The Alternative Csound Reference Manual

Barry Vercoe
MIT Media Lab

Other Contributors

Edited by
John ffitch

Jean Piché

Peter Nix

Richard Boulanger

Rasmus Ekman

David Boothe

Kevin Conder

The Alternative Csound Reference Manual
by Barry Vercoe, and Other Contributors
Edited by John ffitch

Edited by Jean Piché

Edited by Peter Nix

Edited by Richard Boulanger

Edited by Rasmus Ekman

Edited by David Boothe

Edited by Kevin Conder

4.21-4 Edition
Copyright © 1986, 1992 by Massachusetts Institute of Technology

Table of Contents

Preface 23
Preface to the CSOUNA MANUALccuuviiiiiiiiiieeeeeeee ettt ettt e e e e e s ettt e e e e essssassateeeesessssssaseessessssnsns 23
COPYTIGNT INOTICE......eeutereieriieieteteete ettt sttt sb e st b e st ea e s bt s saesesbeeseesaenesnesmnennenne 23
(070 11051 0101 10) <Nt 24
Why is this called the Alternative Csound Reference Manual?...........ccccceererieieneninnieneneneeneeneneneeseeees 24

I. Overview W27
1. IETOAUCTION ceeetieeeieieeeee ettt ettt ettt e e e e saaaaeeeeesesssaaaaaaeeesessssassssaeessssssssnsssaeessssssssnsssaeesssssssssssaeesssnnns 29

Where to Get Public Csound and the Csound Manual...........cccccuuveiiiiiiiiiiiiiieeiccceieeeee e 29
|3 () WA (o T s K =1 | M OFT 010 s Vo USROS 29
510 16 D 29

JAY B Tt 1 0 10 < o RO USRS 29
MS-DOS and WINAOWS 95/ INT ...ttt e e eeeetrree e e e e eesssassreesseeesssssaseesseeessnes 29
WINAOWS 95798/ 2000.......00ceeieeeeeeeieeeeeeeeeiierrteeeeeeesssrsreeeeeeesssssssseeessssssssssssseessssssssssssssessssssssssssees 29

(01 915 g 34 F= 1 (0 s 4 K- OO 29

The CSoUNd Mailing LIStccceiriiiiiiiiiiieteteeee ettt ettt sbe e sbe e bt s bt e sbeesbeesbe s beesbeesveebenane 29
BUZ REPOTLS ..ottt ettt st sttt e enbe s sae s be e e ae e sbaesennesanne 29

A N o TSl OF:To 18 1 Te @10} 0's 1 s o =1 Ue AN 31
(9]¢ [Q6] i 35 (=116 (<] s Lol < SRR 31
DIESCIIPTION. ¢ eeeuteetieteeteeste et et et et et et e bt e bt e bt e be s bt s be s bt e besasesabesabesasesasesasesaseeasesasesasesasesasesasesnsesnses 31
CommMANd-lNE FIAGSccuveiuiriiriiiierereeeeree ettt st sttt se e s b s sbesbe s saesnesnes 32
Unified File Format for Orchestras and SCOTESccuviiievuveiiieieiiiiiieeeeereeeeeieeeeesrreeessareeeessaneesessneeas 36
DIESCTIPTION .ttt ettt et b e bt e bt e bt e bt e b e e e be e beeese e beesseeseeseesseesesseeseenne 36
Structured Data File FOTTNALuuvveiiiiiiiiieeeeeee ettt e e e e et e e e e e s s sasaseeeeeeeessnnsanees 37
Mandatory EIBIMIENEScc.ceeuiiriiiriiiiieiteiteetesttesit ettt sttt et esreesre e st esseesbeesbeesseesseesseesseenne 37

OPLIONS ..ottt bbb e 37

INSEIUMENTS (OTCIESTIA) wevvvveereeeeeeeeeeeeieeeseeseeeeeeessesesesssesssnnes 37

SCOTE oottt eeeeeeeeeeeeeeeeeeeeeaeeaaeaaeaaaaaanes 37

Optional EIEIMENTS....c..covioiiiriirieieieieierteeeteeetestete ettt ssesae e see et sesse e nesaens 37

INCIUAEd BASE64 FAlES.....uueeeeiiiiiieeeeeeeee ettt e e e e e e s ba e e e e e e e snnes 37

VETSion BIOCKINGccuiviiriiiiiiiiniiteiesieseetetestt sttt sttt et et sbe s s ebesaesaeens 37
EXAIMPIE....eitiiiieeiieetecteeteet ettt ettt s e st e ste e s beesreesbeesbaesseesse e seasseesseesseessaenseenne 38

Command Line Parameter Fileoooo ittt ettt e e e e e s aasae e e e e e e s eaasanees 38
SCOTE File PrEPTOCESSITIZ «..ceuvienviiiiiiieieiieeriteritette ettt ettt et e st sae e bt s sbe e beesbe e be e beesbe e bessbeesbessesnnes 38
THE EXITACT FEATULE......ccooieeeeeeiiieeeeeeeeeeeeee e eeeeitt et e e e e e e eaaaaeeeseeesssassaeeeeesssssassssesesssssssssssesesesssssnes 39
Independent Pre-Processing With SCSOTTc..cecvevuererieienienineeeeneeeeeeseeee e 39

3. SYNtAX Of the OTCRESITAccvevuieiieieiereeteteeeeet ettt ettt st et e st e sbe s st et e sbesbe s s ebesbessesasensassassesns 41
DiITECTOTIES ANA FILS....ciiiieeieieiieeeeeeeeeeeee ettt ettt e e e e s s ae e e e e e e s ssasabeeeeeesssssasaseeeesesssssasssaeeseens 41
JA\[o 5 813 0 o] E= 1 40 1 < T RR S R 41
Orchestra StAtEIMENT TYPEScetervererieienieneetenterteseetestestesteestestessesseesessessesssessessessesssensessassasssensessesses 42
CoNStANTS ANA VATIADIES.......uvviiiiiiiiiieeiieeeeeeeeete ettt ettt e e e e s s et b bt e e eeessssasaseeeeeessssnsssaeeeeeas 42
EXPIESSIONS ittt ettt et e st e et e s bt e e bt e e eab e e ea bt e e bt e e bt e e eabeeeabe e e beeereeeaneeean 43
Orchestra HEader STATEIMEIIES.covuveiiiiiieeiieieeeeeereeeeerireeeeeseeeeesaeeeeesaseeeessssesssssssessssssesssssssesesssssesssns 44
INStrumMent BIOCK STATEIMIEIIScoooueeieiiiiieeeeeeeeeeee ettt e e e e eaat et e e e e e s saabr et e e e eesssssaseeeeeesssssnsssaeeeeeas 44
AVZ R u =1 o) (S0 BN L =11 12210 (o) o WU 44
T o ST 0 a0 ho o T<) o Lo @10} s L s o) FUN SRR 45
(0 (o Y63 @) s 15 (o) IFTEE SRR 45
(@00} s e Fiu o) o F=1 RV£ 1 LU 1T SRR 45
Duration CONTIOL STATEIMEIILSeeiivuveiiiiiiiieieieeeeeereeeeereeeeeiaeeeeesaeeeeessaeeeeessseesssssesessssesesssssesesssssesesns 45
INStIUMENT INVOCATION ..o e s e e e s s s s s s s s s s ssssssssssssssssssssssnssssssssnnnnns 45
IMLACTOS ..o eeeeeeitieeeeeeeeeettieeeeeeeeeestsaeeseeeerassssaneseessssssssnssseeessssssssssssessssssssnnnsseessssssssnnsseessssssssnnnseeeesssnssnnnneees 45
Program FIOW CONTIOL......cc.coiiiiiriiririeieniereet ettt ettt et ettt st et et st et et sbesaa et e sbesbeesaensessesseens 45
Real-time Performance CONIIOLoiiiiiiiiieiiiiieieeeeeeteeeee ettt e e e e e e eaar et e e e e e s s ssasaseeeeeesssssssssaeeeeeas 45
TS s W =121 6 (o) o DR 45
SENSING ANA CONIIOL.....coiiiiriiiiiiirieetetereee ettt ettt ettt s et et e sbe s st et e besbesaaebesbessaesaesesbesseenns 45
SUD-INSTIUMENT CONITOL. .. .eeiiiiiiiiieeeeeeeeee ettt e e e e e e e e e e e s s bbb et e e e eessssasaseeeeeeesssssnssneeeeeas 45
TIME REAGINE ...veveeiieniiiieieeieeeeeeeeee ettt sttt a e s b s bt snesresme s 45

5. FUNCHON TADIE COMNIIOLuvviiiiiiiiiiiieeceeeee ettt ettt eett e eeat e e e esaasesseabaesessasessessssessesassesssssseesesssnesssnes 47

