selection) color.

Syntax
FLcolor2 ired, igreen, iblue

Initialization

ired -- The red color of the target widget. The range for each RGB component is 0-255
igreen -- The green color of the target widget. The range for each RGB component is 0-255
iblue -- The blue color of the target widget. The range for each RGB component is 0-255

Performance

These opcodes modify the appearance of other widgets. There are two types of such opcodes: those that don’t
contain the ihandle argument which affect all subsequently declared widgets, and those without ihandle
which affect only a target widget previously defined.

FLcolor2 is the same of FLcolor except it affects the secondary (selection) color. Setting it to -1 turns off the
influence of FLcolor2 on subsequent widgets. A value of -2 (or -3) makes all next widget secondary colors
randomly selected. The difference is that -2 selects a light random color, while -3 selects a dark random color.

See Also

FLcolor, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLcount

FLcount — A FLTK widget opcode that creates a counter.

305

Chapter 15. Orchestra Opcodes and Operators

Description

Allows the user to increase/decrease a value with mouse clicks on a corresponding arrow button.

Syntax

kout, ihandle FLcount "label", imin, imax, istepl, istep2, itype, iwidth, iheight, ix, iy, iopcode [, kp1] [, kp2] |,
kp3] [...] [, kpN]

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. Used by
further opcodes that changes some valuator’s properties. It is automatically set by the corresponding valuator.

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
imin -- minimum value of output range
imax -- maximum value of output range

istepl -- a floating-point number indicating the increment of valuator value corresponding to of each mouse
click. istep1 is for coarse adjustments.

istep2 -- a floating-point number indicating the increment of valuator value corresponding to of each mouse
click. istep2 is for fine adjustments.

itype -- an integer number denoting the appearance of the valuator.
iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iopcode -- score opcode type. You have to provide the ascii code of the letter corresponding to the score

opcode. At present time only “i” (ascii code 105) score statements are supported. A zero value refers to a
default value of “i”. So both 0 and 105 activates the i opcode. A value of -1 disables this opcode feature.

Performance
kout -- output value
kpl, kp2, ..., kpN -- arguments of the activated instruments.

FLcount allows the user to increase/decrease a value with mouse clicks on corresponding arrow buttons:

L L

FLcount 1

FLcount.

There are two kind of arrow buttons, for larger and smaller steps. Notice that FLcount not only outputs a
value and a handle, but can also activate (schedule) an instrument provided by the user each time a button is
pressed. P-fields of the activated instrument are kpI (instrument number), kp2 (action time), kp3 (duration)
and so on with user p-fields. If the iopcode argument is set to a negative number, no instrument is activated.
So this feature is optional.

306

Chapter 15. Orchestra Opcodes and Operators

See Also
FLjoy, FLkeyb, FLknob, FLroller, FLslider, FLtext

Credits
Author: Gabriel Maldonado

New in version 4.22

FLgetsnap

FLgetsnap — Retrieves a previously stored FLTK snapshot.

Description

Retrieves a previously stored snapshot (in memory), i.e. sets all valuator to the corresponding values stored in
that snaphot.

Syntax

inumsnap FLgetsnap index

Initialization
inumsnap -- current number of snapshots.
index -- a number referring unequivocally to a snapshot. Several snapshots can be stored in the same bank.

Performance

FLgetsnap retrieves a previously stored snapshot (in memory), i.e. sets all valuator to the corresponding
values stored in that snapshot. The index argument unequivocally must refer to an already existing snapshot.
If the index argument refers to an empty snapshot or to a snapshot that doesn't exist, no action is done.
FLsetsnap outputs the current number of snapshots (inumsnap argument).

See Also
FLloadsnap, FLrun, FLsavesnap, FLsetsnap, FLupdate

Credits
Author: Gabriel Maldonado

New in version 4.22

307

Chapter 15. Orchestra Opcodes and Operators

FLgroup

FLgroup — A FLTK container opcode that groups child widgets.

Description
A FLTK container opcode that groups child widgets.

Syntax
FLgroup "label", iwidth, iheight, ix, iy [, iborder] [, image]

Initialization

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
iwidth -- width of widget.

iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iborder (optional, default=0) -- border type of the container. It is expressed by means of an integer number
chosen from the following:

« 0-no border
e 1-down box border

« 2 -up boxborder

3 - engraved border

+ 4 - embossed border

« 5-Dblackline border

* 6 - thin down border

« 7 - thin up border

If the integer number doesn’t match any of the previous values, no border is provided as the default.

image (optional) -- a handle referring to an eventual image opened with the bmopen opcode. If it is set, it
allows a skin for that widget.

Note about the bmopen opcode: Although the documentation mentions the bmopen opcode, it has not been
implemented in Csound 4.22.

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

308

Chapter 15. Orchestra Opcodes and Operators

See Also
FLgroupEnd, FLpack, FLpackEnd, FLpanel, FLpanelEnd, FLscroll, FLscrollEnd, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado

New in version 4.22

FLgroupEnd

FLgroupEnd — Marks the end of a group of FLTK child widgets.

Description
Marks the end of a group of FLTK child widgets.

Syntax
FLgroupEnd

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

See Also
FLgroup, FLpack, FLpackEnd, FLpanel, FLpanelEnd, FLscroll, FLscrollEnd, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado

New in version 4.22

FLhide

FLhide — Hides the target FLTK widget.

309

Chapter 15. Orchestra Opcodes and Operators

Description
Hides the target FLTK widget, making it invisible.

Syntax
FLhide ihandle

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLbutBank and must not be set by the user label. (The user label is a double-quoted
string containing some user-provided text placed near the widget.)

Performance
FLhide hides target widget, making it invisible.

See Also

FLcolor, FLcolor2, FLIlabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado
New in version 4.22

FLjoy

FLjoy — A FLTK opcode that acts like a joystick.

Description

FLjoy is a squared area that allows the user to modify two output values at the same time. It acts like a joystick.

Syntax

koutx, kouty, ihandlex, ihandley FLjoy "label", iminx, imaxx, iminy, imaxy, iexpx, iexpy, idispx, idispy, iwidth,
iheight, ix, iy

Initialization

ihandlex -- a handle value (an integer number) that unequivocally references a corresponding widget. Used
by further opcodes that changes some valuator’s properties. It is automatically set by the corresponding
valuator.

310

Chapter 15. Orchestra Opcodes and Operators

ihandley -- a handle value (an integer number) that unequivocally references a corresponding widget. Used
by further opcodes that changes some valuator’s properties. It is automatically set by the corresponding
valuator.

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
iminx -- minimum x value of output range

imaxx -- maximum x value of output range

iminy -- minimum y value of output range

imaxy -- maximum y value of output range

iwidth -- width of widget.

idispx -- a handle value that was output from a previous instance of the FLvalue opcode to display the
current value of the current valuator in the FLvalue widget itself. If the user doesn’t want to use this feature
that displays current values, it must be set to a negative number by the user.

idispy -- a handle value that was output from a previous instance of the FLvalue opcode to display the current
value of the current valuator in the FLvalue widget itself. If the user doesn't want to use this feature that
displays current values, it must be set to a negative number by the user.

iexpx -- an integer number denoting the behaviour of valuator:

« 0 =valuator output is linear

« -1 =valuator output is exponential

All other positive numbers for iexpx indicate the number of an existing table that is used for indexing. Linear
interpolation is provided in table indexing. A negative table number suppresses interpolation.

iexpy -- an integer number denoting the behaviour of valuator:

« 0 =valuator output is linear

« -1 =valuator output is exponential

All other positive numbers for iexpy indicate the number of an existing table that is used for indexing. Linear
interpolation is provided in table indexing. A negative table number suppresses interpolation.

IMPORTANT!

Notice that the tables used by valuators must be created with the ftgen opcode and placed in the orchestra
before the corresponding valuator. They can not placed in the score. In fact, tables placed in the score are
created later than the initialization of the opcodes placed in the header section of the orchestra.

iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

Performance
koutx -- x output value

kouty -- y output value

311

Chapter 15. Orchestra Opcodes and Operators

See Also
FLcount, FLkeyb, FLknob, FLroller, FLslider, FLtext

Credits
Author: Gabriel Maldonado

New in version 4.22

FLkeyb

FLkeyb — Experimental, no documentation exists. May be deprecated in future versions.

Description
Experimental, no documentation exists. May be deprecated in future versions.

Syntax
kout FLkeyb kparam1 [, kparam?2] ... [, kparamN]

See Also
FLcount, FLjoy, FLknob, FLroller, FLslider, FLtext

Credits
Author: Gabriel Maldonado

New in version 4.22

FLknob

FLknob — A FLTK widget opcode that creates a knob.

Description
A FLTK widget opcode that creates a knob.

Syntax

kout, ihandle FLknob "label", imin, imax, iexp, itype, idisp, iwidth, ix, iy [, icursorsize]

312

Chapter 15. Orchestra Opcodes and Operators

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLknob and must not be set by the user label. (The user label is a double-quoted
string containing some user-provided text placed near the widget.)

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
imin -- minimum value of output range.
imax -- maximum value of output range.

iexp -- an integer number denoting the behaviour of valuator:

« 0 =valuator output is linear

« -1 =valuator output is exponential

All other positive numbers for iexp indicate the number of an existing table that is used for indexing. Linear
interpolation is provided in table indexing. A negative table number suppresses interpolation.

IMPORTANT!

Notice that the tables used by valuators must be created with the ftgen opcode and placed in the orchestra
before the corresponding valuator. They can not placed in the score. In fact, tables placed in the score are
created later than the initialization of the opcodes placed in the header section of the orchestra.

itype -- an integer number denoting the appearance of the valuator.

The itype argument can be set to the following values:

* 1-a3-Dknob

« 2 -apie-like knob

« 3 -aclock-like knob
« 4 -aflatknob

FLEnoD type 1
A 3-D knob.

FLENQ =i
A pie knob.

FLEND 23
A clock knob.

313

Chapter 15. Orchestra Opcodes and Operators

FLEN 4
A flat knob.

idisp -- a handle value that was output from a previous instance of the FLvalue opcode to display the current
value of the current valuator in the FLvalue widget itself. If the user doesn’t want to use this feature that
displays current values, it must be set to a negative number by the user.

iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

icursorsize (optional) -- If FLknob’s itype is set to 1 (3D knob), this parameter controls the size of knob cursor.

Performance
kout -- output value

FLknob puts a knob in the corresponding container.

See Also
FLcount, FLjoy, FLkeyb, FLroller, FLslider, FLtext

Credits
Author: Gabriel Maldonado

New in version 4.22

FLlabel

FLIabel — A FLTK opcode that modifies the appearance of a text label.

Description

Modifies a set of parameters related to the text label appearence of a widget (i.e. size, font, alignment and
color of corresponding text).

Syntax

FLlabel isize, ifont, ialign, ired, igreen, iblue

314

Chapter 15. Orchestra Opcodes and Operators

Initialization

isize -- size of the font of the target widget. Normal values are in the order of 15. Greater numbers enlarge font
size, while smaller numbers reduce it.

ifont -- sets the the font type of the label of a widget.
Legal values for ifont argument are:

« 1 - Helvetica (same as Arial under Windows)
« 2 - Helvetica Bold

+ 3 - Helvetica Italic

» 4 - Helvetica Bold Italic
» 5- Courier

» 6 - Courier Bold

« 7 - Courier Italic

« 8- Courier Bold Italic

* 9-Times

« 10 - Times Bold

« 11 - Times Italic

« 12 - Times Bold Italic

« 13 - Symbol

» 14 - Screen

« 15 - Screen Bold

» 16 - Dingbats

ialign -- sets the alignment of the label text of the widget.

Legal values for ialign argument are:

« 1 - align center
« 2-aligntop

» 3 -align bottom
« 4 - align left

« 5-align right

6 - align top-left

7 - align top-right

8 - align bottom-left
+ 9 - align bottom-right

ired -- The red color of the target widget. The range for each RGB component is 0-255

igreen -- The green color of the target widget. The range for each RGB component is 0-255
iblue -- The blue color of the target widget. The range for each RGB component is 0-255

315

Chapter 15. Orchestra Opcodes and Operators

Performance

FLlabel modifies a set of parameters related to the text label appearance of a widget, i.e. size, font, alignment
and color of corresponding text. This opcode affects (almost) all widgets defined next its location. A user can
put several instances of FLlabel in front of each widget he intends to modify. However, to modify a particular
widget, it is better to use the opcode belonging to the second type (i.e. those containing the ihandle
argument).

The influence of FLIabel on the next widget can be turned off by using -1 as its only argument. FLIabel is
designed to modify text attributes of a group of related widgets.

See Also

FLcolor, FLcolor2, FLhide, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLloadsnap

FLloadsnap — Loads all snapshots into the memory bank of the current orchestra.

Description
FLloadsnap loads all the snapshots contained in a file into the memory bank of the current orchestra.

Syntax

FLlIoadsnap "filename"

Initialization

"filename" -- a double-quoted string corresponding to a file to load a bank of snapshots.

Performance
FLloadsnap loads all snapshots contained in filename into the memory bank of current orchestra.

See Also
FLgetsnap, FLrun, FLsavesnap, FLsetsnap, FLupdate

316

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.22

FLpack

FLpack — Provides the functionality of compressing and aligning FITK widgets.

Description

FLpack provides the functionality of compressing and aligning widgets.

Syntax
FLpack iwidth, iheight, ix, iy, FLpack

Initialization
iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

itype -- an integer number that modifies the appearance of the target widget.

The itype argument expresses the type of packing:

« 0 - vertical

e 1-horizontal

ispace -- sets the space between the widgets.

iborder -- border type of the container. It is expressed by means of an integer number chosen from the
following:

« 0-no border

« 1-down box border
« 2 -up box border

» 3 - engraved border

4 - embossed border
5 - black line border

e 6 - thin down border

7 - thin up border

317

Performance

Chapter 15. Orchestra Opcodes and Operators

FLpack provides the functionality of compressing and aligning widgets.

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

Examples

The following example:

gkl,ihsl
gk2,ihs2
gk3,ihs3
gk4,ihs4
gk5,ihs5
gk6,ihs6
gk7,ihs7

FLpanel "Panell1",450,300,100,100
FLpack 400,300, 10,40,0,15,3

FLslider
FLslider
FLslider
FLslider
FLslider
FLslider
FLslider
FLpackEnd
FLpanelEnd

"FLslider
"FLslider
"FLslider
"FLslider
"FLslider
"FLslider
"FLslider

NgkRwNR

500, 1000, 2 ,1, -1, 300,15, 20,50

300, 5000, 2 ,3, -1, 300,15, 20,100
350, 1000, 2 ,5, -1, 300,15, 20,150
250, 5000, 1 ,11, -1, 300,30, 20,200
220, 8000, 2 ,1, -1, 300,15, 20,250
1, 5000, 1 ,13, -1, 300,15, 20,300

870, 5000, 1 ,15, -1, 300,30, 20,350

...will produce this result, when resizing the window:

= Panel1 H[=1E3

[— —

[

=1

‘hBEE.D- |_|

15535101

286,25 = | =

FLpack.

318

Chapter 15. Orchestra Opcodes and Operators

See Also
FLgroup, FLgroupEnd, FLpackEnd, FLpanel, FLpanelEnd, FLscroll, FLscrollEnd, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado

New in version 4.22

FLpackEnd

FLpackEnd — Marks the end of a group of compressed or aligned FLTK widgets.

Description
Marks the end of a group of compressed or aligned FLTK widgets.

Syntax
FLpackEnd

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

See Also
FLgroup, FLgroupEnd, FLpack, FLpanel, FLpanelEnd, FLscroll, FLscrollEnd, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado

New in version 4.22

FLpanel

FLpanel — Creates a window that contains FLTK widgets.

319

Chapter 15. Orchestra Opcodes and Operators

Description

Creates a window that contains FLTK widgets.

Syntax
FLpanel "label", iwidth, iheight [, ix] [, iy] [, iborder]

Initialization

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
iwidth -- width of widget.

iheight -- height of widget.

ix (optional) -- horizontal position of upper left corner of the valuator, relative to the upper left corner of
corresponding window (expressed in pixels).

iy (optional) -- vertical position of upper left corner of the valuator, relative to the upper left corner of
corresponding window (expressed in pixels).

iborder (optional) -- border type of the container. It is expressed by means of an integer number chosen from
the following:

0 - no border

« 1-down box border
e 2-up boxborder

» 3 - engraved border

« 4 - embossed border
5 - black line border
» 6 - thin down border

7 - thin up border

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

Examples

FLpanel creates a window. It must be followed by the opcode FLpanelEnd when all widgets internal to it are
declared. For example:

FLpanel "PanelPluto”,450,550,100,100 ;***** start of container
gkl,ihl FLslider "FLslider 1", 500, 1000, 2 ,1
gk2,ih2 FLslider "FLslider 2", 300, 5000, 2 ,3
gk3,ih3 FLslider "FLslider 3", 350, 1000, 2 .5, -
gk4,ih4 FLslider "FLslider 4", 250, 5000, 1 ,11,-1, 300,30, 20,200
FLpanelEnd ;***** end of container

320

Chapter 15. Orchestra Opcodes and Operators

will output the following result:

PanelPlito

FLpanel.

See Also
FLgroup, FLgroupEnd, FLpack, FLpackEnd, FLpanelEnd, FLscroll, FLscrollEnd, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado
New in version 4.22

FLpanelEnd

FLpanelEnd — Marks the end of a group of FLTK widgets contained inside of a window (panel).

Description

Marks the end of a group of FLTK widgets contained inside of a window (panel).

321

Chapter 15. Orchestra Opcodes and Operators

Syntax
FLpanelEnd

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

See Also
FLgroup, FLgroupEnd, FLpack, FLpackEnd, FLpanel, FLscroll, FLscrollEnd, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado

New in version 4.22

FLprintk

FLprintk — A FLTK opcode that prints a k-rate value at specified intervals.

Description
FLprintk is similar to printk but shows values of a k-rate signal in a text field instead of on the console.

Syntax
FLprintk itime, kval, idisp

Initialization
itime -- how much time in seconds is to elapse between updated displays.

idisp -- a handle value that was output from a previous instance of the FLvalue opcode to display the current
value of the current valuator in the FLvalue widget itself. If the user doesn’'t want to use this feature that
displays current values, it must be set to a negative number by the user.

Performance
kval -- k-rate signal to be displayed.

FLprintk is similar to printk, but shows values of a k-rate signal in a text field instead of showing it in the
console. The idisp argument must be filled with the ihandle return value of a previous FLvalue opcode. While
FLvalue should be placed in the header section of an orchestra inside an FLpanel/ FLpanelEnd block,
FLprintk must be placed inside an instrument to operate correctly. For this reason, it slows down
performance and should be used for debugging purposes only.

322

Chapter 15. Orchestra Opcodes and Operators

See Also
FLbox, FLbutBank, FLbutton, FLprintk2, FLvalue

Credits
Author: Gabriel Maldonado

New in version 4.22

FLprintk2

FLprintk2 — A FLTK opcode that prints a new value every time a control-rate variable changes.

Description
FLprintk2 is similar to FLprintk but shows a k-rate variable’s value only when it changes.

Syntax
FLprintk2 kval, idisp

Initialization

idisp -- a handle value that was output from a previous instance of the FLvalue opcode to display the current
value of the current valuator in the FLvalue widget itself. If the user doesn’t want to use this feature that
displays current values, it must be set to a negative number by the user.

Performance
kval -- k-rate signal to be displayed.

FLprintk2 is similar to FLprintk, but shows the k-rate variable’s value only each time it changes. Useful for
monitoring MIDI control changes when using sliders. It should be used for debugging purposes only, since it
slows-down performance.

See Also
FLbox, FLbutBank, FLbutton, FLprintk, FLvalue

Credits
Author: Gabriel Maldonado

New in version 4.22

323

Chapter 15. Orchestra Opcodes and Operators

FLroller

FLroller =~ — A FLTK widget that creates a transversal knob.

Description
FLroller is a sort of knob, but put transversally.

Syntax
kout, ihandle FLroller "label", imin, imax, istep, iexp, itype, idisp, iwidth, iheight, ix, iy

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLroller and must not be set by the user label. (The user label is a double-quoted
string containing some user-provided text placed near the widget.)