TADIE QUETIESveeeeveeeiieciie ettt et ettt e e rte e eetae e tbeeebe e e baeesbaeesaeeesbeeesbaeeabasesasesssesessaeensasensaeensees 47
REAA/WIIE OPETALIONS ..cuviiviiieiiiiieiieisie ettt sttt steesteeste s te s tesabesbesbesbesasessesnsesnsesnsesnsasnsesnsasnns 47
TaADIE SELECTION ...ttt ettt ettt ettt b et b e b e et b e b et ebe s e enene 47
6. Mathematical OPETAtiONScc.eeieiieriiririeiieniene ettt ettt st et esbe st e et e tesbe s bt st ebesbesbeeabessessesaeensensenee 49
AMPLITUAE CONVETTETS ..euvieneierieriieniienientestestestestesstestestesstestesstestesstesssessesssessessessesssesssesssesssesses 49
Arithmetic and LOGIC OPETatiONSceeevverierierierienierierteriesiesieetestestesteetessessesseessessessesaessessessesssessensens 49
MathematiCal FUNCHIOMNScueoiririeieniereeitetestesteet ettt ettt sttt et et s bt et este b e sbe st e eesbesbeeateseesesnes 49
Opcode Equivalents Of FUNCHOMNSc.cooiiriiiriiiiiiieieceeieeseeie sttt ae et te sttt s e s 49
RaNAOm FUNCHOMSooviiiiiiiiiiiiicicicttctctcrttctceet sttt resre st ae st st nesne st e nene e 49
TrigONOMEIiC FUNCTIOMS «..eoctiiiiiiiiiieieeteeceeeeectee ettt ettt et e bt e s e s e bt e bt e beesreeeneebesnesasessessesnne 49
7. IVIIDI SUDPOTT ittt ettt et e et e ettt s et e et e e s bt e s ente s euee e e st e e asee e see e nbeeanseeeaseeeseeeeneeeenseennseesneennee 51
CONTTOLLET TIPUL ..utentiiiiiieieieeitetestese ettt e sttt e e te st et e besbe s st ebesbesuesstenbessesseessessessesssensensessesssensensesses 51
COMVETLETS «.cuveeuveereereeteeeteeeeeeeteeeteere s st s st s bt s bt sase e sessessesaseesesasesasesasesasesasesasesasesasesasesaseeasesasesasesnsesnees 51
EVENT EXTEIARTS ..cuveiiiiiieieeeieeeter ettt st sttt st sr e s bt s a e s b s aesbesbe s aennesnes 51
GeNneric INPUL ANA OULPUL ..c.vevuiiieriiriirieienieseeteieseetetestesteetestestesaeestessessesseessessessesssensessessessensessesses 51
INOTE- O/ INOTE-OFF ...ttt sttt et sbe s bttt e s b st e e e besbe s e e saesbesnis 51
MIDI MESSAZE OULPULceuveiriiriiieeiiiieeireeeteerteete et eereeereeereeere e st eere e st eeneeeseeereeseeneesseeseseneesseessessseenne 51
REAI-TIME MESSAZES ...cuveevvenreiiriieienienieeitertesie et et esteste st e b esbesbe st e besbesueesbesbesbesstensensessesasensensassasnsensensesses 51
SHAET BATIKS ..ottt ettt ettt et e st s bt et e s b s bt et esbesbe e st e b esbesbesasensenbennis 51
8. PILCH CONVEITETS......eeiiriieiiiierieeieeieteeee ettt ettt ettt ae b sre st ee s b e sbe e e e saesbesneemaessesnesseeseensessennn 53
FUNCHOTIS. ..ottt ettt st e b e bbb b s bt s b snesnesnis 53
TUNING OPCOAES ...ttt ettt sttt e be st e e st e sbe s bt et esbesbe s bt et ebesbesbeeabessesbesseensessensennis 53
9. SIGNAL GEIIETALTOTS. ...cuverveeuieeererieeieteeeet ettt st ettt st et ee st s bt e st et esbe s st e e e aesbesbeemeesesbesneemaesessesneeneensessenne 55
Additive SyNthesis/RESYINTRESIS.ccviiiririirieieiereeteeeseet ettt ettt st et e st sbe et e besbesaeen 55
BaSiC OSCIILATOTSeerveeuieieierieeieertentee ettt ettt sttt s b s bt et besbe s bt et e besbe e st ebesbesbesasensessennis 55
Dynamic Spectrim OSCIllAtOTS.cctiriiriiriiriiereereert ettt ettt ettt sbe e sbe e sessbeesbessbessbessesnses 55
FIML SYIENESIS ...ttt ettt ettt ettt et et ettt e et s b s bt et et e sbesatenbesbesbasatenbesbessasnsensensesas 55
GIanUIAL SYNTNESISeeveeiiiiiriieieereeeeteer ettt sttt ettt et et sbe s bt et esbesbe st e b e besbe e e esaesbesnis 55
Linear and EXponential GENETATOTSccceeireirirrernieneeieesieesieesie et esieestesssessseessesssesssesssesssesssesssesnses 55
Linear Predictive Coding (LPC) ReSYNTNESIScceviriiriiriiririeniirieriteteeseet ettt 55
Models and EMUIAIONScoeeuiiiiiriiniieieieneeee ettt sttt ste b st et sbe s b st seesbe s esesbesbeenis 55
PRIASOTS ..ttt ettt b e s b s e a e s b b e e e b b e e nesneenes 55
RanNdom (NOISE) GEINETALOTSc.eeuerverteiruerrenteieieesentetestesessessentesessessestenessessesseneesessessensenessessenseneesessenes 55
SAMPLE PLAYDACKcuieiiiiiiiieeeeee ettt ettt st b s aesbe s 55
SCANNEA SYNTNESISveiiiiiiiiieitee ettt ettt ettt esbe e b et e sbe e beesbeebeebaenses 56
Short-time Fourier Transform (STFT) ReSYNthesis......ccccoceviriieniineniiieieneetcieneeeeteieseeee e 57
TADIE ACCESS ..cnveveenieienieeieeite ettt s bt sttt s b s bt et e st e s bt e bt et et e sbe s st et e besbesae e s e besbeenee s enbesbeens 57
Wave Terrain SYNtRESIS.cc.ueviieiirieieee ettt sttt et et s et e sbesasees 57
Waveguide Physical MOAEINGccccevuiriririiiiniireeteieseetetetesiee ettt st ettt et et s e et esbesbesaeens 57
10. Signal INPUL aNd OULPUL....eervereieierieeieeteiesieeeeitete ettt st et et e st sbeese et e sbesbeeseessesbesbeeseenbesbesseeneensessessean 59
File INPUL QDA OULPUL....coouiiiiiiiiiieietetet ettt ettt et et s bt e sbe s be e be e be e beesbe e beesbe e beessesssesnsaensas 59
IIPUL ettt ettt a e st e et a e s a e s e b e e e e s rae e naeean 59
OULPUL ettt et e et e et e et e e s bt e e s ab e e eab e e ea st e e bt e e st e e saseeeabeeeabt e e steeaabeeeaseesseeeseeennseans 59
Printing and DISPIay.......cccceeiiriiriiniitetetet ettt ettt st ettt e be et esbe e beenees 59
SOUNA FilE QUETIESveeeeveeeirieetiecieeeete et et e e eeesteee vt e ebee e beeestseessseestseeesbeeesssessseessseessseeeseeensssensseens 59
11, SiGNAL MOGIFIETS ...veveevieiiiienieeeeiereetee ettt ettt ettt ettt s b e bt et b e s b st e b sbe s bt et e b e sbesseenaensessesneen 61
AMPLTUAE MOAITIETS ..ottt ettt et e bt e bt et s b s be e be e be s be e be e ba e seeneas 61
Convolution and MOTPRINGcceviriiiinirieteiereeeeterese ettt ettt sttt et s e st tesbesbe st esbesbesseens 61
DIBLAY ..ottt sttt b e bbb b e a et e b e s b e et e b e s be e bt et e b e e bt eneebenreeneenes 61
ENVEIOPE MOGIIETS. .. cuiiviiieiieieiisieeteieseee ettt et e st e sae st et e st e sae e s et e sbessa s st essesaesssensensessasssensensessesnes 61
Panning and SpatialiZationcecceerieririrerierieenereteeeeeeseeteeee ettt 61
REVETDETATION.eeiieiieiieierieeieeteesee ettt s bt et ettt s bt e et s b e s bt et e b e s be s bt e e e nbesbeeseeaesresseenis 61
SamMPle LEVE] OPETATOTSeevuieriiiriiiniiiritintertesteete st st sit et sae e st e s st e st esaeesaeesbeesbeesseesseesseesseesseesseenseensas 61
SIGNAL LIMITETS ...ttt ettt ettt sttt sttt a ettt et e b s e e ne e 61
SPECIAL EITECLS ...venieiieeieeieeeeteetee ettt ettt et s e st st e et e et e et e e be e be e ba s be e saensaensaenseenss 61
SPECIALIZEA FIILETS ...ttt ettt ettt et ettt e bt e st e s e bt e beesbe e beesbeennas 61
StANAATA FAIEETS ..cuveeieieieeieetetet ettt sttt et sttt sbe st et et sbe et et e sbesbesatenbesbesaeeaeen 62

WRVEGUIAESevienieiiriieietenieeitetestes e et et e st e s testt et e tesbe s st estessessesstessassessesatensansessesssensansessesnsensensessesnsensenes 62

12, SPECLTAl PTOCESSIINGvcuvuiriieieiieiiteteeeitetetete ettt ettt ettt et s ae et s a et s se s et sresaeae e ene 63
Non-standard SPectral PrOCESSIIE......cc.veverueriiririerienieniteeriesie ettt sttt eesaesbe e e ee 63
Tools for Real-time SPectral PrOCESSING........ccceviiiierierierieienienieetentente st etestestesieestesaesiesasessessesseensensenns 63

13. ZaK PaAtCh SYSTEIM ...ttt ettt ettt ettt a et st se st s aen et se e e e 65

14. The Standard NUIMETIC SCOTEc.eevuiirriiriiiriieriteetteritesteste et et et esseesseesseesbesssessseessesssessseensesssesssesssesssesnne 67
Preprocessing Of StANAard SCOTEScoeeverieriiririienienentetene sttt este ettt estestesaeestestesbe st essessesseensensenee 67

CAITY oot b bbb a e st s e b e aeen 67
TRITIPO ...ttt ettt e sttt e st e s e et e e s bee e s e b e e e e e ne e e e e nraee s e nreeeeennaneeaans 67

N0) o ST P OO PR PR PPN 67

N B ettt ettt sttt b e st b e b e e h et e b e bt et et e sbe e bt e Rt et e be e bt et e bebeeateatebebenn 68
Next-P and Previous-P SYMDOIScccoiiiiiieeeeeeeeeeeeeesee e 68
RAIMPINIE ettt ettt s ettt s bt e s bt e s bt e s meeeeaeeessaesenaesnaeennrees 68
SCOTE IMACTOSeeiiieeiiieeite ettt ettt e ettt et et e e bt e s bt e e ab e s a b e e s abe e s st e e sbe e abeesabaesssaessteesbeesaseesnsaennsaenns 69
DESCIIPTION ettt ettt ettt e et e et e e bt e s at e e a bt e e bt e e bt e e eseeseseeeembeeeseesseeeaneenanee 69
T2 8 L b QO TP PP P OO PO RO PPRRPPROPPRRPI 70
INIHALIZATION .. eeveevieeteeeieeee ettt ettt sttt et e e bt e teesbe e st e e beesbaesseebeesseenseesseeseesseesseensesnseensennes 70
PeITOTIMANICE.viieiiiieiteieet ettt ettt ettt ettt e e be e beesbeesbeesbeesbaessaessaensassasnseenne 70
EXAINPLES ..ottt ettt sttt ettt et e st e st e st et e st e s b e et et e sbesbe e st e besbesatenbebesbeeatenbenbenaean 70
CIEAILS .vviveereeeieeeeesieesteeete e et e st e st este e s st e beesseesseesseesseesseesseanseesseeseasseenseensesnseesseesesseensesnsesnseensasnses 71
IMUILIPIE FILE SCOTE....uveineiiiiiiiiiiiitetectest ettt ettt ettt ettt e bt e s bt e sbeesbeesbeesbeesseesseesseeseessassseenseenne 71
DIESCTIPTION ...ttt ettt ettt et e bt e bt e bt e be e bt e beesbeesbeesseeseesseesseeseeseessesnne 71