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
imin -- minimum value of output range.
imax -- maximum value of output range.

istep -- a floating-point number indicating the increment of valuator value corresponding to of each mouse
click. The istep argument allows the user to arbitrarily slow roller’s motion, enabling arbitrary precision.

iexp -- an integer number denoting the behaviour of valuator:

« 0 =valuator output is linear

« -1 =valuator output is exponential

All other positive numbers for iexp indicate the number of an existing table that is used for indexing. Linear
interpolation is provided in table indexing. A negative table number suppresses interpolation.

IMPORTANT!

Notice that the tables used by valuators must be created with the ftgen opcode and placed in the orchestra
before the corresponding valuator. They can not placed in the score. In fact, tables placed in the score are
created later than the initialization of the opcodes placed in the header section of the orchestra.

itype -- an integer number denoting the appearance of the valuator.

The itype argument can be set to the following values:

e 1 -horizontal roller

« 2 -vertical roller

idisp -- a handle value that was output from a previous instance of the FLvalue opcode to display the current
value of the current valuator in the FLvalue widget itself. If the user doesn’t want to use this feature that
displays current values, it must be set to a negative number by the user.

iwidth -- width of widget.
iheight -- height of widget.

324

Chapter 15. Orchestra Opcodes and Operators

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

Performance
kout -- output value
FLroller is a sort of knob, but put transversally:

15T O O N 15[|
FLraller 1
FLroller.

See Also
FLcount, FLjoy, FLkeyb, FLknob, FLslider, FLtext

Credits
Author: Gabriel Maldonado

New in version 4.22

FLrun

FLrun — Starts the FLTK widget thread.

Description
Starts the FLTK widget thread.

Syntax

FLrun

Performance

This opcode must be located at the end of all widget declarations. It has no arguments, and its purpose is to
start the thread related to widgets. Widgets would not operate if FLrun is missing.

See Also
FLgetsnap, FLIoadsnap, FLsavesnap, FLsetsnap, FLupdate

325

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsavesnap

FLsavesnap — Saves all snapshots currently created into a file.

Description

FLsavesnap saves all snapshots currently created (i.e. the entire memory bank) into a file.

Syntax
FLsavesnap "filename"

Initialization

“filename” -- a double-quoted string corresponding to a file to store a bank of snapshots.

Performance

FLsavesnap saves all snapshots currently created (i.e. the entire memory bank) into a file whose name is
filename. Since the file is a text file, snapshot values can also be edited manually by means of a text editor.
The format of the data stored in the file is the following (at present time, this could be changed in next
Csound version):

0
FLvalue 0 0 1 0 ™
FLvalue 0 0 1 0 ™
FLvalue 0 0 1 0 ™
FLslider 331.946 80 5000 -1 "frequency of the first oscillator"

FLslider 385.923 80 5000 -1 "frequency of the second oscillator"

FLslider 80 80 5000 -1 “frequency of the third oscillator"

FLcount 0 0 10 O "this index must point to the location number where snapshot is stored"
FLbutton 0 0 1 0 "Store snapshot to current index"

FLbutton 0 0 1 0 "Save snapshot bank to disk"

FLbutton 0 0 1 0 "Load snapshot bank from disk"

FLbox 0 0 1 0 ™

1
FLvalue 0 0
FLvalue 0 0
FLvalue 0 o™
FLslider 81 80 5000 -1 "frequency of the first oscillator"

FLslider 385.923 80 5000 -1 "frequency of the second oscillator"
FLslider 80 80 5000 -1 “frequency of the third oscillator"
FLcount 1 0 10 O "this index must point to the location number where snapshot is stored"

01
01
01
9.72

FLbutton 0 0 1 0 "Store snapshot to current index"
FLbutton 0 0 1 0 "Save snapshot bank to disk"
FLbutton 0 0 1 0 "Load snapshot bank from disk"
FLbox 0 0 1 0 ™

2

326

Chapter 15. Orchestra Opcodes and Operators

As you can see, each snapshot contain several lines. Each snapshot is separated from previous and next
snapshot by a line of this kind:

Then there are several lines containing data. Each of these lines corresponds to a widget.

The first field of each line is an unquoted string containing opcode name corresponding to that widget.
Second field is a number that expresses current value of a snapshot. In current version, this is the only field
that can be modified manually. The third and fourth fields shows minimum and maximum values allowed for
that valuator. The fifth field is a special number that indicates if the valuator is linear (value 0), exponential
(value -1), or is indexed by a table interpolating values (negative table numbers) or non-interpolating
(positive table numbers). The last field is a quoted string with the label of the widget. Last line of the file is
always

See Also
FLgetsnap, FLIoadsnap, FLrun, FLsetsnap, FLupdate

Credits
Author: Gabriel Maldonado

New in version 4.22

FLscroll

FLscroll — A FLTK opcode that adds scroll bars to an area.

Description
FLscroll adds scroll bars to an area.

Syntax
FLscroll iwidth, iheight [, ix] [, iy]

327

Chapter 15. Orchestra Opcodes and Operators

Initialization
iwidth -- width of widget.
iheight -- height of widget.

ix (optional) -- horizontal position of upper left corner of the valuator, relative to the upper left corner of
corresponding window (expressed in pixels).

iy (optional) -- vertical position of upper left corner of the valuator, relative to the upper left corner of
corresponding window (expressed in pixels).

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

FLscroll adds scroll bars to an area. Normally you must set arguments iwidth and iheight equal to that of the
parent window or other parent container. ix and iy are optional since they normally are set to zero. For
example the following code:

FLpanel "PanelPluto",400,300,100,100
FLscroll 400,300

gkl,ihl FLslider "FLslider 1", 500, 1000, 2 ,1, -1, 300,15, 20,50
gk2,ih2 FLslider "FLslider 2", 300, 5000, 2 ,3, -1, 300,15, 20,100
gk3,ih3 FLslider "FLslider 3", 350, 1000, 2 ,5, -1, 300,15, 20,150
gk4,ih4 FLslider “FLslider 4", 250, 5000, 1 ,11,-1, 300,30, 20,200
FLscrollEnd
FLpanelEnd

will show scroll bars, when the main window size is reduced:

= PanelPluto Hi=1 &3
' ! =

FLslider 1
I 1

FLslider 2

1

FLslider 3
i =
- B,
FLscroll.

328

Chapter 15. Orchestra Opcodes and Operators

See Also
FLgroup, FLgroupEnd, FLpack, FLpackEnd, FLpanel, FLpanelEnd, FLscrollEnd, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado

New in version 4.22

FLscrollEnd

FLscrollEnd — A FLTK opcode that marks the end of an area with scrollbars.

Description
A FLTK opcode that marks the end of an area with scrollbars.

Syntax
FLscrollEnd

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

See Also
FLgroup, FLgroupEnd, FLpack, FLpackEnd, FLpanel, FLpanelEnd, FLscroll, FLtabs, FLtabsEnd

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetAlign

FLsetAlign ~ — Sets the text alignment of a label of a FLTK widget.

329

Chapter 15. Orchestra Opcodes and Operators

Description
FLsetAlign sets the text alignment of the label of the target widget.

Syntax
FLsetAlign ialign, ihandle

Initialization
ialign -- sets the alignment of the label text of widgets.

The legal values for the ialign argument are:

« 1 - align center

2 - align top

3 - align bottom

4 - align left

5 - align right

6 - align top-left

7 - align top-right
« 8- align bottom-left

9 - align bottom-right

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLlabel, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetBox

FLsetBox — Sets the appearance of a box surrounding a FLTK widget.

330

Chapter 15. Orchestra Opcodes and Operators

Description

FLsetBox sets the appearance of a box surrounding the target widget.

Syntax
FLsetBox itype, ihandle

Initialization
itype -- an integer number that modify the appearance of the target widget.

Legal values for the itype argument are:

« 1-flat box

« 2-upbox

* 3 -down box

e 4 - thin up box

« 5 - thin down box

» 6 - engraved box

« 7 - embossed box

» 8- border box

« 9 -shadow box

« 10 - rounded box

« 11 - rounded box with shadow
« 12 - rounded flat box

« 13 - rounded up box

« 14 - rounded down box
« 15 - diamond up box

« 16 - diamond down box
« 17 - oval box

» 18 - oval shadow box

« 19 - oval flat box

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

331

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetColor

FLsetColor — Sets the primary color of a FLTK widget.

Description
FLsetColor sets the primary color of the target widget.

Syntax
FLsetColor ired, igreen, iblue, ihandle

Initialization

ired -- The red color of the target widget. The range for each RGB component is 0-255
igreen -- The green color of the target widget. The range for each RGB component is 0-255
iblue -- The blue color of the target widget. The range for each RGB component is 0-255

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor2, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetColor2

FLsetColor2 — Sets the secondary (or selection) color of a FLTK widget.

332

Chapter 15. Orchestra Opcodes and Operators

Description

FLsetColor2 sets the secondary (or selection) color of the target widget.

Syntax

FLsetColor2 ired, igreen, iblue, ihandle

Initialization

ired -- The red color of the target widget. The range for each RGB component is 0-255
igreen -- The green color of the target widget. The range for each RGB component is 0-255
iblue -- The blue color of the target widget. The range for each RGB component is 0-255

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetFont, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetFont

FLsetFont — Sets the font type of a FLTK widget.

Description
FLsetFont sets the font type of the target widget.

Syntax
FLsetFont ifont, ihandle

Initialization
ifont -- sets the the font type of the label of a widget.

Legal values for ifont argument are:

« 1 - Helvetica (same as Arial under Windows)

333

Chapter 15. Orchestra Opcodes and Operators

« 2 - Helvetica Bold

» 3 - Helvetica Italic

« 4 - Helvetica Bold Italic
» 5 - Courier

« 6 - Courier Bold

» 7 - Courier Italic

» 8- Courier Bold Italic
* 9-Times

« 10 - Times Bold

« 11 - Times Italic

« 12 - Times Bold Italic
+ 13- Symbol

» 14 - Screen

« 15 - Screen Bold

+ 16 - Dingbats

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIlabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetPosition, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetPosition

FLsetPosition — Sets the position of a FLTK widget.

Description

FLsetPosition sets the position of the target widget according to the ix and iy arguments.

Syntax

FLsetPosition ix, iy, ihandle

334

Chapter 15. Orchestra Opcodes and Operators

Initialization

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIlabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetSize,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetSize

FLsetSize — Resizes a FLTK widget.

Description

FLsetSize resizes the target widget (not the size of its text) according to the iwidth and iheight arguments.

Syntax
FLsetSize iwidth, iheight, ihandle

Initialization
iwidth -- width of widget.
iheight -- height of widget.

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

335

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetsnap

FLsetsnap — Stores the current status of all FLTK valuators into a snapshot location.

Description

FLsetsnap stores the current status of all valuators present in the orchestra into a snapshot location (in
memory).

Syntax

inumsnap, inumval FLsetsnap index [, ifn]

Initialization

inumsnap -- current number of snapshots.

inumval -- number of valuators (whose value is stored in a snapshot) present in current orchestra.

index -- a number referring unequivocally to a snapshot. Several snapshots can be stored in the same bank.

ifn (optional) -- optional argument referring to an already allocated table, to store values of a snapshot.

Performance

The FLsetsnap opcode stores current status of all valuators present in the orchestra into a snapshot location
(in memory). Any number of snapshots can be stored in the current bank. Banks are structures that only exist
in memory, there are no other reference to them other that they can be accessed by FLsetsnap, FLsavesnap,
FLloadsnap and FLgetsnap opcodes. Only a single bank can be present in memory.

If the optional ifn argument refers to an already allocated and valid table, the snapshot will be stored in the
table instead of in the bank. So that table can be accessed from other Csound opcodes.

The index argument unequivocally refers to a determinate snapshot. If the value of index refers to a
previously stored snapshot, all its old values will be replaced with current ones. If index refers to a snapshot
that doesn’t exist, a new snapshot will be created. If the index value is not adjacent with that of a previously
created snapshot, some empty snapshots will be created. For example, if a location with index 0 contains the
only and unique snapshot present in a bank and the user stores a new snapshot using index 5, all locations
between 1 and 4 will automatically contain empty snapshots. Empty snapshots don’t contain any data and
are neutral.

FLsetsnap outputs the current number of snapshots (the inumsnap argument) and the total number of values
stored in each snapshot (inumval). inumuval is equal to the number of valuators present in the orchestra.

See Also
FLgetsnap, FLloadsnap, FLrun, FLsavesnap, FLupdate

336

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetText

FLsetText — Sets the label of a FLTK widget.

Description
FLsetText sets the label of the target widget to the double-quoted text string provided with the itext argument.

Syntax
FLsetText "itext", ihandle

Initialization
“Itext” -- a double-quoted string denoting the text of the label of the widget.

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetSize, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetTextColor

FLsetTextColor ~ — Sets the color of the text label of a FLTK widget.

Description
FLsetTextColor sets the color of the text label of the target widget.

337

Chapter 15. Orchestra Opcodes and Operators

Syntax
FLsetTextColor isize, ihandle

Initialization

isize -- size of the font of the target widget. Normal values are in the order of 15. Greater numbers enlarge font
size, while smaller numbers reduce it.

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetSize, FLsetText, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetTextSize

FLsetTextSize — Sets the size of the text label of a FLTK widget.

Description
FLsetTextSize sets the size of the text label of the target widget.

Syntax

FLsetTextSize isize, ihandle

Initialization

isize -- size of the font of the target widget. Normal values are in the order of 15. Greater numbers enlarge font
size, while smaller numbers reduce it.

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

338

Chapter 15. Orchestra Opcodes and Operators

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetSize, FLsetText, FLsetTextColor, FLsetTextType, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetTextType

FLsetTextType — Sets some font attributes of the text label of a FLTK widget.

Description
FLsetTextType sets some attributes related to the fonts of the text label of the target widget.

Syntax
FLsetTextType itype, ihandle

Initialization
itype -- an integer number that modify the appearance of the target widget.

The legal values of itype are:

« 0-normal label

« 1 -nolabel (hides the text)

« 2 -symbollabel (see below)

« 3 -shadow label

« 4 - engraved label

» 5- embossed label

« 6- bitmap label (not implemented yet)
« 7- pixmap label (not implemented yet)
« 8- image label (not implemented yet)

« 9- multi label (not implemented yet)

» 10- free-type label (not implemented yet)

When using itype=3 (symbol label), it is possible to assign a graphical symbol instead of the text label of the
target widget. In this case, the string of the target label must always start with “@”. If it starts with something
else (or the symbol is not found), the label is drawn normally. The following symbols are supported:

339

Chapter 15. Orchestra Opcodes and Operators

- (1 0o | el |
| i = vl (s =R
4 d| & — +
e | B e | L — == 0+
&=z | Earrow @returnarrow @scuare

[[\
Zcircle 22line Emeny @ Updrrow & Dndrrow

FLTK label supported symbols.

The @ sign may be followed by the following optional “formatting” characters, in this order:

1. “#” forces square scaling rather than distortion to the widget’s shape.
2. +[1-9] or -[1-9] tweaks the scaling a little bigger or smaller.

3. [1-9] rotates by a multiple of 45 degrees. “6” does nothing, the others point in the direction of that key
on a numeric keypad.

Notice that with FLbox and FLbutton, it is not necessary to call FLsetTextType opcode at all in order to use a
symbol. In this case, it is sufficient to set a label starting with “@” followed by the proper formatting string.

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetSize, FLsetText, FLsetTextColor, FLsetTextSize, FLsetVal_i, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

340

Chapter 15. Orchestra Opcodes and Operators

New in version 4.22

FLsetVal i

FLsetVal_i — Sets the value of a FLTK valuator to a number provided by the user.

Description

FLsetVal_i forces the value of a valuator to a number provided by the user.

Syntax
FLsetVal_i kvalue, ihandle

Initialization

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

Performance

kvalue -- not implemented yet.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetSize, FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLsetVal

FLsetVal — Sets the value of a FLTK valuator at control-rate.

Description

FLsetVal is almost identical to FLsetVal_i. Except it operates at k-rate and it affects the target valuator only
when ktrig is set to a non-zero value.

341

Chapter 15. Orchestra Opcodes and Operators

Syntax
FLsetVal ktrig, kvalue, ihandle

Initialization

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

Performance
ktrig -- not implemented yet.

kvalue -- not implemented yet.

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetSize, FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLshow

Credits
Author: Gabriel Maldonado

New in version 4.22

FLshow

FLshow — Restores the visibility of a previously hidden FLTK widget.

Description
FLshow restores the visibility of a previously hidden widget.

Syntax
FLshow ihandle

Initialization

ihandle -- an integer number (used as unique identifier) taken from the output of a previously located widget
opcode (which corresponds to the target widget). It is used to unequivocally identify the widget when
modifying its appearance with this class of opcodes. The user must not set the ihandle value directly,
otherwise a Csound crash will occur.

342

Chapter 15. Orchestra Opcodes and Operators

See Also

FLcolor, FLcolor2, FLhide, FLIabel, FLsetAlign, FLsetBox, FLsetColor, FLsetColor2, FLsetFont, FLsetPosition,
FLsetSize, FLsetText, FLsetTextColor, FLsetTextSize, FLsetTextType, FLsetVal_i, FLsetVal

Credits
Author: Gabriel Maldonado

New in version 4.22

FLslidBnk

FLslidBnk — A FLTK widget containing a bank of horizontal sliders.

Description

FLslidBnk is a widget containing a bank of horizontal sliders.

Syntax

FLslidBnk "names", inumsliders [, ioutable] [, iwidth] [, iheight] [, ix] [, iy] [, itypetable] [, iexptable] |,
istart_index] [, iminmaxtable]

Initialization

“names” -- a double-quoted string containing the names of each slider. Each slider can have a different name.
Separate each name with “@” character, for example: “frequency@amplitude@cutoff”. It is possible to not
provide any name by giving a single space “ ”. In this case, the opcode will automatically assign a progressive
number as a label for each slider.

inumsliders -- the number of sliders.

ioutable (optional, default=0) -- number of a previously-allocated table in which to store output values of
each slider. The user must be sure that table size is large enough to contain all output cells, otherwise a
segfault will crash Csound. By assigning zero to this argument, the output will be directed to the zak space in
the k-rate zone. In this case, the zak space must be previously allocated with the zakinit opcode and the user
must be sure that the allocation size is big enough to cover all sliders. The default value is zero (i.e. store
output in zak space).

istart_index (optional, default=0) -- an integer number referring to a starting offset of output cell locations. It
can be positive to allow multiple banks of sliders to output in the same table or in the zak space. The default
value is zero (no offset).

iminmaxtable (optional, default=0) -- number of a previously-defined table containing a list of min-max
pairs, referred to each slider. A zero value defaults to the 0 to 1 range for all sliders without necessity to
provide a table. The default value is zero.

iexptable (optional, default=0) -- number of a previously-defined table containing a list of identifiers (i.e.
integer numbers) provided to modify the behaviour of each slider independently. Identifiers can assume the
following values:

+ -1 -- exponential curve response

» 0--linear response

343

Chapter 15. Orchestra Opcodes and Operators

« number > than 0 -- follow the curve of a previously-defined table to shape the response of the
corresponding slider. In this case, the number corresponds to table number.

You can assume that all sliders of the bank have the same response curve (exponential or linear). In this case,
you can assign -1 or 0 to iexptable without worrying about previously defining any table. The default value is
zero (all sliders have a linear response, without having to provide a table).

itypetable (optional, default=0) -- number of a previously-defined table containing a list of identifiers (i.e.
integer numbers) provided to modify the aspect of each individual slider independently. Identifiers can
assume the following values:

» 0= Nice slider

« 1 ="Fill slider

« 3 =Normal slider

« 5=Nice slider

« 7 = Nice slider with down-box

You can assume that all sliders of the bank have the same aspect. In this case, you can assign a negative
number to itypetable without worrying about previously defining any table. Negative numbers have the same
meaning of the corresponding positive identifiers with the difference that the same aspect is assigned to all
sliders. You can also assign a random aspect to each slider by setting itypetable to a negative number lower
than -7. The default value is zero (all sliders have the aspect of nice sliders, without having to provide a table).

iwidth (optional) -- width of the rectangular area containing all sliders of the bank, excluding text labels, that
are placed to the left of that area.

iheight (optional) -- height of the rectangular area containing all sliders of the bank, excluding text labels,
that are placed to the left of that area.

ix (optional) -- horizontal position of the upper left corner of the rectangular area containing all sliders
belonging to the bank. You have to leave enough space, at the left of that rectangle, in order to make sure
labels of sliders to be visible. This is because the labels themselves are external to the rectangular area.

iy (optional) -- vertical position of the upper left corner of the rectangular area containing all sliders
belonging to the bank. You have to leave enough space, at the left of that rectangle, in order to make sure
labels of sliders to be visible. This is because the labels themselves are external to the rectangular area.