) L2 QOO OO PRTPRRUR 71
PeITOTIIANICE. ...uviitieiieiteitetete ettt ettt ettt ettt e et e bt e sbe e s bt e sbeesbeessaessaessaessaessaenne 72
CIEAILS ettt ettt ettt ettt ettt b ettt b bt eeb bt e e s b b e et besne e 72
Evaluation Of EXPIESSIONSccciiriiriiiieeeeieeseesteeseeseesteesteesteesseesseessesssesssesssessseessesssesssesssesssesssesssesnses 72
EXAIMPIE ...ttt ettt ettt et s bt e st e e s bt e be e s be e ba e s bt e s bt e sbe e be e bt esbeesbaenbaensaenne 72
CIEAILS vttt ettt ettt ettt b ettt b bt et b e bt b e b bt et b s e et sesae e 73
SCOTE STATEITIEIILS ...ceueiiiiieieieeeieeette et ettt et e et e e st e e st e e e bt e e bt e e steesabeeeubeeeaseeeseesesbeesaseesasaensaesseenns 73
SINE/COSINE GENETATOTS ...eeuueeieurieeiieeiiteeeieeeeeeee et e ettt eeabe e et e s bt e s ssteesateeeuseesaseessseesesbeeanseesaseesseeenseenas 73
Line/Exponential SEZMeENt GENETATOLSccccevveruererierieriereeitenienieseesestessestessessessasssessessessesssessessesses 73
File ACCESS GEIN ROULITIESueeeviiiiiiiiiiieieecieeeiteeie et et esie et e steesteesteesteesseesaeesseesseesseensasssesssessesnsesssesnses 73
Numeric Value AcCeSS GEN ROULINESccceeviiruiiriiniinieiieeniteneesie e esie et esieesieesiesssesssesssesssesssesssesnses 74
Window Function GEN ROULINESc.coceeuerieiiiiriniinieinineieteteestestcteiessesreseee et sse e ssenes 74
Random FUNction GEN ROUTINEScccceciiriiriiniereerteseeseeseesieesieesteeseeesaesssessaeesseesseessesssesssesssesssesnses 74
Waveshaping GEN ROULIIIESc..coeviiiiririiiiicneneeteereseeteteseee ettt sae s s s snesnesneene 74
Amplitude Scaling GEN ROULINES.....c..cceoiririiriiirinerieieerenteteteestestetese ettt see e sse e saeaen 74
MiXing GEIN ROULIIIEScooveiiiiiiiiieiieeeeecccieeee ettt re e s s nesneeanes 74
II. Reference w75

15. Orchestra Opcodes and OPETALOTSc..ccueeeueruerretrerrerteteererteteeeessestetesessessesteseesessesseseesessessenseneesessens 77
o et et e e ee e e e e et e e e —ee e e e ——ee e e —te e e e ——eeea e raeeeaarteeeaarteeeaarraeeeaarareeeareteeaaeeeeeaarteeeeanraeeeaasreeeeareneeeanren 77
FHACTIIIE ..ttt ettt ettt sttt et e b e bt et se b et et bennen 78
FHTNICIUAE ..ottt ettt s e et e st e s te e e aeesaeesaeessaesseesseasseessaesseesseasssesseesssasssasseessaessaanseen 81
FUIIAET ..ottt et s e st esat e sae e sat e s st e sae e s st e s st e sseesseesseesseesstesseesstesssesstanssensaessaansaenns 82
BINAME ...ttt ettt ettt b sttt ettt et b et b e s bt e e bt b et et et b et et et e se b et et ne b nee 83
DDt ttteee e et ettt et et e e e ——e e e et e e e ———taeeeeea e ———taaaeeeaa e ab——taeeeeeaa e abataaeeeeeaaarbataaeeeeeaaabrtaaaeeeeeeaataaaaaeeeeeeannrrraaaaees 86
QUL ettt st b e bbb s bt e bt e e bt e R e b et e b e e bt et e bt e b e e bt et e b e sbeese et e nresneenes 87
U 89
> L ieieeettteeu e eeeeetttt e eeeeteaaa e eeettanaa___eeeettaanaaaaeeettananaaa e eetarraannaeeettanananaeeeeeernnnnnnaeeeeeanrnnnnneeeeerens 90
S 91
SR 93
RO EER USSR U TR U U O RS R RO P TP PR RUUURURUPURRRUPORURUPURRRRRRRPRRRN 94
ettt ettt sttt st e et st e e b e et et e e e s b e e e e e s R e RS e e R e e Rt e Rt e e e R e e e et e s Re e st e e e e e s re e st et e reeneeneen 96
o ettt et b e st E e bt e R R b e e e R e Rt e RS e bt e Rt e R e E e b e e Rt e e e R e Rt e Rt s e e b e e Rt e Rt e e e b e eneene s 98
L ettt e ettt e e e e—eeee—ee e e e ——ee e e b—eee e e —ateeaabtaeearateeeataaeeaarateeaaraaeeaaraaeeaasbeeeeeraeeeaasraeeeaarreaeennres 100
Sttt ettt ettt e et h et e h e e bt e e bt e bt e e et Rt e R e e e et e e R e e Rt e e e Rt e R e SR e e b e e R e e bt e e bt e Rt e Rt e R e bt e bt e Rt e b e s Reeaee e e bt ereeneen 101
S ettt h e bRt a e s Rt et e b e Rt et b e Rt e Rt e e e bt e Rt e Rt e R e bt e Rt e R e e b sa e e Rt e n e bt eneene s 103

Lot eese e s e e e e e e e A AR A A et ettt 106
(076 o) £ SRSRRRTR 107
2 TSR 109
P21 0 Y] 7) 21 6 Lo ERURRRR TSSO RR TR PRR 109
ADEXPITIA .ottt ettt ettt e bt e st e e st e et e e bt e s bt e bt e bt e bt e a e e atesatesat e st e st e saesaeenaaens 110
ADIS ot ettt e e et b e eta e eetbeeet bt e et aeeetaeeataeentaeeatate et e e e taeentaeenaaeeenbaeeteeetaeentaeensreen 110
ACAUCKHY ..ttt ettt sttt e st s bt et et e s bt e a b et et e sae et e be b e eat et et e sbeeabebebe e st eabebebens 111
2T 1 1/ < 111
ST ..ottt ettt e et e ettt e ea e e e te e e te e eeta e eetae e et e e et e e eatbeeetaeeaabeeetrae e baeetaeeataeeaaree et e eetaeetaeentreennreeenres 114
AAS YLttt ettt ettt b e e bt et b b e h et e s bt e a b et e b e e h e et et e bt e a b et et e ebe et ebebe e st enbebebeas 117
AASYIIL 1ttt ettt ettt b e s bbbt R b bt e e e e e bt et et e b e e b e e e e aesbeebe e e e neerens 118
AEXPTAIA. .. eenveveeiieienteettetent e st et et e s te s bt et e beste s st e st esbesbesatesbesbesseestenbenbasatentenbesseeatenbenbesha et e sesbesstenbenbansaen 121
F2 ¥ 101 (o] o DO SRRSO RSRRRRRRRRRRRT 121
oL LU SRR 122
AGOZODEL ..ottt ettt ettt ettt s bt et et b e e at et e be s bt e a b e bebeehe et e besbeeatenbebentaen 123
F21 01 21 8 L6 OSSO SRRRRTRRRRRRRR 123
ALPASS .ottt ettt ettt e sh b e a e h e e bt e s bt e s h e e e bt e s h e e e st e e st e e bt e bt e s atesatesatesate s st e atesatesatenatans 123
AINIPAD Lottt ettt ettt et et b e s bt et e b b e e at et e be s bt e st et e besha et e besbe e st enbebesaaen 125
AIMNPADTS. ...ttt et et e et e et e et e e a b e e a b e e st e e s te e st ensteesteenteentenntenntann 126
AINPINIA +eenveeveeeiieeeert ettt ettt st s e st e st b e st e e s tt e s bt e st e e s bt e s st esste s st e s st e s s te s st esa b e e st esabesatesatesatesstesatenatans 127
APCAUCKHY .ttt ettt ettt s et e st e st e et et e be s bt sa e et e be s bt e st esbebesatentenbessaeasensesbesstensensessesssensensessenn 129
APOISSOTN .enneieiniieeeiiteetteertteeeute e e bt e e bt e e bt eestteessbeesaseeeabaes st e e saeasabeeeabe e e st eeste e st e eeabeeea bt e e bt eesteenabeeeabaeeares 129
APOW ittt ettt e ettt e st e e e bt e e s et e e s et e e e b bt e e e s bt e e e e bt e e e e e b et e s e R b bt e e e R e e e e e e b et e e e nb b e e e e nraeeeeraeeeeenraeeas 129
<10) o E N 129
FE NS0 o 1 SRR PR 131
21 10) o (<SR PRRRRRRURRRRRY 132
ALOTIEK ..ottt e e e e b e e et e e e ta e e e tae e e be e e be e e taeeetae e tbaeebeeerae e taeetreentreeenreeenres 133
(0] 0 1<) QN 134
P21 01 =1 0 Lo H RSP RRRRRRRR 135
AUIHTAIIA ...ovveeeiecciee ettt ettt e et e eetreeetbeeebee e taeessseestseeeaseeesseeesssersseentsseesseeensesensssensseensseeenseeensens 135
P T <1 018 1| OSSR 135
071 o Yo SRR 136
DALATICEveeeeveeeieeeetee ettt ettt et et ere e e ete e e e tbeeebeeetbeeeebesentbeeeabeeeabaeebae e tbeentbeeetbeeenbaeentaeetreenareeenns 139
| o215 01 0 Yo Lo YRR 141
o] 0Yo1 61 o o NPT 142
DDCULS vttt et e e e e et e e eetr e eetaeeetbeeeabae e bbeessbeenabeeeabae e bae e tbeentbeeetbeeenbaeentaeensreentreennns 146
| 1< 721 721 0 Lo ARSI 149
DEXPITIA ...ttt ettt s e s bt et e e e e et st e et e et e et e et e e be e be e be e be e beenbs 151
DAQUAG. ..ttt ettt ettt ettt et et b et ea et s h e bt et et be e bt et e besbeeat et e besbeeaean 152
o) (0 L0 F: T b H OO TR 154
| 031 5 o U KOS RORRRRRTRRRRRR 155
DULDD 1ttt ettt et et s bt et et b bt e a et s b e bt et et e be e bt et e besbeeat et ebesaeeaean 157
| 018 14 o) PSSR 157
DULIID ettt ettt sttt et e bt et s b e et e et e e b e et e e be e be e be e be e be e beenaas 157
DL ettt ettt ettt b et b e bt e a et s b e bt et e b e beea e et e besbeeat e benbesaeeaean 158
01U Nu 7<) o) o FE OO 158
| 18 1 (3 o) (RSO RRRRRRRRRRRR 159
DULEETIID ..ttt ettt et s b st e et s b e st et et e s bt eat et e sbesaeeut et enbesseeneen 161
DUTEETID ..ottt ettt e et e st e et e et e s be e be e beesbeesbeessaensasnseensasnsasnsasnses 162
DULEOM ottt ettt ee et e eette e e e e tbr e e e e tbeeeeessaeeeeessaseeessasaesessaseeesssseeasssseesnssseeeenssneesnssseeeenssnes 164
DUZZ...coooeeeeeeeeeeeeeeeeeeee ettt e e ettt e e e e s s s b ittt e e e sssss st e e e e sssassaabateeesesssabataeeesesssaabbeeeeesssssnnnaes 165
(o7 o - 1T RS RRRRERRRRR 166
CAUCKY .ttt ettt et et e e et e e et e st e st e st e e ab e e a b e e st e eabesabesabeeabeeab e e b e eabeeabeenteeabesatenn 168
(073 | 169
L =4 =0) (o 171
[0 =15 Lot s 4 FOUR U OO RO U RO TR 172
(6301161 < 010). CORN TR PRRRTTRRRRRRRIN 173