Performance
There are no k-rate arguments, even if cells of the output table (or the zak space) are updated at k-rate.

FLslidBnk is a widget containing a bank of horizontal sliders. Any number of sliders can be placed into the
bank (inumsliders argument). The output of all sliders is stored into a previously allocated table or into the
zak space (ioutable argument). It is possible to determine the first location of the table (or of the zak space) in
which to store the output of the first slider by means of istart_index argument.

Each slider can have an individual label that is placed to the left of it. Labels are defined by the “names”
argument. The output range of each slider can be individually set by means of an external table
(iminmaxtable argument). The curve response of each slider can be set individually, by means of a list of
identifiers placed in a table (iexptable argument). It is possible to define the aspect of each slider
independently or to make all sliders have the same aspect (itypetable argument).

The iwidth, iheight, ix, and iy arguments determine width, height, horizontal and vertical position of the
rectangular area containing sliders. Notice that the label of each slider is placed to the left of them and is not
included in the rectangular area containing sliders. So the user should leave enough space to the left of the
bank by assigning a proper ix value in order to leave labels visible.

344

Chapter 15. Orchestra Opcodes and Operators

See Also
FLslider

Credits
Author: Gabriel Maldonado

New in version 4.22

FLslider

FLslider =~ — Puts a slider into the corresponding FLTK container.

Description
FLslider puts a slider into the corresponding container.

Syntax
kout, ihandle FLslider "label", imin, imax, iexp, itype, idisp, iwidth, iheight, ix, iy

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLslider and must not be set by the user label. (The user label is a double-quoted
string containing some user-provided text placed near the widget.)

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
imin -- minimum value of output range.
imax -- maximum value of output range.

The imin argument may be greater than imax argument. This has the effect of “reversing” the object so the
larger values are in the opposite direction. This also switches which end of the filled sliders is filled.

istep -- a floating-point number indicating the increment of valuator value corresponding to of each mouse
click. The istep argument allows the user to arbitrarily slow roller’s motion, enabling arbitrary precision.

iexp -- an integer number denoting the behaviour of valuator:

« 0 =valuator output is linear

« -1 =valuator output is exponential

All other positive numbers for iexp indicate the number of an existing table that is used for indexing. Linear
interpolation is provided in table indexing. A negative table number suppresses interpolation.

IMPORTANT!

Notice that the tables used by valuators must be created with the ftgen opcode and placed in the orchestra
before the corresponding valuator. They can not placed in the score. In fact, tables placed in the score are
created later than the initialization of the opcodes placed in the header section of the orchestra.

345

Chapter 15. Orchestra Opcodes and Operators

itype -- an integer number denoting the appearance of the valuator.

The itype argument can be set to the following values:

1 - shows a horizontal fill slider

« 2-avertical fill slider

+ 3 -ahorizontal engraved slider

« 4 - avertical engraved slider

+ 5-ahorizontal nice slider

» 6 - avertical nice slider

« 7-ahorizontal up-box nice slider

« 8- avertical up-box nice slider

FlLslider &
FLslider - a horizontal fill slider (itype=1).

|]
FLslider 2

FLslider - a horizontal engraved slider (itype=3).

1
FLslider 3

FLslider - a horizontal nice slider (itype=5).

idisp -- a handle value that was output from a previous instance of the FLvalue opcode to display the current
value of the current valuator in the FLvalue widget itself. If the user doesn’'t want to use this feature that
displays current values, it must be set to a negative number by the user.

iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

Performance

kout -- output value

See Also
FLcount, FLjoy, FLkeyb, FLknob, FLroller, FLslidBnk, FLtext

346

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.22

FLtabs

FLtabs — Creates a tabbed FLTK interface.

Description

FLtabs is the “file card tabs” interface that allows useful to display several areas containing widgets in the
same windows, alternatively. It must be used together with FLgroup, another container that groups child
widgets.

Syntax
FLtabs iwidth, iheight, ix, iy

Initialization
iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window. Expressed in pixels.

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window. Expressed in pixels.

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

FLtabs is a “file card tabs” interface that is useful to display several alternate areas containing widgets in the
same window.

! !

sliders ' rollers _IEI'j,-"StiEHS\

I
FLtabs.

It must be used together with FLgroup, another FLTK container opcode that groups child widgets.

347

Examples

Chapter 15. Orchestra Opcodes and Operators

The following example code:

FLpanel "Panell",450,550,100,100
450,550,0,0
400,550, 5,5
FLgroup "sliders",380,500, 10,40,1

FLscroll
FLtabs

gkl,ihs FLslider
gk2,ihs FLslider
gk3,ihs FLslider
gk4,ihs FLslider
gk5,ihs FLslider
gk6,ihs FLslider
gk7,ihs FLslider
gk8,ihs FLslider

"FLslider
"FLslider
"FLslider
"FLslider
"FLslider
"FLslider
"FLslider
"FLslider

FLgroupEnd

1", 500, 1000, 2 ,1, -1, 300,15, 20,50

2", 300, 5000, ,3, -1, 300,15, 20,100
3", 350, 1000, ,5, -1, 300,15, 20,150
4", 250, 5000, ,11, -1, 300,30, 20,200
5", 220, 8000, ,1, -1, 300,15, 20,250
6", 1, 5000, 1 ,13, -1, 300,15, 20,300

7", 870, 5000, 1 ,15, -1, 300,30, 20,350
8", 20, 20000, 2 ,6, -1, 30,400, 350,50

2
2
1
2

FLgroup "rollers",380,500, 10,30,2

gkl,ihr FLroller “FLroller
gk2,ihr FLroller "FLroller
gk3,ihr FLroller "FLroller
gk4,ihr FLroller "FLroller
gk5,ihr FLroller "FLroller
gk6,ihr FLroller "FLroller
gk7,ihr FLroller "FLroller
FLgroupEnd

1", 50, 1000,.1,2 ,1 ,-1, 200,22, 20,50
2", 80, 5000,1,2 ,1 ,-1, 200,22, 20,100
3", 50, 1000,.1,2 ,1 ,-1, 200,22, 20,150
4", 80, 5000,1,2 ,1 ,-1, 200,22, 20,200
5", 50, 1000,.1,2 ,1 ,-1, 200,22, 20,250
6", 80, 5000,1,2 ,1 ,-1, 200,22, 20,300
7",50, 5000,1,1 ,2 ,-1, 30,300, 280,50

FLgroup "joysticks",380,500, 10,40,3
gkl,gk2,ihj1,ihj2 FLjoy "FLjoy", 50, 18000, 50, 18000,2,2,-1,-1,300,300,30,60
FLgroupEnd

FLtabsEnd
FLscrollEnd
FLpanelEnd

...will produce the following result:

348

Chapter 15. Orchestra Opcodes and Operators

FLtabs example, sliders tab.

349

Chapter 15. Orchestra Opcodes and Operators

FLtabs example, rollers tab.

350

Chapter 15. Orchestra Opcodes and Operators

FLtabs example, joysticks tab.
(Each picture shows a different tab selection inside the same window:.)

See Also
FLgroup, FLgroupEnd, FLpack, FLpackEnd, FLpanel, FLpanelEnd, FLscroll, FLscrollEnd, FLtabsEnd

Credits
Author: Gabriel Maldonado
New in version 4.22

FLtabsEnd

FLtabsEnd — Marks the end of a tabbed FLTK interface.

Description
Marks the end of a tabbed FLTK interface.

351

Chapter 15. Orchestra Opcodes and Operators

Syntax
FLtabsEnd

Performance

Containers are useful to format the graphic appearance of the widgets. The most important container is
FLpanel, that actually creates a window. It can be filled with other containers and/or valuators or other kinds
of widgets.

There are no k-rate arguments in containers.

See Also
FLgroup, FLgroupEnd, FLpack, FLpackEnd, FLpanel, FLpanelEnd, FLscroll, FLscrollEnd, FLtabs

Credits
Author: Gabriel Maldonado

New in version 4.22

FLtext

FLtext — A FLTK widget opcode that creates a textbox.

Description
FLtext allows the user to modify a parameter value by directly typing it into a text field.

Syntax
kout, ihandle FLtext "label", imin, imax, istep, itype, iwidth, iheight, ix, iy

Initialization

ihandle -- a handle value (an integer number) that unequivocally references a corresponding widget. This is
used by other opcodes that modify a widget’s properties (see Modifying FLTK Widget Appearance). It is
automatically output by FLtext and must not be set by the user label. (The user label is a double-quoted
string containing some user-provided text placed near the widget.)

“label” -- a double-quoted string containing some user-provided text, placed near corresponding widget.
imin -- minimum value of output range.
imax -- maximum value of output range.

istep -- a floating-point number indicating the increment of valuator value corresponding to of each mouse
click. The istep argument allows the user to arbitrarily slow roller’s motion, enabling arbitrary precision.

itype -- an integer number denoting the appearance of the valuator.

The itype argument can be set to the following values:

352

Chapter 15. Orchestra Opcodes and Operators

« 1-normal behaviour

» 2 - dragging operation is suppressed, instead it will appear two arrow buttons. A mouse-click on one of
these buttons can increase/decrease the output value.

« 3 - text editing is suppressed, only mouse dragging modifies the output value.

iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

Performance
kout -- output value
FLtext allows the user to modify a parameter value by directly typing it into a text field:

140.50
FLtext type 1

FLtext.

Its value can also be modified by clicking on it and dragging the mouse horizontally. The istep argument
allows the user to arbitrarily set the response on mouse dragging.

See Also
FLcount, FLjoy, FLkeyb, FLknob, FLroller, FLslider

Credits
Author: Gabriel Maldonado

New in version 4.22

FLupdate

FLupdate — Same as the FLrun opcode.

Description

Same as the FLrun opcode.