CKEOTO «nveiteteteette ettt ettt sttt s bt e bt et e st e s bt s at et esbesbeea b et e beeateab et esbesat et e besseeatenbebesntenbentans 176
CLEAT ...ttt ettt ettt e bt e bt e bt e bt et e e b e et e e b e e bt et e e bt et e e b e et e et e e be e be e be e be e be e beebeebeeraens 177
CIALE ¢ttt ettt ettt b bttt et b e bt et b b e e et be b ae e ens 178
ClIP teeteeeteeete ettt ettt ettt et e s bt et e et e et e et e et e et e et e e bt et e e bt et e et e e be e be e be et e e be e be e bt e bt eteeteebeenteenteans 180
CLOCK ettt ettt ettt et et e bt e bt e bt e st e e st e bt e bt e st e bt e b e e bt e bt e st e s st e s st e st e st e seenatenaaens 182
CLOCKOTT ..ttt ettt sttt b ettt b bt b e aeeenis 182
[0 LoTod (o) o NP OSSR S SO RRRI 184
(03 07 ={0] 1o J TP 186
COTIID ettt ettt ettt ettt e b et et e st e b e e et e st e bt et et e bt b et et st b et et entebenneneen 187
[o70) s Y1 o) PSSO 189
COMVIE ittt ettt et e st s e st e s ttestt e st e e st e st e bt e st e st e st e st e st e st e st e st esstessbessbassaasstastesssenssenseens 191
COMVOLVE ...ttt ettt ettt ettt s b et et s bbb e e e b e s s et emt e st sbessenaeneeseseneen 191
(070 L OO PPPPPPPPTORRRRRRPINt 194
COSN. ettt ettt ettt et a e h e s h e e a e e s h e et e e s bt e e bt e e hteehtesa b e s st esate s st e st esatesatenatans 195
COSIIIV ittt bbb e a e bbb e b b e s b b e b b e s b b e s ab e s b b e sa b e ab e s b b e b s e b b e sabesabe e 196
100153 o Yol o USSR SRS SRRRI 197
CPSITIIAI .ttt ettt ettt e s bt e st e e st e e s bt e s bt e s bt e s st e s bt e e st e s st e e bt e s bt e s st e e st e s st esatesabesate s st esatenatens 200
CPSIIIAID ..ttt ettt st et et s bt et et e s b e sat et e be s bt e a b et e beshe et e besbeentenbebesteen 201
(07015 0T of OO RROPPPPPPPRRRRRRRPINt 202
CPSPCI ettt ettt e s e st et e s a e s h b e e a b e s a b e e a b e s a b e s abesat e s st e ate s st esabenatens 204
CPSTIMIIA ittt et s bttt e b e be st e e at et e b e s bt et e besbesat e st e besseesbesbebessaenbenbessasstensensansaan 206
(070151 10 1 6 BT OPPPPPRPRRRRRRRRINt 208
CPSTUTL .ttt ettt ettt e et e et e e e at e e e et e e bt e e bt e e aee e eaeeeeabe e e bt e e see s seeeeaeeaeasee s st eeseeeenseeenseennreas 210
CPSXPCH ettt ettt et et ettt et b e s h et e b bt e at et e b e s bt et et e beeat et e besbee st enbenbesaaan 212
CPUPTC eeeeeeeeeeeeeeiirrteeeeeeeeenrrreteeeeeeeesrrrateeeseaeannnrrateeessseansrrraeeessesasssrsteeesssasssssrraeeessssssssrraeeeesssssnnnsrnees 215
CTOSSZ .eeeteeeeeteee ettt ettt e st e e e bt e e s e abt e e s e mb e e e s s b et e s e sba e e s e sb e e e s mbaeeseenba e e s e s b e e e s e b et e s e en b b e e e e nraeeeenrreeeeenraeeas 217
CIUTICH ottt ettt ettt et e b et et e bbb et et s b et et et s sesbeaenteneseneen 218
o 0 4 1 OO OO O PO UORPURSOR SRR 219
CETI2T ettt ettt s e st e st b e s a e e s a b e s bt e s bt e s a b e s st e e st e e a b e e st e e Rt e e a b e s a b e e ateeatesateeabeenteeatesabesatans 220
CLTL7 ettt ettt ettt b et e a et ettt b e bttt a et s aennen 221
CUIITUIT 1ottt et e e st e et e et e e e et e s st e e st e sstesase s st eesbesssesssesssesssesssesssesssasssesssannsasssasssesnsens 222
CUSETTIIA ..vvienvieiieniieniteeit ettt s e st e st e st esttesttesutesate s st esatesstesates st esatessbes st esstessbessbesabesatasasessbasasesasesasesasans 223
LT ettt ettt ettt sttt a ettt b ettt b et et aennen 224
D ettt h e bt e h e bt et h e b et et e bt b et et e st e b e b et et e be et et et eaeeaetan 227
ADAIMIP .ottt ettt s e st e st e s a b e s st e s ab e s a b e s st e e st e e st e s a b e s ateeabeeateeabeeateeateeabesatens 228
ADESAIMIP ...ttt ettt et ettt st et e b e st st et e b e s bt e at et e s be s st ea b e besbeeat et esbesae et e besbeeaean 229
ACDIOCK ..ttt ettt e e st e et e st e et e st e et e e st e et e e a b e et e eateensaenteenteentenntann 230
QCOMIV .ttt ettt e e s a e s a e st e e a b e s a b e s at e s st e s st e s st e s st esabesabesateeabesabesabeesbesatesatesabesasens 232
QLAY ..ottt ettt et et h et b e bt e a et e b e bt e a s e b e s hesat et e b e bt ea e et e sbesae et e beebeeaeen 233
QLAY L ...ttt sttt et e b s bt et b e s b s bbb s bt et et e e bt e bt et e b e e be e st et e sbeebe et e benreeneen 235
QEIAYT ..ttt ettt s e et et et s e et e et e e a b e e st e e st e e a b e e a b e et e e a b e et e eabeeateeateeabenatens 235
QELATW ...ttt ettt et et b s bt et e b e s bt e a e et e b e st e e a b et e e be e st et e b e e bt ea e et e shesae et e besaeeaean 236
16 1<) L | o O OO OO OO O OO ROUPRRPRR 237
AEILAP3S ...ttt ettt e et et e b et s e et e et e et e e a b e e st e et e e a b e e a b e et e e a b e et e et e e abeeateeabesabenn 239
QELEAPI e vteteeieeeeteeee ettt et ettt et et b e ettt b e bt et e b e beea e et e be e bt eu b e besheeat et e beeseeaten 240
16 153 L o) o DO OO OO OO ORI 242
16 15] L | o): QOO OO OO OO O T O OO O T TR O PP OO OO R PR PRRPRR 244
QELEAPXI ..ttt ettt st s et e s bt s a e et e b s besat et e s b e euteab et e sbeeat et e beebeeut e besheeut et e beeseeaten 245
QT ettt b et h ettt e h bt e ae bt b et et e bbb et et be st et et aeaan 247
QESKITL 1ottt ettt r e st b e s ne s 249
QESPIE ettt ettt a et 251
ESPIAY -ttt ettt sttt b et b e et et b e s bt e e e b e s beeae et e b e ereeneen 252
ESTOTTL ottt ettt ettt st b e sttt sb e s bt et e b e b e s bt e st e nesbeemeene b e eneeneen 253
6 17/ OO OO TR 255
QOWTISAINP .. evteiieeiieeteet et e et e e et e st e st e st e e st e e s tesatesatesssesasasasesnsesssesnsesnsesnsesnsesnsesnsasnsesnsasnsesnsesnsesnsenn 256
ATIDWALET .ottt ettt e et s e et e et e e a b e sab e et e eabeeab e e st e easeeabesabesabesabesaseessasasesnsesasesasenn 258
QUITIPK 1ttt ettt ettt ettt sa et st s b ettt s e ae e e e nenen 259

AUIMIPKS .ottt ettt e b et et e s bt et et e s b e s bt e st et e beebtea b e besbesatenbesbesseentensenbesaeensensans 262
AUIMNIPKA <.ttt ettt ettt e et e et e et e e be st e et e e be e be e baanseenbeensasnseanseensesnsesseenseensenns 263
(6 LD ET=) & v s o ARSI 264
LS ittt ettt e e e e e —————ee e e e e e —————te e e e e e —————ttt et eae e ———t et et eeas i abaaeeeeeeesaarbaaees 265
L] L) § SRR 266
1 L6 1 1 ORI 266
1530 e 11 o SRRSO RRRRRRRRRRRRRIIN 267
EIIVIPIX 1eiuttitiiieeetteeit et estt et et estt e s bt e s teeste e s st e s st e bt e bt e bt e bt e st e bt e st e bt e bt e bt e bt e bt e st e a b e s st esateest e st e stenatenatens 268
EIIVIDXT 1vvteiteterteeitetente st et et e s it st et e besteett e besbesue e st esbesbesatesbessasbeestenbenbesat e st enbebeeatenbenbesheent e bebeeatenbebenteen 271
[SA7(=) o | AP 272
154 0 JO RO OO P RO PSR ORPRRRRPPP 274
13-4 010) s OO P PP PP OPPTRRPPP 275
1.4 0) -1 s [0 FUS U SRRSO SRR 276
1o €= TP 278
EXPSEEA .evveeiinrreeiiiiieeiittee ittt e ettt ettt e s e bt e s e b e e s e bt e s e b et s e bbbt e s e bbbt e s e b et e s e b b e e s e bbb e e s e b e e e s bbbt e s snbaeees 279
1004 011 =4 PSPPI 281
51 (51 (<5 o LRSS 283
110316 o101 KT RO 284
FILEPEAK ..ottt ettt e e st e et e et e et e et e et e e ta et e et e et e e s ta e teeaeenteentaenraentas 285
1 (S5 RSO RRRRRRRRR 287
51 1T<) o2 OO RR USSR RRRR 288
510 WSS SRR 289
500) SRRSO 290
FINIK ettt e et e e et e e e b bt e e e b b e e e eeba e e e eaba e e e e bbeeeeaaaaeeeeabeeeeearaeeeetraeeeerreeas 291
0] 1<) o FU OO TSR URRURRR 292
LATIEET ..ttt ettt r e e bbb e eesreene e e e b e sreenees 293
1 F= 1] 01 0« SHP SRR SRRRRR 295
001 036 J0UR OSSR 296
001 o 1<) | F OSSPSR 298
010 0 1<) 721 AU ORI 300
11001 01 (ot i SO TR 302
110 81 8 10 1 [OOSR 304
01770) (o] USROS 306
000102014 § (SRR 307
(o) AP 309
0] V2RSSR 312
O ettt sttt b e bbb e bt et e b e b e e bt et et e sbesae et ebesreeaeen 313
0 [RSO 315
0] 1 (6)1 20RO 316
1011 [0 111722 OSSR 317
101103 | DRSSPSR 319
(011011 | RS RRRRR 320
1018 SRS 322
10161 s DRSO 324
1 (010 16 1 (ORI 325
1018 14 TSR 326
i ¢ LRSS 327
11161 0101 KRR 328
BEGOTY ettt et b et b e s b st b e bt e s e b e sbesbe e e e besbeeneen 330
1 (3 s DR 331
11 (o Y: Lc BTSSR PRRRRTRRRRRRI 333
11 oY o | USSR 334
FEIDTIINY .ottt ettt s e et sae et et et e e e s st e s b e s b e ea e e st e besae e st e st e beeseestenteeaeeaeentebenaeeneen 335
118 0.0 (o) o SAUUUURRR TSR PRRRRTRRRTRRRI 336
1T A (< PR ROSRRRRERRRR 338
ST A7) TR 339
1<) GO TRUTTRRRPRRRTTRRRTRRRIN 340