353

Chapter 15. Orchestra Opcodes and Operators

Syntax
FLupdate

FLvalue

FLvalue — Shows the current value of a FLTK valuator.

Description
FLvalue shows current the value of a valuator in a text field.

Syntax
ihandle FLvalue "label", iwidth, iheight, ix, iy

Initialization

ihandle -- handle value (an integer number) that unequivocally references the corresponding valuator. It can
be used for the idisp argument of a valuator.

“label” -- a double-quoted string containing some user-provided text, placed near the corresponding widget.
iwidth -- width of widget.
iheight -- height of widget.

ix -- horizontal position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

iy -- vertical position of upper left corner of the valuator, relative to the upper left corner of corresponding
window (expressed in pixels).

Performance
Note that FLvalue is not a valuator and its value is fixed. Its value cannot be modified.

FLvalue shows the current values of a valuator in a text field. It outputs ihandle that can then be used for the
idisp argument of a valuator (see the FLTK Valuators section). In this way, the values of that valuator will be
dynamically be shown in a text field.

See Also
FLbox, FLbutBank, FLbutton, FLprintk, FLprintk2

Credits
Author: Gabriel Maldonado

New in version 4.22

354

Chapter 15. Orchestra Opcodes and Operators

fmb3

fmb3 — Uses FM synthesis to create a Hammond B3 organ sound.

Description

Uses FM synthesis to create a Hammond B3 organ sound. It comes from a family of FM sounds, all using 4
basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmb3 kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

fmb3 takes 5 tables for initialization. The first 4 are the basic inputs and the last is the low frequency oscillator
(LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
 ifn2-- sine wave
« ifn3-- sine wave

 ifn4 -- sine wave

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

o kcl -- Total mod index
e kc2 -- Crossfade of two modulators
« Algorithm -- 4

kvdepth -- Vibrator depth
kvrate -- Vibrator rate

Examples
Here is an example of the fmb3 opcode. It uses the files fimb3.orc and fimb3.sco.

Example 15-1. Example of the fmb3 opcode.
[* fmb3.orc */

/* Written by Kevin Conder */
; Initialize the global variables.

355

sr = 44100
kr = 4410

ksmps 10
nchnls 1

. Instrument #1.
instr 1
kamp =
kfreq =
kcl = 5
kc2 = 5
kvdepth = 0.005
6

15000
440

=
=
w
o
RPRrRrRRl

al fmb3 kamp, kfreq, kcl, kc2, kvdepth, kvrate,
ifnl, ifn2, ifn3, ifn4, ivfn
out al
endin
/* fmb3.orc */

/* fmb3.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* fmb3.sco */

See Also
fmbell, fmmetal, fmpercfl, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fmbell

fmbell — Uses FM synthesis to create a tublar bell sound.

\

Chapter 15. Orchestra Opcodes and Operators

356

Chapter 15. Orchestra Opcodes and Operators

Description

Uses FM synthesis to create a tublar bell sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmbell kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
« ifn2-- sine wave
 ifn3-- sine wave

« ifn4 -- sine wave

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

e kcl -- Mod index 1
« kc2 -- Crossfade of two outputs
» Algorithm --5

kvdepth -- Vibrator depth
kvrate -- Vibrator rate

Examples
Here is an example of the fmbell opcode. It uses the files fmbell.orc and finbell.sco.

Example 15-1. Example of the fmbell opcode.

[* fmbell.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

357

instr 1
kamp =
kfreq =
kcl = 5
kc2 = 5

kvdepth = 0.005

6

10000
880

=

S

@
IR TR TR T
RPRrRRRl

Chapter 15. Orchestra Opcodes and Operators

al fmbell kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn

out al
endin
/* fmbell.orc */

/* fmbell.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 32768 10 1

; Play Instrument #1 for three seconds.
i103

e

/* fmbell.sco */

See Also
fmb3, fmmetal, fmpercfl, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fmmetal

fmmetal — Uses FM synthesis to create a “Heavy Metal” sound.

Description

Uses FM synthesis to create a “Heavy Metal” sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

358

Chapter 15. Orchestra Opcodes and Operators

Syntax
ar fmmetal kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

 ifnl -- sine wave
 ifn2 -- twopeaks.aiff
 ifn3 -- twopeaks.aiff

* ifn4 -- sine wave

Note: The file “twopeaks.aiff” is also available at ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

e kcl -- Total mod index
e kc2 -- Crossfade of two modulators
» Algorithm -- 3

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

Examples
Here is an example of the fmmetal opcode. It uses the files finmetal.orc, fmmetal.sco, and twopeaks.aiff .

Example 15-1. Example of the fmmetal opcode.

/* fmmetal.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050

kr = 2205

ksmps 10

nchnls 1

. Instrument #1.
instr 1
kamp = 10000

359

Chapter 15. Orchestra Opcodes and Operators

kfreq = 440
kel =
kc2 =
kvdepth = 0
kvrate 0

ifnl
ifn2
ifn3
ifn4
ivfn

[621e)]

PERNNER

al fmmetal kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn
out al

endin

/* fmmetal.orc */

/* fmmetal.sco */

[* Written by Kevin Conder */

; Table #1, a normal sine wave.

f 10 32768 10 1

; Table #2, the "twopeaks.aiff' audio file.
f 20 256 1 "twopeaks.aiff' 0 0 O

; Play Instrument #1 for one second.
i101

e

/* fmmetal.sco */

See Also
fmb3, fmbell, fmpercfl, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fmpercfl

fmpercfl — Uses FM synthesis to create a percussive flute sound.
Description

Uses FM synthesis to create a percussive flute sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

360

Syntax

Chapter 15. Orchestra Opcodes and Operators

ar fmpercfl kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

ifnl -- sine wave
ifn2 -- sine wave
ifn3 -- sine wave

ifn4 -- sine wave

Performance

kamp -- Amplitude of note.
kfreq -- Frequency of note played.
kcl, kc2 -- Controls for the synthesizer:

e kcl -- Total mod index

e kc2 -- Crossfade of two modulators

» Algorithm -- 4

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

Examples

Here is an example of the fmpercfl opcode. It uses the files finpercfl.orc and fmpercfl.sco.

Example 15-1. Example of the fmpercfl opcode.

[* fmpercfl.orc */

[* Written by Kevin Conder */
; Initialize the global variables.

sr = 44100
kr = 4410

ksmps = 10
nchnls = 1

. Instrument #1.
instr 1

kamp = 30000
kfreq = 220
kcl = 5

kc2 = 5

kvdepth = 0.005

kvrate = 6

361

Chapter 15. Orchestra Opcodes and Operators

ifnl
ifn2
ifn3
ifn4
ivin

I nun
PRRRRe

al fmpercfl kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn
out al

endin

[* fmpercfl.orc */

[* fmpercfl.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 32768 10 1

; Play Instrument #1 for one second.
i101

e

[* fmpercfl.sco */

See Also
fmb3, fmbell, fmmetal, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fmrhode

fmrhode — Uses FM synthesis to create a Fender Rhodes electric piano sound.
Description

Uses FM synthesis to create a Fender Rhodes electric piano sound. It comes from a family of FM sounds, all
using 4 basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmrhode kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

362

Chapter 15. Orchestra Opcodes and Operators

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
« ifn2 -- sine wave
 ifn3-- sine wave
« ifn4 -- fwavblnk.aiff

Note: The file “fwavblnk.aiff” is also available at ftp:/ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

e kcl -- Mod index 1
« kc2 -- Crossfade of two outputs
» Algorithm --5

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

Examples
Here is an example of the fmrhode opcode. It uses the files finrhode.orc, fmrhode.sco, and fwavblnk.aiff .

Example 15-1. Example of the fmrhode opcode.

/* fmrhode.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050

kr = 2205

ksmps = 10

nchnls = 1

. Instrument #1.
instr 1
kamp =
kfreq =
kcl = 6
kc2 = 0
kvdepth = 0.01
kvrate = 3
ifnl = 1

30000
220

363

Chapter 15. Orchestra Opcodes and Operators

ifn2
ifn3
ifn4
ivin

RPNR e

al fmrhode kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn
out al

endin

/* fmrhode.orc */

/* fmrhode.sco */

[* Written by Kevin Conder */

; Table #1, a sine wave.

f 10 32768 10 1

; Table #2, the "fwavblnk.aiff" audio file.
f 20 256 1 "fwavbink.aiff* 0 0 O

; Play Instrument #1 for two seconds.
i102

e

/* fmrhode.sco */

See Also
fmb3, fmbell, fmmetal, fmpercfl, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fmvoice
fmvoice — FM Singing Voice Synthesis

Description
FM Singing Voice Synthesis

Syntax

ar fmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1, ifn2, ifn3, ifn4, ivibfn

Initialization
ifnl, ifn2, ifn3,ifn3 -- Tables, usually of sinewaves.

364

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kvowel -- the vowel being sung, in the range 0-64

ktilt -- the spectral tilt of the sound in the range 0 to 99

kvibamt -- Depth of vibrato

kvibrate -- Rate of vibrato

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the fmvoice opcode. It uses the files finvoice.orc and fmuvoice.sco.

Example 15-1. Example of the fmvoice opcode.

/* fmvoice.orc */

; Initialize the global variables.

sr = 44100
kr = 4410

ksmps = 10
nchnls = 1

. Instrument #1.
instr 1
kamp
kfreq

30000
110

; Use the fourth p-field for the vowel.

kvowel = p4
ktilt = 0
kvibamt = 0.005
kvibrate = 6
ifnl
ifn2
ifn3
ifn4
ivibfn

N

1

al fmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifnl, ifn2, ifn3, ifn4, ivibfn

out al
endin
/* fmvoice.orc */

/* fmvoice.sco */
; Table #1, a sine wave.
f 10 16384 10 1

; p4 = vowel (a value from O to 64)

; Play Instrument #1 for
i1011

; Play Instrument #1 for
i1112

; Play Instrument #1 for
i1213

; Play Instrument #1 for
i1314

; Play Instrument #1 for
i1415

e

/* fmvoice.sco */

one second,
one second,
one second,
one second,

one second,

vowel=1.
vowel=2.
vowel=3.
vowel=4.

vowel=5.

365

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fmwurlie

fmwurlie — Uses FM synthesis to create a Wurlitzer electric piano sound.