10

e LU T PPN 343
BDUZZ...oeeee ettt a e s bt et b e e bt et e e bt R e e e e b e e bt e e eseeresreenaenrens 344
BOZODEL ...ttt ettt et ettt et b e e h et et e s b e et e et et e s be s st et e besae e st e bebesatententens 346
=0 {0 PPN 347
o4 5211 SRS PSR SROPO PR PRPRRPN 349
BTAINZ ..ottt s ettt et et e et e e bt e sttt s bt e e e et e e bt e e bt e s be e s na e e e Rb e e e bt e e bt e s ebae s enae e nbe e e bt e ebaesnee s 350
BTN ..ttt ettt ettt et et et e et e bt e bt e bt e bt e bt e bt e b e e b e e b e e b e e R e e b e e Rt e Rt e st e st e s e e neeeneenneenneens 354
BIATIULL ...ttt sttt st ettt e bt s bt e e b e s bt s st e e e b e s bt e e et e s bt e me e e e b e sb e e e e ae b e ebe e e enereas 359
UITO ettt ettt ettt et et e e bt e s b e e s bt e e bt e e bt e e b et s sa e s s et e e et e e bt e s b et s ne e e R et e e bt e e baesnaesenaeeenreas 361
| 2115 0 010} s WAEUUR SRRSO S RRRRRRRRRRRRIIN 363
511 013 SRR 365
51 (<) SRR 368
Ty 0 Yo 1103 | FU SRR RRRRTRRRRRRR 370
Lt teeeeetti ettt eeereet it eeeeeeeeater i eeeeerrrraraa e eeerararan et erartra_aeeeeratrraaeeterattnnnaaeeeerartnnnaeeeernrrrrnaeeeerrrrrnnnnns 372
F oY= €21 ¢ 1 5 U AN PR ORRRRR 373
1 010:4 0] 0 8 To IS USSR 373
CAUCHLY ettt sttt st r e s bbb e e ae s b aesneenees 373
ot 4 0 ORI 373
o5 12 OSSR 374
1Tt 4 7RSSR 374
TEXPTATIA. ..ttt s bt et et et e s ue et et e st e s st et e b e besutesb e besbesstenbesbesbeentenbenbesaeentenbenbassean 374
11 OSSR 374
IZAUSS .ottt ettt ettt ettt et ettt ettt bRt e bt e b e e s Rt e s R e e s R e e s an e e s b e st e st e saaesnnens 377
L7 <0 o TP PSP P TR O PP OO PPROPP 377
11 5 70) o RS S PRI 379
115500 - 1o L AU RRRRRRRRRRR 380
[3000 e 113 ORI 381
1100 (o | (o2 RSOOSR 381
110108 (6 | (o720 381
IT ceeieieeeeeee et e et et e e e e et e e ———raeeeeeaaba———aa et eeaatbba——taaeeeaaaa bbbt raaaeeeeaabbbaraaeeeeeaaararrereeeeeanrranees 381
11 01 /TSR 382
1111 PR RRRRRRRRRRRRR 383
1101 o WU PRSP 383
1 3 L U RRRRRRRRRRNY 384
10 11 o3 384
ITHEC2 T ittt eeeete et e e et eeebba e e e e eeeeeeabbaaeseeeeeesssbaaaseeeesessssassseeeeesasssssssesaeeeeesssrssssreeeesnnssrrnnes 385
10 0L o 386
1101 RSO RRRRRRRRRRRN 387
5 L0 SR RPPUTRRRRPRY 389
11 0 Lo [FO OO RS TROU PSR PRPRUPUPOPP 389
IT1S e etttuteeeeeeeretet i ieeeeeeeeeaart i eeeeeerarassaaeeeeereassranaeeeerrarsraneeeerraatrraneeerrrarrrneeeeraarrrnneeeerrarrrnnaeeeerranrrnnnnnees 390
1101518000 <) RS RURRRRRR 391
I 1] 000 0 (<t 391
11115 o U RRTTRRRRRRRY 391
) L SO TS UPRR RPNt 394
11 0 L1 7 <SPPI 396
11 0115 o T OO OO RO P O P RO P PRSP PORP PP 397
11811721 10 LI R RURORRRRRR 399
100 - 399
110 V2 400
110 i TR TSR PRRRRTRRRRRRIN 400
110 o [P STURURRTTRRRRRRRRNY 401
1103 e 16§ oSSR 401
170 s Lo 101 w2 TSR PRRRRTRRRTRRRIN 401
1T0] 01 ¥ | 401
1 10] U1 (U UPR RPNt 402
11018 1 (o3 K N 402

11

............................. 402
TOULPAL cevteiite ettt ettt et st e et ssreesemee s ne e e s et e sbeesnaesenaeeans

.. 402
O 20
e o
Dy pros
O L L pros
D s
B L 108
B os
B L o
P o
B o
BT pres
Dy e
D e
D e
o o
T 206
I 206
DL 1o
L o
O P
e o
S e
kbexprnd .. o
L e
D o
D L L m
D e
D e
B L e
L e
S e
D L e
I o
L e
B o
O I
O L I
D L L e
D I
L e
e e
S e
L e
L e
N S o
B nr
B ne
L o
e e
O e
D o
] P
kwelbull .. o
D pos
S 122
L o
L) o TSR RRRTTTN

12

110 T (o J TSRS SUSPS 425
BINTAIIA ..ttt ettt et ettt e bt e bt et e e s bt e bt e be e bt e bt e bt e st e at e st e st e st e st e saenaeeaean 426
LIISEE .. ettt ettt ettt et e bbbt e b e b e bt e bt e bt e bt e bt e bt e bt e bt e at e bt e at e bt e st e atesaaeaees 428
LIS .ttt ettt ettt s et b e s a et e b e bt et et e b e e h e et e b e b e e Rt et e beeht et e besbeeatententes 429
LOCSEIIA ...ttt ettt ettt s e st e st e s st e st e s a b e s st e s st e s st e s st e e st e s abeeateeateeatesnteenteenbesatasats 431
LOCSIG vttt ettt ettt et ettt et e b e st e st e et e s b e e a b et e b e s bt et et e b e e Rt et et e e he e st et e beeatenb e besbeentenbents 433
O et et e e e e ebe e e bae e aae e et b e e e beaabaeebaeeaabeaebeaebaeabaeeatbeeeabeeeraeesaeenraeennes 435
OG0ttt ettt bbbt bt et a e bbbt e h e b et et Rt e b et et ent b et et et e aeebeneenes 436
LOGDEIWO ..ttt ettt st ettt s bt et et e st e s bt et et e besatenb et e besat e st e besbeeat et ebesbe e st enbebestean 437
LOOPISEEG .ottt ettt et et et b ettt b e et b e s bt et e b e beeh e et et e b e eh e et enbesbeeatenbebebens 439
10 (=3 o /220 OO OO OO OO SO PR PPRRRRRR 440
LOSCIL. ettt ettt sttt e b e bt et b et be e nee 443
1071011 1 TSSOSO 445
LOWPASS2 ..ttt ettt ettt e s e st e st e st e st e s st e s st e s st e s abe s st e e st e satesabe s st e e st esab e e st e enteenbesnbeenbeenbeentaeats 447
LOWTES ...ttt ettt ettt ettt et ettt et s b e bttt b et et et e b e b et entesesbe s et eneebensenee 448
LOWTESX 1uvteeeeeiteeteeeteettee et e st e st e st e et e st e st e s st e e st e e st esstaessesssasssesssasssasssaessasssaessasssaensanssasssasnseensasssannsannses 450
IDEL8 ettt b ettt e b bbbt b b et st e b et et ent b b et et eneebenee e 451
IDETESOTN..c..cutiiieieieetetee ettt ettt ettt et b e sttt b e b sttt e b e b e e st et et e be e st et esbesbe et enbenbestaen 453
0] o B 110) (OO O SRR 454
IDAIIEETP ¢ttt ettt st s e st e st st e st e s st e s a b e st e s a b e st e et e e ab e et e et e e beeteenbeebeebaentes 455
LPOSCIL ettt ettt sttt b st b e b s h et e b s be e st et et e e beeat et esbesaeeatenbenbesaaan 456
IPOSCILB.c..eeeeeee ettt s e st e st e et e st e et e e st e e st e et e et e et e e st e et e et e e te e teenaeentaenteentaentas 456
IDTEAM ... ettt ettt s e st et st st et e et e et e et e st e et e et e et e et e e beenbe e beebeebeents 457
IPT@SOM ..ttt ettt ettt st ettt s bt et et s b e e bt et et b e e h e et e b e beea e et e b e s bt en s e besbesae et e besbeesean 458
015 10 [U RR PR 459
IDSIOT ettt ettt ettt s e st et e et e et e et e et e et e et e et e et e e be e be e beebeebaentes 460
00 TS 461
00 L2 o OO OPPPPPPPRRRRRRRRIRt 462
TTIAAST 1. envtettetteette ettt ettt e st e st e st e s atesat e s at e e st e s a b e s st e s bt e s st e sa b e st e e st e e st e e st e e Rt e e st e s ateeateeuteeateeabesnteeateeabenatans 463
INATIAOL .ttt et ettt ettt b et b et et ettt b ettt se b a et neenennen 464
100 F: 1011001 o T RO OSSOSO OR PSR SRRPRRI 466
ITIASSIGTN . euvtiiiiiteiiteiteeit ettt s st s e st e s st e bt e s st e s bt e s st e s bt e s b e s st e s s b e e s b e e R b e s R b e s R b e s R b s R b e s an e e ab e Raesaaesabesanees 467
INAXALLOC <.ttt ettt ettt b et et b et ettt b et nenen 468
TTICIOCK .ttt e et e e et e et e et e s st e e st e s st e s st e est e e st esstesssesssesasesssesasasnseessasnsaensannsannsann 470
ITUAELAY .ttt ettt ettt e e st e st e s a b e s at e s at e s st e satesa b e s st e sabe s st e e st e s a b e s st e eabeeubesatesabeeateeateeabesatens 470
INEQICTA oottt et ettt ettt b ettt b et et e b ettt s ettt a e et nenen 471
1001 0 (o320 SO OO OO PRRPRRI 472
ITHIAICT 1ottt ettt s e st e et e a e s a b e s a b e s st e e a b e e a b e e st e e st e e a b e e abeeabeeabeeateeabeeabeeateeabesatens 473
midichannelaftertoUChco.coviiii ettt 474
1001 (0) (o] 1 o OO OO OO RSO PORPRRPRR 476
MIAICONIIOICRATIGE ..ottt ettt et s e s b st e sab e st e st e st e sabesasesnbesasesasens 478
INEECETL 1.ttt ettt ettt ettt b et b et et nenen 480
TNHAIAETAULL. ..ottt e e et e et e st e st e st e st e s b e sabesasesasasasesssasnsesnsasnsesnsenn 480
ITHLATITL ettt ettt e h e st e a e s b s ae e n e s reenees 482
INEAINOTEOLT ...ttt ettt b et a e nes 483
1001 (0 110 10] (<00 8 Loy 0 F0 OO OO O ORI 485
INIAINOTEONKEY ...ttt ettt s st e b et st e st e st e sabe st esabessbesasesnsesasesasens 487
INIAINOTEONIOCE ...ttt ettt ettt ettt s bttt et et b et et et s e s e e et nenen 489
1001 (o 10 10] 0] 0} 0ol o OO OO OO OO ORI 491
ITHAIOTY 1ttt ettt b e sttt a e s bt et e e b s ne s s 493
00 (0 1 10) s 12/ OO ORI 493
001 (0 1 100 | AP OOOEOOOOPR ORI 494
MIAIPIECRDEIIA ...ttt ettt et s b e s bt st e st e et e s b e s atesasesasens 495
MIdIPOLYATtETTOUCK. ...ttt 497
MidiPIrOGramMCRANGE......ccueivieiiieieeeeeeeee ettt ettt st sr e s aees 498
8011 (0 TP P PP TP PP PTPPRPRPN 500
800 T ¥ <O OO 501

13

ITMOOGVCE .ttt ettt ettt et sttt e b e st e st e et et e st e sat et e basbe e st es s e beeseenb e besbe e st e s b e beestentenbesbesatententas 502

F a0 Le 1103 | ENUUT TSRO PRRTRRRRRRRN 504
ITIPULSE .ttt ettt ettt ettt e bt e bt e bt e bt e bt e be e beebeesbeesessbaeabeensaesseanseansaenseenseeseenseeseesesseenseesanns 505
000 40 0 0] TP P PP PP PP PO PPRRRRPPN 506
00101 L L2 o OSSPSR OSSR 507
180 .¢: (6 1) oSSR 508
JTe] 01| IR 509
TIESTEAAP .veeuveeviertieiteeteeteet et e st e st e et esstesstes st e st eastassaaassesssesssasssaassasssasssesssaassasssasssasssasssasssenssenssenssennses 510
191131 | RS RRRERRRRRRR 513
| 10) 1] T U U TP U UUUUURURURUUNt 514
F Y0 1<10) i AUUUU TSSOSO RS RRRRTRRRRRRRIN 516
TLOTEOTY «uueiiieiiiiieeeeeeeeetttieeeeeeerrstsaneeeeeeesssssssnseesesssssssasssesesssssssnssssssssssssssnsseessssssssssnseessssssssnnnnsesesssssnnnnnes 516
J Yo] 1=10) 8 s 11) GUUU OO RRSRRRRRR 517
F Y0 1100 016 18 1 v/ SRR SRRRRRRRRRRRI 518
TLOTIIUITY .. e eeeviiiuieeeeeeeeeerrneeeeeeereessnneeeeeessssssssnssesesssssssnnsseessssssssssssssesssssssnnssesessssssssnnseesessssssnnnnsesssssssnnnnnnes 519
Y (174§ o OO SRRRRR 520
1 4 0 0 NPT O PPPPPPPRRRRRRRPINt 522
TISATYIP c.euvveeeenreeeeenreeesenreeeeenraeeseenreeeseneteesennetessansaeesasnsaeesamsaeeeenraeesansaeesanneeeesansaeesensaeeeaneaeesanraeessansaeens 523
TIETPOL 1ttt ettt ettt et e st et e st e et et et e s bt e st et e b e s st ea b et e beeh e et e besbe e Rt et e b e s bt es b e benbesheeatenbenbesreen 525
O CTAV e eietiiieeeiiieeeetiieeettteeeestteeesssesessssasessssaessssnsesssssssessssseesssnneesssnsessssnnessssnnessssnnessssnnessssnneesssnnessssnnesssnn 525
L0 To1 o] 0 1 J OO PO SOROP PR O PSP ROUPPRROPP 527
(615 0 01 o | RSP RURURRRRR 529
F0Ye15 0116 b1 o JUUUR OSSR 530
OCTPCR ettt ettt sa e s b e st b e st e e s a b e s a b e s a b e e a b e e a b e e st e e a b e e h b e s a b e s ateeatesatesabesatesatesabesatens 531
L0 1STo] o) s | QORI 533
Lo 11 1 OSSR 538
L 1111 5 RO RRRERRRRRRRR 539
(01103 | B 1 OO RRUR U RRRR 540
L0111 K OSSR 540
L 11 1 | SRR 542
(01103 1§ o VRSP RRRR 544
L0111 KOOSR 544
L0111 - USRS 546
OUL cettuuneeeeeeeettiieeeeeeeeeatstnaeeeeesesssnnneeeeessssssnnnseeesssssssnsnnsesessssssssnnseessssssssnnnseeesssssssnnneessssssssnnnneessssssssnnnnnens 546
(010 113 /U TRRRRRRRRRNY 547
(018 1 1 o TN 547
(0101 o] s DR 548
101010 o DTSRRI 549
(010 15 B | 549
OUTIC 1eeeeeeiiiiieeeeeeeeeeiitee et e e et eeetbareeeeeeeeeesbaseeseeeeseassasssseeeesesssraasseseesasnsssssssseeeesassssssssseeeeessssssssseeeesnnsssrnnns 550
(010 1 (03 551
OULIPAL c.eeeeeeeeteeet ettt ettt et e et e et e s bt e e bt e e bt e e st e e euae e eabeeea bt e e seeeesbeeesseeeaseesase e e st eeenseesnseeenneesanees 552
OULIPD 1ttt ettt e s b et e e b e s b e et et e b e s bt e at et e s be e st et e beebeea e e beshesae et e besaeeaean 553
OULIPIC ettt ettt ettt e et e et e e bt e e at e e e ab e e e ab e e e bt e e bt e e aeeesaseeeabeeea bt e e st e e eabeeeas e e e st e e st eenteeenbeeeaseeeaseeeanees 554
OUEK ..ttt e e e e ettt e e e e e e eeeabb e e e e eeeeesasasaaaeeeeeesssssssaaaeeseessasssassseeeessssssssssesesessssnsrrsreseeesssnnsrrnnes 555
(01014 <=1 SRRSO 555
OULKC .ttt ettt et e e e ettt e e e e s s e abaaeeeeseessssabaeeeeseesssssaaeseeseesssssbaseesseessssnnsaseesasesssssnrrnnes 556
(01010 o2 RSP RRRTRRRR 557
OULKPAL 1.ttt ettt et et be et e e b st s et e s b e e bt eat et e s bt e st eabesbesbeeutenbesbesstenbenbesseeatan 558
(01114 o] o TP OO OO OO ORI 559
OULKPDIC ottt ettt ettt et e e et s e et e s at e s a e e a b e e a b e sabesab e s st e eab e e st e s st eeabeeabesabeeabeeabesaseeabasaseeasesasesnsens 560
(016 1 o T 561
(0] 0L (e [PPSR P PPPRPP 561
(01 B L (e [P T PRSP P PP PP PO PPPOPPN 562
L0101 563
(01 D10 S O PO PP PO PRPPP 564
(01 UL 0 T PRSP PP PPPOPPPROPPON 564
OUES ietuetiietteeeteeeteereeeetneeesneesseresseessnsessesssssessnsesnesssnsessnsssnssssnsssnssssnsssnssssnsessnsssnsessnsssnsessnsssnesssnsssnesssnsennns 565

14

OULS2 eveeneeeeevennnns
s ———
Outx --- 566
s ——————————————— 206
ou 2o
pan..................... --- 568
- 2
phy """"""""""""""""""""""""" 2
pChbend --- 571
pChmidi ~~~ 574
pChmidib ... 575
pChOCt --- 576
peoc... 2
pkk """"""""""""""""""""""""""" 260
P 265
phaserl ... 582
phaserz --- 582
phasor --- 585
phasorbnk ... 587
pinkiSh --- 590
pitCh ... 592
. 208
planet --- 595
pluCk .. 598
Pk o1
pOIYaft -- 601
port .. 603
. o
pon ol
pOSCiI?) -- 607
pOW .. 607
pwﬂw """"""""""""""""""""""""""""" o0
prealloc -- 610
print nn 612
prin o
printkz --- 615
printks................. nn 616
pr0duct .. 618
pset .. 619
pdd """"""""""""""""""""""""""" b2
pbfd """""""""""""""""""""""""" o
pvcross .. 623
ptp """"""""""""""""""""""""" o
pVOC .. 627
pvread .. 628
pdy """"""""""""""""""""""""" oo
prad oo
pVSCIOSS ... 632
pvsfread ... 633
pvsftr .. 635
pvsftw T —-=-e 636
T e el
pvsmaSka .. 639
pramsk o
rand ... 641
randh --- 642
randi -- 643
.. 644
... 646