Description

Uses FM synthesis to create a Wurlitzer electric piano sound. It comes from a family of FM sounds, all using 4
basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmwurlie kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifnl1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

 ifnl -- sine wave
 ifn2-- sine wave
 ifn3-- sine wave
« ifn4 -- fwavblnk.aiff

Note: The file “fwavblnk.aiff” is also available at ftp:/ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

366

Chapter 15. Orchestra Opcodes and Operators

+ kcl -- Mod index 1
» kc2 -- Crossfade of two outputs
« Algorithm -- 5

kvdepth -- Vibrator depth
kvrate -- Vibrator rate

Examples

Here is an example of the fmwurlie opcode. It uses the files fmwurlie.orc, fmwurlie.sco, and fwavbink.aiff.

Example 15-1. Example of the fmwurlie opcode.

/* fmwurlie.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050

kr = 2205

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1
kamp = 30000
kfreq = 440
kcl = 6
kc2 = 1
kvdepth = 0.005
6

=
S
3]
o unn
PNRRERI

al fmwurlie kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn
out al

endin

/* fmwurlie.orc */

/* fmwurlie.sco */

[* Written by Kevin Conder */

; Table #1, a sine wave.

f 10 32768 10 1

; Table #2, the "fwavblnk.aiff" audio file.
f 20 256 1 "fwavbink.aiff* 0 0 O

; Play Instrument #1 for two seconds.
i102

e

/* fmwurlie.sco */

367

Chapter 15. Orchestra Opcodes and Operators

See Also
fmb3, fmbell, fmmetal, fmpercfl, fmrhode

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fof
fof — Produces sinusoid bursts useful for formant and granular synthesis.
Description

Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral peak at xform. For
xfund above 25 Hz these bursts produce a speech-like formant with spectral characteristics determined by
the k-input parameters. For lower fundamentals this generator provides a special form of granular synthesis.

Syntax

ar fof xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, ifmode] [, iskip]

Initialization

iolaps -- number of preallocated spaces needed to hold overlapping burst data. Overlaps are frequency
dependent, and the space required depends on the maximum value of xfund * kdur. Can be over-estimated
at no computation cost. Uses less than 50 bytes of memory per iolap.

ifna, ifnb -- table numbers of two stored functions. The first is a sine table for sineburst synthesis (size of at
least 4096 recommended). The second is a rise shape, used forwards and backwards to shape the sineburst
rise and decay; this may be linear (GENOQ7) or perhaps a sigmoid (GEN19).

itotdur -- total time during which this fof will be active. Normally set to p3. No new sineburst is created if it
cannot complete its kdur within the remaining ifotdur.

iphs (optional, default=0) -- initial phase of the fundamental, expressed as a fraction of a cycle (0 to 1). The
default value is 0.

ifmode (optional, default=0) -- formant frequency mode. If zero, each sineburst keeps the xform frequency it
was launched with. If non-zero, each is influenced by xform continuously. The default value is 0.

iskip (optional, default=0) -- If non-zero, skip initialisation (allows legato use).

Performance

xamp -- peak amplitude of each sineburst, observed at the true end of its rise pattern. The rise may exceed
this value given a large bandwidth (say, Q < 10) and/or when the bursts are overlapping.

xfund -- the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

368

Chapter 15. Orchestra Opcodes and Operators

xform -- the formant frequency, i.e. freq of the sinusoid burst induced by each xfund impulse. This frequency
can be fixed for each burst or can vary continuously (see ifimode).

koct -- octaviation index, normally zero. If greater than zero, lowers the effective xfund frequency by
attenuating odd-numbered sinebursts. Whole numbers are full octaves, fractions transitional.

kband -- the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the rate of
exponential decay throughout the sineburst, before the enveloping described below is applied.

kris, kdur, kdec -- rise, overall duration, and decay times (in seconds) of the sinusoid burst. These values
apply an enveloped duration to each burst, in similar fashion to a Csound linen generator but with rise and
decay shapes derived from the ifnb input. kris inversely determines the skirtwidth (at -40 dB) of the induced
formant region. kdur affects the density of sineburst overlaps, and thus the speed of computation. Typical
values for vocal imitation are .003,.02,.007.

Csound’s fof generator is loosely based on Michael Clarke’s C-coding of IRCAM’s CHANT program (Xavier
Rodet et al.). Each fof produces a single formant, and the output of four or more of these can be summed to
produce a rich vocal imitation. fof synthesis is a special form of granular synthesis, and this implementation
aids transformation between vocal imitation and granular textures. Computation speed depends on kdur,
xfund, and the density of any overlaps.

Examples

Here is an example of the fof opcode. It uses the files fof.orc and fof.sco.

Example 15-1. Example of the fof opcode.

/* fof.orc */
/* Adapted from 1401.orc by Michael Clarke */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Combine five formants together to create
; an alto-"a" sound.

; Values common to all of the formants.
kfund init 261.659

koct init O

kris init 0.003
kdur init 0.02
kdec init 0.007
iolaps = 14850
ifna = 1

ifnb = 2
itotdur = p3

. First formant.
klamp = ampdb(0)
klform init 800
klband init 80

; Second formant.
k2amp = ampdb(-4)
k2form init 1150
k2band init 90

; Third formant.

369

k3amp = ampdb(-20)
k3form init 2800
k3band init 120

; Fourth formant.
kdamp = ampdb(-36)
k4form init 3500
k4band init 130

;. Fifth formant.
kbamp = ampdb(-60)
k5form init 4950
k5band init 140

al fof klamp, kfund, klform, koct, klband, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

a2 fof k2amp, kfund, k2form, koct, k2band, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

a3 fof k3amp, kfund, k3form, koct, k3band, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

a4 fof kdamp, kfund, k4form, koct, kdband, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

a5 fof kbamp, kfund, k5form, koct, k5Sband, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

; Combine all of the formants together.
out (al+a2+a3+ad+a5) * 16384

endin

[* fof.orc */

[* fof.sco */

[* Adapted from 1401.sco by Michael Clarke */
; Table #1, a sine wave.

f 10 409 10 1

; Table #2.

f 2 0 1024 19 0.5 0.5 270 0.5

; Play Instrument #1 for three seconds.
i103

e

/* fof.sco */

\
\
\
\

Chapter 15. Orchestra Opcodes and Operators

The formant values for the alto-"a" sound were taken from the Formant Values Appendix.

See Also
fof2, Formant Values Appendix

fof2

fof2 — Produces sinusoid bursts including k-rate incremental indexing with each successive burst.

370

Chapter 15. Orchestra Opcodes and Operators

Description

Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral peak at xform. For
xfund above 25 Hz these bursts produce a speech-like formant with spectral characteristics determined by
the k-input parameters. For lower fundamentals this generator provides a special form of granular synthesis.

fof2 implements k-rate incremental indexing into ifna function with each successive burst.

Syntax
ar fof2 xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur, kphs, kgliss [, iskip]

Initialization

iolaps -- number of preallocated spaces needed to hold overlapping burst data. Overlaps are frequency
dependent, and the space required depends on the maximum value of xfund * kdur. Can be over-estimated
at no computation cost. Uses less than 50 bytes of memory per iolap.

ifna, ifnb -- table numbers of two stored functions. The first is a sine table for sineburst synthesis (size of at
least 4096 recommended). The second is a rise shape, used forwards and backwards to shape the sineburst
rise and decay; this may be linear (GENO7) or perhaps a sigmoid (GEN19).

itotdur -- total time during which this fof will be active. Normally set to p3. No new sineburst is created if it
cannot complete its kdur within the remaining itotdur.

iskip (optional, default=0) -- If non-zero, skip initialization (allows legato use).

Performance

xamp -- peak amplitude of each sineburst, observed at the true end of its rise pattern. The rise may exceed
this value given a large bandwidth (say, Q < 10) and/or when the bursts are overlapping.

xfund -- the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

xform -- the formant frequency, i.e. freq of the sinusoid burst induced by each xfund impulse. This frequency
can be fixed for each burst or can vary continuously (see ifimode).

koct -- octaviation index, normally zero. If greater than zero, lowers the effective xfund frequency by
attenuating odd-numbered sinebursts. Whole numbers are full octaves, fractions transitional.

kband -- the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the rate of
exponential decay throughout the sineburst, before the enveloping described below is applied.

kris, kdur, kdec -- rise, overall duration, and decay times (in seconds) of the sinusoid burst. These values
apply an enveloped duration to each burst, in similar fashion to a Csound linen generator but with rise and
decay shapes derived from the ifnb input. kris inversely determines the skirtwidth (at -40 dB) of the induced
formant region. kdur affects the density of sineburst overlaps, and thus the speed of computation. Typical
values for vocal imitation are .003,.02,.007.

kphs -- allows k-rate indexing of function table ifna with each successive burst, making it suitable for
time-warping applications. Values of for kphs are normalized from 0 to 1, 1 being the end of the function
table ifna.

kgliss -- sets the end pitch of each grain relative to the initial pitch, in octaves. Thus kgliss = 2 means that the
grain ends two octaves above its initial pitch, while kgliss = -5/3 has the grain ending a perfect major sixth
below. Note: There are no optional parameters in fof2

Csound’s fof generator is loosely based on Michael Clarke’s C-coding of IRCAM’s CHANT program (Xavier
Rodet et al.). Each fof produces a single formant, and the output of four or more of these can be summed to
produce a rich vocal imitation. fof synthesis is a special form of granular synthesis, and this implementation
aids transformation between vocal imitation and granular textures. Computation speed depends on kdur,
xfund, and the density of any overlaps.

371

Chapter 15. Orchestra Opcodes and Operators

See Also

fof

Credits

Author: Rasmus Ekman
fof2 is a modification of fof by Rasmus Ekman

New in Csound 3.45

fog

fog — Audio output is a succession of grains derived from data in a stored function table

Description

Audio output is a succession of grains derived from data in a stored function table ifina. The local envelope of
these grains and their timing is based on the model of fof synthesis and permits detailed control of the
granular synthesis.