15

bz Vo 16 (0] 001 o WURNRNRRRRRRR OO PRRURRRRRRRN 649
112=1 8 L6 [0 o ¥ RO 650
(T U (o] (o Yol <H RS 652
(Y2 Lo | O TR PR PRRTRRRRRR 654
(T L6 | 2/ RO 655
T Lo < TSRO RRR 656
TEAAKA ...ttt ettt et e e e e e sttt e et e e e e e s —bate e e e e e e ——bt et e e eae e bbb teeeseeesaaateeeeeesssarraaaes 657
=) 10 1) 659
() (=T LTSRS 660
TEPIUCK ...ttt ettt e et e e et e st e st e s at e e st e s st eessessaa s st eestasssasssaessesssaessassseessaessasssesssesnsannsasssannses 661
TESOIL ouuuueeeeeerrruneeeeeerrerssnneeeeessssssssnseeeeesssssssssssesessssssssnseesesssssssssssessssssssssnsseessssssssssnseesessssssnnneeesesssssnnnnnes 663
JESET0) o | QPR SORORRSRRRRR 664
TS OINT .. evvtueeerueeeertneeeerseeeessueeeesssnsessssneesssnsessssssessssssessssssessssssessssnsessssssessssnnessssnnessssnnessssnnessssnsessssnnesnsnnne 665
TESOIIX .uueeeererrrrnneeeeeerrerssnnneeeeesssssssssseeeessssssssssseessssssssssnseesssssssssssssessssssssssnssessssssssssnnsesssssssssnnneeeessssssnnnnnnes 668
TESOILY vuuvrieiiirieeiiirteteiuteeeeitteeseaaeeseabaeesessbeesesraeesessatessemsaaesessabeesesssaesssssaeesesbaaeesesssaesessraeesesstesssnsneess 669
) 10) 0 /RPN 671
oA I/<) 1 o J OSSR 672
JRSA171 4 o YOS 674
727 PP 675
T2 (0 (o TSRO P PRSP O O PORP OO PRO PR PRPPRRP 676
TITETUTTY c.iiiiieeeecceeeitiee e e e eeeettee e e e e e eeeeabbaeeeeeeeesaassbaeseeeeesassbasasseeeesasssasasseseeasnssbsssseseeessssssssseeeesnssrrnnns 676
10 0 RN 677
15 0 1 DRSSP 678
506 1< 3 SRRSO 680
155] 0111 1= OO OSSOSO PSR SRR 684
1 101 (0] o1 PSRRI 685
L3 1] o 3 SRR 686
L Y] o} I OSSR 687
SAMMPRNIOLA. ..ttt ettt st e s e st e st e st e s a b e s st e s st e s st e sabesabesabesabesabesatesatesabenatans 689
SATLAPAPET ..cvveeveeuienieteeitetesteete et et e st s e et e testeeut et e besuesatesbesbesutesbesbessesatenbesbesstentenbessesstenbenbessaestensessessaan 690
TYoz: 01 o F: 10 010 6 1) oRURUUU OSSPSR 691
SCATLS 1uuuneeeerrererunieeeeeereusssnaeeeeessssssnsnseeeessssssssssseesssssssssnnseeessssssssnsssesssssssssnnssessssssssnsnsseesssssssnnnnsesessssssnnnnees 692
LYoz 1 121 o) (<IN 693
SCATIU . uuuuieeererutuneeeeeereesssaeeeeeerssssssesseeesssssssssssseesssssssssnssesesssssssssssesssssssssssssessssssssssnssesssssssssnnseessssssssnnneees 695
SCREAKWIIEIL ... e et e e e e e e s e bbb e e e e e e ss s abbaaeeeeeeesssassaseeseeesssssnrrnnes 697
LYe] s 1= LU 1 (T RORURSRR R 698
LYo 416 A1 0 1<) o AP SRR 700
YT TSRS 702
LYS) (S (TR 702
LSS0 0 VL0 0 (< 704
SEIISE .uuueeeerrerrruneeeeeerreuesneaeeeeerasssnnnseeeesssssrnnnseessrsssranaeeeersessrrrnaseeerrrrtrrnaeeeesrassrrnnaeeeerrarrrnnaaeeeerrerrrnnanees 705
SEIISEKEY ...uverviuieieteetietete ettt et et e ettt s tt et et e s besu et e b e s bt e at et e b e e bt e a b et e e he e st et e beebeeat e beshesat et e besaeeaean 706
SEQLITIIC ...ttt ettt et e et e ettt e ettt e e ab e e s bt e e bt e e at e e s as e e eab e e e bt e e bt e e e ab e e e ab e e e bt e e bt e e nteeeabeeeabeeebeeenees 707
LY (o1 5 TR 708
3 51] SRR 710
Y1011 6 PSSR 711
LY 11151 8 5 SRR RSRTRRRRRT 712
LSy H 011 45 0 s VOO 713
LY 510151 6 8 0 8 VOO S SRR 715
153 (0= e RO RSSTRRRTRRR 716
STPASSIGIN vttt e et a et nen 717
ST PIAY ettt b e s bt et a e b bt e ae e b e s besae e e e b e ereeneen 718
STPLAYS ettt ettt sa et h e et e et et e e b e s e et e b e eae e st et e beea e e st e beeaeeaaentebeereeneen 719
SIPLAYSIML c. ettt a et 720
STPIAYIIY .ttt s bbb b e ee b e s reeneen 721
STPLIST 1ottt ettt ettt et et b e e et et e b e e a e et e beehe e st e b e beeae e st e beebeeaeentenbesaeeneen 723
SEPTESEL ..ttt et e et a et nes 723

16

31 0 D PR PRPPPPPTRRRRPPPI 726
SITIRL Lttt ettt et ettt ettt et e bt e b e e bt e bt e bt et e e be e b e e be e be e be e be e beebe e beebeenbeebaens 727
SITUTIV ettt b bbb bbb bbb bbb e b e b e b s b e beesbeen 728
SLEIGIIDIELLS ...ttt sttt st b e b e st besh et et e besaeebenbens 729
SIIABTLO ..ottt ettt ettt ettt e s bttt e bt et e e bt e st e e s st e se e st e st e st e saesst e st esstesstasseesstanstensaenseenseans 730
SLABT LB ...ttt ettt ettt et b et e e bbb e et ese b e aeneenis 732
] 10 L) 3 72/ SO SO SRR 733
SIIABTB2E ...ttt ettt et et e e s bt e bt e s bt e s bt e s bt e s bt e bt e st e s a b e s a b e st e st e st e st esatenaaens 734
SLIATBA ...ttt ettt ettt st b ettt s b et e b ettt e b e bt et et b et e e et e beneneen 735
SIIAETBAL ...ttt ettt et e st estt e s st e s st e s st e st e essa e saasse e st asssasseanssanseasssesssanseasssanssanseanssenseans 737
SHIABTS ...ttt ettt ettt et e be e s bt e s bt e s st e s bt e s bt e s bt e bt e bt e s atesa b e e st e s st e s st e atesatenatenatans 738
SLACTBE ...ttt ettt et b ettt st et b et et et b et a et benaeneen 739
STUAWATP «.eeuveeveeeteeeteesieestestesstesstesstesseesseesseasstasseasssasseasseasseesssasssasssasssanssesssasssesssesssesssesseesssenssesssenssenseens 740
STUAWATISE . envteveeeeetteeitestt et et e st esttes it es st e s st esst e st e st e st esseesstasstasstasstesstesstesstesstesstesstanssesstanssesssesssenseens 743
SOUIIAIIL. ..ttt ettt ettt b et ettt et et et b et et e st s b e b et eae e b e b et eneesesbebentesessesenaentesesensen 745
SOUTIAOUL ..veevieiieeiieeiiesteettee e esteestesstesseesseesstesstasssasssasseesssesssasssasssasssesssasssesssesssesssesssesssesssenssenssenssenseens 747
] 01 Lo <O PO PO PSS PPPRROPP 748
SPALIM 1ttt ettt ettt ettt et ettt et e b e bt e a et e b e s h e e st e b e b e e at et e be e bt eatenbe b e ehe et e besheestenbebestaan 752
0T 15 16) OSSOSO PSSR 760
SPALIAL ettt ettt s st s e st e st e e st b et t e h e e a e e s bt e ht e e h b e e h b e e h b e e st e e hteshteeatesateeatesate s st e atesatesatesatans 763
SPAIST cevenvienteteeteeteteete ettt ettt s ettt st e ettt b e bt e a et e b e s bt e st e b e b e e a s et e beebeea b et e beeht et e besbeeatenbenbesaeen 766
SPECAAAIMuviieieiieeiieeteet ettt e et et e et e st e st e e st e s st es st esseesstessaesssasssesssesssasssasssasssesssesssanssesssasssesssenssenssens 770
SPECAITT ...ttt ettt ettt e st e st e st esa b e s a b e s a b e s a b e s atesabesatesatesatesatens 771
SPECAISP . evvenverveeiteienteeit ettt ettt s et et e sbe st et e be st e sa s et e be s bt e st e be s b e e at et e besbeea b et esbeeht et e besbee st enbenbesseen 772
SPECTIIT .ttt ettt st e et et e et e et e et e et e e st e e st e e st e enteeste e st eesteesteenteentaentenntans 773
SPECIIST .ottt ettt ettt et e st eea b e s a b e s a b e s a b e s atesabesatesabesatesatesatesatens 773
SPECPITK ettt ettt ettt et b e a et b s bt et et e besat et e besbaeatenbesbesaeen 774
SPECSCAL ..nviiiiiiieeiieeteeteet et eet e st e et e st e et e et e e st e s st e s st e e st e e st e e st e e st e e st e e st e e st e e st e e st eeateesteesteenteesteenteenteensenntans 776
Sy 01T 0153 10 0 PR PPPPTRRRRPIN 77
Y 0101 0 1t 51 0 RSP P PO PP OOPPROPP 778
SPSEIIA....eeieieiieeiieeiteet et eeet et e et e st e st e et e et e et e et b e e st e et e e st e e a b e e st e e st e e st e e st e e st eenteesteesteenteenteenteensaenteenteensenntans 779
Y0 | o SO OSSP PR O PP UPPPRROPPN 781
S 782
1): GO OO PP U PSPPSR PUPROPP 783
Y8 (ST Y0 o KOO TP O TP O PP OROUPPPRROPP 784
18 5] 786
SUDIIISTT 1.t etteiteetteet ettt et e et e et e et e et e e st e e st e s st e s st eestesssesstessseessaessesstesssesssesssesnsesnsasnseensannsesnsannsennsenn 787
SUITL .eeeiniiiteeieireeeeeitee e ettt e s esrteeseraeeesabaeeseanbteesessaeeseasbaeesambaeesessaeessamsaeessnsaeesassaaeessnsaeessnnsaeesensraeesensaeess 788
SVEILERT .ttt ettt ettt ettt b ettt a et nenes 788
1221 o) (OO OO OO O PO R PRSPPI 790
EADLES .ttt ettt et b e bttt b e et e s ten 792
LAD LB COPY ¢ttt ettt ettt et b e sttt b e s bt et e b e s beea e et e b e s b e ea e e besbesae et e besbeeaean 793
LADLEEPW ..ttt sttt b sttt b e et b e s b bt et be e st et e s besbe et e nbesreeneen 793
EADLEI ...t a e s b e n e s neene s 794
LADLBICOPY ..ttt ettt ettt ettt e b ettt b e s bt et b e s he s st et e be bt ea b e besheeat et e beeseeatan 795
LADLBIZPW .ottt sttt st sttt et s b et b e e b e e et e s besbe e e e beebeeaeen 796
L1 0] (313G O PO OP TP PP PP PP PP 797
EADIEIIMIIX ...ttt a et 798
1221 0] 1S5 L OO OO OO OO RO 799
EADLEKE .ottt st a e e a e s b et e e b s ne s 801
121 0] 153 0 1 OO OO TP 802
LADLEIIG ..ottt et b et b e s bbb e e besbeeae e e e b e ereeneen 803
EADLETA ...ttt st et a e s b st e b e ne s 804
LADLESEE. . ettt a et e et nes 806
TADLEW .ttt ettt et e et e et e st e et e et e et e et e et e e a b e et e et e e te et e et eenteenteenreentann 807
EADLEWA ..ottt e a e s bt et n s en 809
1221 0] 117 G A OO OO TR 812