Syntax

ar fog xamp, xdens, xtrans, aspd, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, itmode] [,
iskip]

Initialization

iolaps -- number of pre-located spaces needed to hold overlapping grain data. Overlaps are density
dependent, and the space required depends on the maximum value of xdens * kdur. Can be over-estimated at
no computation cost. Uses less than 50 bytes of memory per iolaps.

ifna, ifnb -- table numbers of two stored functions. The first is the data used for granulation, usually from a
soundfile (GENOI). The second is a rise shape, used forwards and backwards to shape the grain rise and
decay; this is normally a sigmoid (GEN19) but may be linear (GEN05).

itotdur -- total time during which this fog will be active. Normally set to p3. No new grain is created if it
cannot complete its kdur within the remaining ifotdur.

iphs (optional) -- initial phase of the fundamental, expressed as a fraction of a cycle (0 to 1). The default value
is 0.

itmode (optional) -- transposition mode. If zero, each grain keeps the xtrans value it was launched with. if
non-zero, each is influenced by xtrans continuously. The default value is 0.

iskip (optional, default=0) -- If non-zero, skip initialization (allows legato use).

Performance

xamp -- amplitude factor. Amplitude is also dependent on the number of overlapping grains, the interaction
of the rise shape (ifinb) and the exponential decay (kband), and the scaling of the grain waveform (ifna). The
actual amplitude may therefore exceed xamp.

xdens -- density. The frequency of grains per second.

372

Chapter 15. Orchestra Opcodes and Operators

xtrans -- transposition factor. The rate at which data from the stored function table ifna is read within each
grain. This has the effect of transposing the original material. A value of 1 produces the original pitch. Higher
values transpose upwards, lower values downwards. Negative values result in the function table being read
backwards.

aspd -- speed. The rate at which successive grains advance through the stored function table ifna. aspd is in
the form of an index (0 to 1) to ifna. This determines the movement of a pointer used as the starting point for
reading data within each grain. (xtrans determines the rate at which data is read starting from this pointer.)

koct -- octaviation index. The operation of this parameter is identical to that in fof.

kband, kris, kdur, kdec -- grain envelope shape. These parameters determine the exponential decay (kband),
and the rise (kris), overall duration (kdur,) and decay (kdec) times of the grain envelope. Their operation is
identical to that of the local envelope parameters in fof.

The Csound fog generator is by Michael Clarke, extending his earlier work based on IRCAM’s fof algorithm.

Examples

;p4 = transposition factor

;p5 = speed factor

;p6 = function table for grain data

il = sr/ftlen(p6) ;scaling to reflect sample rate and table length
al phasor i1*p5 ;index for speed

a2 fog 5000, 100, p4, al, O, O, , .01, .02, .01, 2, p6, 1, p3, O, 1
Credits

Author: Michael Clark

Huddersfield

May 1997

New in version 3.46
The Csound fog generator is by Michael Clarke, extending his earlier work based on IRCAM’s fof algorithm.
Added notes by Rasmus Ekman on September 2002.

fold
fold — Adds artificial foldover to an audio signal.
Description

Adds artificial foldover to an audio signal.

Syntax

ar fold asig, kincr

373

Chapter 15. Orchestra Opcodes and Operators

Performance
asig -- input signal
kincr -- amount of foldover expressed in multiple of sampling rate. Must be >=1

fold is an opcode which creates artificial foldover. For example, when kincr is equal to 1 with sr=44100, no
foldover is added. When kincr is set to 2, the foldover is equivalent to a downsampling to 22050, when it is set
to 4, to 11025 etc. Fractional values of kincr are possible, allowing a continuous variation of foldover amount.
This can be used for a wide range of special effects.

Examples
Here is an example of the fold opcode. It uses the files fold.orc and fold.sco.

Example 15-1. Example of the fold opcode.

/* fold.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
; Use an ordinary sine wave.
asig oscils 30000, 100, 1

; Vary the fold-over amount from 1 to 200.
kincr line 1, p3, 200
al fold asig, kincr

out al
endin
/* fold.orc */

/* fold.sco */

; Play Instrument #1 for four seconds.
i104

e

/* fold.sco */

Credits

Author: Gabriel Maldonado
Italy

1999
New in Csound version 3.56

374

Chapter 15. Orchestra Opcodes and Operators

follow
follow — Envelope follower unit generator.
Description

Envelope follower unit generator.

Syntax

ar follow asig, idt

Initialization

idt -- This is the period, in seconds, that the average amplitude of asig is reported. If the frequency of asig is
low then idt must be large (more than half the period of asig)

Performance

asig -- This is the signal from which to extract the envelope.

Examples

Here is an example of the follow opcode. It uses the files follow.orc, follow.sco, and beats.wav.

Example 15-1. Example of the follow opcode.

/* follow.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - play a WAV file.
instr 1

al diskin "beats.wav", 1

out al
endin

; Instrument #2 - have another waveform follow the WAV file.
instr 2

;. Follow the WAV file.

as diskin "beats.wav", 1

af follow as, 0.01

; Use a sine waveform.

as oscil 4000, 440, 1

; Have it use the amplitude of the followed WAV file.
al balance as, af

out al

endin
/* follow.orc */

375

Chapter 15. Orchestra Opcodes and Operators

[* follow.sco */

/* Written by Kevin Conder */

; Just generate a nice, ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* follow.sco */

To avoid zipper noise, by discontinuities produced from complex envelope tracking, a lowpass filter could be
used, to smooth the estimated envelope.

Credits

Author: Paris Smaragdis
MIT, Cambridge
1995

follow?2

follow2 — Another controllable envelope extractor.

Description

A controllable envelope extractor using the algorithm attributed to Jean-Marc Jot.

Syntax
ar follow2 asig, katt, krel

Performance

asig -- the input signal whose envelope is followed
katt -- the attack rate (60dB attack time in seconds)
krel -- the decay rate (60dB decay time in seconds)

The output tracks the amplitude envelope of the input signal. The rate at which the output grows to follow
the signal is controlled by the katt, and the rate at which it decreases in response to a lower amplitude, is
controlled by the krel. This gives a smoother envelope than follow.

376

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the follow2 opcode. It uses the files follow2.orc, follow2.sco, and beats.wav.

Example 15-1. Example of the follow2 opcode.

[* follow2.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10
nchnls = 1

; Instrument #1 - play a WAV file.
instr 1

al diskin "beats.wav", 1

out al
endin

; Instrument #2 - have another waveform follow the WAV file.
instr 2

;. Follow the WAV file.

as diskin "beats.wav", 1

af follow2 as, 0.01, 0.1

; Use a noise waveform.

ar rand 44100

; Have it use the amplitude of the followed WAV file.
al balance ar, af

out al
endin
/* follow2.orc */

/* follow2.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* follow2.sco */

Credits

Author: John ffitch

The algorithm for the follow?2 is attributed to Jean-Marc Jot.
University of Bath, Codemist Ltd.

Bath, UK

February 2000

New in Csound version 4.03

Added notes by Rasmus Ekman on September 2002.

377

Chapter 15. Orchestra Opcodes and Operators

foscil
foscil — A basic frequency modulated oscillator.
Description

A basic frequency modulated oscillator.

Syntax

ar foscil xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

Initialization
ifn -- function table number. Requires a wrap-around guard point.

iphs (optional, default=0) -- initial phase of waveform in table ifn, expressed as a fraction of a cycle (0 to 1). A
negative value will cause phase initialization to be skipped. The default value is 0.

Performance

xamp -- the amplitude of the output signal.

keps -- the frequency of the output signal measured in cycles per second.
xcar -- the carrier frequency.

xmod -- the modulating frequency.

kndx -- the modulation index.

foscil is a composite unit that effectively banks two oscil opcodes in the familiar Chowning FM setup, wherein
the audio-rate output of one generator is used to modulate the frequency input of another (the “carrier”).
Effective carrier frequency = kcps * xcar, and modulating frequency = kcps * xmod. For integral values of xcar
and xmod, the perceived fundamental will be the minimum positive value of kcps * (xcar -- n * xmod), n =
1,1,2,... The input kndx is the index of modulation (usually time-varying and ranging 0 to 4 or so) which
determines the spread of acoustic energy over the partial positions given by n = 0,1,2,.., etc. ifn should point
to a stored sine wave. Previous to version 3.50, xcar and xmod could be k-rate only.

Examples

Here is an example of the foscil opcode. It uses the files foscil.orc and foscil.sco.

Example 15-1. Example of the foscil opcode.

/* foscil.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - a basic FM waveform.

instr 1
kamp = 10000
kcps = 440
kcar = 600

378

Chapter 15. Orchestra Opcodes and Operators

al foscil kamp, kcps, kcar, kmod, kndx, ifn
out al

endin

/* foscil.orc */

/* foscil.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for 2 seconds.
i102

e

/* foscil.sco */

foscili

foscili — Basic frequency modulated oscillator with linear interpolation.

Description

Basic frequency modulated oscillator with linear interpolation.

Syntax
ar foscili xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

Initialization
ifn -- function table number. Requires a wrap-around guard point.

iphs (optional, default=0) -- initial phase of waveform in table ifn, expressed as a fraction of a cycle (0 to 1). A
negative value will cause phase initialization to be skipped. The default value is 0.

Performance

xamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal measured in cycles per second.
xcar -- the carrier frequency.

xmod -- the modulating frequency.

kndx -- the modulation index.

foscili differs from foscil in that the standard procedure of using a truncated phase as a sampling index is here
replaced by a process that interpolates between two successive lookups. Interpolating generators will
produce a noticeably cleaner output signal, but they may take as much as twice as long to run. Adequate

379

Chapter 15. Orchestra Opcodes and Operators

accuracy can also be gained without the time cost of interpolation by using large stored function tables of 2K,
4K or 8K points if the space is available.

Examples

Here is an example of the foscili opcode. It uses the files foscili.orc and foscili.sco.

Example 15-1. Example of the foscili opcode.

/* foscili.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a basic FM waveform.

instr 1
kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn = 1

al foscil kamp, kcps, kcar, kmod, kndx, ifn
out al
endin

; Instrument #2 - the basic FM waveform with extra interpolation.

instr 2
kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn = 1

al foscili kamp, kcps, kcar, kmod, kndx, ifn
out al

endin

[* foscili.orc */

/* foscili.sco */

/* Written by Kevin Conder */

; Table #1, a sine wave table with a small amount of data.
f 10 409 10 1

; Play Instrument #1, the basic FM instrument, for
; two seconds. This should sound relatively rough.
il102

; Play Instr