17

L2210) (<) 4 AP R RPRRUSURRRRN 814

TADLEXSEG . eveeuteteteeiteteet ettt ettt ettt et et e st s bt et et e b e e a et e b e bt et et e b e e bt et et e be e Rt et e beeht et e bebeeatententes 815
TAIMDOUTIIIE ..eveeivieiieiteieeett ettt ettt e st e st e e bt et e st e este e st esse e st e seesbe e st esseeseest e stanseanssesaenssanssenseenseen 816
L 10 U 817
171 01 o WSS SRS 818
BATLIIIV .ttt ettt et e et e e eat e ettt e e bt e e bt e e see e mb e e e bt e eas e e e see e nbe e ab e e e bt e e bt e e enteeenbeeebeeereeeneeeanee 819
TAITIVZ ittt esa e b b e b s e besab e an s 820
110171 ISP 822
LS00 0 1XS] OO P O SO PP U PSP PPPRRRPPP 824
LS5 0.0 1o TP P TSP P TP O PR TOPPPOROPP 826
105) 00) 07017 | OSSOSO 828
L5 L0 (0 TSP ST TP PP PR PRRPRRRPOO 829
EIEINISTK .ttt ettt ettt sttt b et et b et et be e nee 829
TIITLBITISTS 1.t enteeieeette ettt et e e et e ettt et e s bt e e bt e e st e e abeeeabe e e st e e sbeesabe e abaessbaessteesbeesnsaesasaasssaessstesnnne 831
TIITEEK 1.ttt ettt et e st e st e s st e s st e s st e s st e s st e s st e s st e sa b e s s be s st e eabe s st e eabeesteeabesnbeenbeenbeenbesates 832
L8180 L PR 834
TEITMOUE 1.ttt ettt et et e et e et e e e be e e bt e e bt e e st e e abeeeabeae st e e sbeesabe e abaeesbaeessbeesbeesasaesasaasstessnsesnnne 835
18172 | OO OO O OO OO OO U RPN 836
EIIETO vttt ettt ettt et et b s bttt b ettt b e et et b bt s e enee 836
L0) 6 TSRO O RPPPPPPORRRRRRRINt 837
1100 1<) QOO OO OO OO OO O OO TSP PRRURR 838
L1106). G PR 838
L8 1221 5] <SPPSR 839
TEEGEOT oottt ettt ettt sttt et s a e s s b s b s s bbb s e e a e e b e b e et st s ae e b e e b e s neeanes 840
EEEZSO vveveereenrtenreenutenttesttesttesutes e esatesutesatesstesatesateestesstesstesatesaseeatesasesaseeabesabeeaseeaseenseenseeabesaseeabeeabesaseeares 842
TEITANIA ettt e et e et e et e et e s st e s st e e st e e st e e st esssasssaessasssasssesssesssaessaessaensasssaessasnsesnsasnsesnsannses 843
TUTTIOF ..ttt ettt e et st e st st e e st e st e s st e st e st e sab e e b asssessbesasesnbasnsasnsasnses 844
L1000 5 0 o) o SRS 845
UTUTANIA .ottt ettt e e et e et e e te st esstessse s st esstasssesssasssesssasssasssasssesssaessassseensasnsesssesnseensasssessennses 846
UUPDSAITIP . evveeeeniteeeeirteeeerteee sttt e seratessasraeesaasseessessaeesassaeesansatesesnsaeessssaeesansatesasssaeesassseessasaeessnsseeesansaeens 847
U ettt ettt ettt ettt ettt et b ettt b et e a e bt E Rt b ettt b bt e et s b et e sessenee 848
VALPASS .vveveevierieinieenientestestest e st e st estee st esseesseesseesseesseesseesseeabe e se e be e b e e be e be e beebe e beete e teeteeteeseenraenres 849
VDAP L6 ittt ettt ettt ettt et s bt e b e e e bt e b e b e e b e e b e e be e be et e e be e b e e be e be e be e be e be e beenres 850
VDAP LOITIOVEuvenveeieiieienieeitetesteete et eteste et e st e be s bt sut e be b esbesutesbesbesbeestenb e bessaeutenbesbesstenbenbessesstensansessenaes 852
AU 0T o Z: SO TSR 853
VDAPAINIOVE ...cnveiiiiiieiteiteeitesit ettt ettt st e bt esae e s bt e saeesae e beesbe e be e be e be e beesseesbaesseensaensaessesseenseesessasases 855
VDAPB ..ttt ettt ettt ettt et s b ettt b e s b et et et b e e a e et e he e bt e a b et e be e bt e a s e beshesh e et e besbeeat et e besaeeaes 857
VDAPBIMIOVE ...ttt ettt e e et e st e st e et e et e s b e essesssaessaessaensaensaessasnsesnsaensasnsannses 858
VDAPISINIT ..ttt ettt ettt et ettt e b e e b e et s b e b e b e e be e be e be e be e be e be e beenbes 860
VDAPZe ettt ettt ettt ettt e bt et et b et e bbb e e a et e b e bt e a e et e be e bt e Rt et e be e bt ea s et e e beehtea b e beshe et et e besaeeaes 861
VDAPZIMOVE ...ttt ettt ettt sttt e st e et e st e et e et e et e st e sssesssaessasssasnsaensaensaenseensasnsasnsaenses 863
VCO ettutteeieitte e ettt e e ettt e ettt e s aba e e e s mbt e e s e b bt e e e s b e e e e bt e e e e bt e e e a e e e e bt e e e e R bt e e s a e e e e bt e e e ba e e e e s ba e e e e nreeesnree 865
VCOIMID L.ttt ettt sttt sttt b e et b e et ne b 867
VARLAY ..ttt sttt sttt b et b e b b et b e e bt et e b e sbe e st et e nbesreeaeen 868
VAELAY3 ...ttt ettt sttt e st sae e s bt e s bt e s bt e s be e be e bt e be e be e be e be e be e be e ba e be e beenbe e baenss 869
VAELAYXK ..ttt ettt ettt et et s bt ettt e bt s bt e u e et e b e s bt su e et e s be e bt ea b et e s beesteab e besbeeutenb e besbeeat et e besaeeas 870
VABLAYX v eeneenverreeieeieeee ettt sttt ettt et et et s bt s bt et e b s b e s beea et e s b e e bt et et e s be e bt et e b e sbeeae et e besreenean 871
VAELAYXS .evtevteriieeiienieeteet ettt sttt s st s e e sae e st e sae e s bt e bt e sbe e bt e be e bt e beesbe e baesbeesba e saesba e seebeensaensaenses 872
VAELAYXWW ..ttt ettt et ettt et ettt s bt et et e b e bt eat et e s be s bt e st et esbe e st eab e besbeeutenb e besseeatenbenbesaeenes 873
VACLAYXW ettt sttt s sttt s s bt et e b e s b e b et e b e s b e e bt et et e s beebe et e s b e sbeeae et enbesbeeneen 874
VAECLAYXWS .ttt ettt st s e st e st st e sat e s bt e s bt e s bt e s bt e sbe e s bt esbeesae e saesbeessa e saesseesseeseessaesaenss 875
L] (0T o TSR 876
VIDIBS ottt ettt s bt et et e et e et e et e e be et e e b e et e e be e be e se e beenbeesaenres 877
VEDT 1ttt ettt et e s e s h e a e bt e bt e he e s bt e bt e s he e b e e bt e bt e aeesbe e be e beesaeenbaeas 879
A7 1 o) L o JU USRS 881
17218 Lo} USSP P SO PPPRP 883
VIOWTES ..ttt sttt ettt e a e st st a b s bt et a bt s bt st b e b e s re e e b e s b neene 883
VORCE e uuuteeuiteeeteeetee ettt et e e s bt e s aeesubae s taeesateesabeesabaeessaeesaseesasaesabaeessae e st e esasaesasaesaseeesteenabaesabaesnsaeeseeenareens 885

18

WWAVESEE vuuneieiieeieiieeertteeerttieeertaneeestsneesssneesssnessssnsessssnsessssneesssnnesssssnessssnnessssnnesssssnessssnnessssnnessssnnesssnnnens 888
TS o101 | OSSR 890
IWEDIOW ...ttt ettt et ettt et et e st e s bt et et et e ste e st et et e s bt e st et e b e e st et et e beeatentenbesbeentenbentas 891
WEDOWEADAT ..ottt et ettt b et e b s bt et e sbe s b e s st et e besbesutenbebesbeentensenses 893
WEDTASS -ttt ettt ettt s bt st b e s bt e h e b e e bt et e e e b e bt et e b e ae et e et ebe e st enterennes 894
WECLAT .ttt ettt ettt s bt et et et e st e st et e st e st e e st et e besh e e st et e b e e Rt et et e beeat et e besaeentenbents 896
WEEIULE ..ttt ettt et e st et s bt st et e st e s bt et e besbe e bt et et e beeat et enbesbeentenbenbenas 898
WEPIUCK ettt ettt et b e e bt e e b et e e b e s re e e e eneenes 899
WEPIUCK ..ottt ettt ettt et et e st s bt et et e st e s bt et e besbesat e st e besbesatenbanbesaeentensansenaes 901
WELLALT .ttt ettt s bt e bttt e s bt et et e be s bt e a b et e be s bt ea b e bebesat et ebebeeatenbenbesseentensensensis 903
WEIAL ..ottt ettt s e st b e s bt e e e b e s bt et e e e s b e s bt e e e b e b e s st emtesesreeneensennennes 904
TWTEAD ovevteeiinnreeieitteeeeitteseerreeeeiba e e s esabteseeabbeesesbbae e s sabeesesabaeesessb e e s s bbb e e se bbbt e s nb b e e s e enb b e e sennb bt e s b b e e s e bbb eesennbee 905
WEETTAIIL «.eeeeeieiieiiiieeeeieeeeeeeeeeeeeeeeee e e et et e eeeeaee e e e ee e e aaeeeeaaaeeasesasaasaesassessaasesasesssseessssessassssseaessssnssnsssnsnnsnnsssnnnnes 906
b2 6 1] SRS 907
XSCATHTIAD «evveerunrreeiiirietiiireeeeiirteeseirtesessseesesssaeesssstesssssseesossstesssssseesessssessossstesssssseessssssessssseesssssseessssnee 909
D07 1 o LSRN 909
XSCATMU .evvvruunneeeererrrnnneeeeerressssseeeeseessssssssssesssssssssssssessssssssssnsseessssssssssnsseessssssssssnnsesesssssssnnssesssssssssnneeessenns 911
D 21 1 o NSRS 913
D472 1 s ST P U RTU RSP 914
7 o) SRR RRRRRRRRRR 916
221 <1 o} | ORI 917
71 010 Lo o RUE OSSR 919
ZAT 1uueeeeeeereruuneeeeeeererattnaeeeeerrattaaeeeerrattra_eeerrattra.ateettrtarateterartrrnaeeeerrrtrrnaeeeerrrtrrnaaeeeerrrrrrnnaeeeerres 921
ZATG uuvieeiiireeieiteeeerte s bt e e et e e s bt e s e bt e s bt e e bt e s e a e s e bt e e R bt e s e b et e s b e e s e bbbt e e e b b e e s e bbb e e s e bbaeesesbbee s 922
ZAW eertneerernneeresneeersssneesssseseesssnsessssnsessssnsessssnsessssnsessssnsessssnsessssnsessssnsessssnsessssnsesssnnsesrssaserssnaeerrsnaeeersranernrnnns 924
ZAWIXL...ceeevrtuuneeeeerreresseeeeeeeerssssnnnseeeesssssssnnsseesssssssssnssessssssssssnsssesssssssssnsseesssssssssnnseeesssssssnnseessssssssnnneeesssnns 925
4 1 10S) o SRRRRRR 927
A 929
ZEW et e et e e e e e e et e aeeaaeaaaaaaaaaaaees 930
ZIWTTL «.eeeeerriieeeeeeeeertuteeeeeeereassnneaeeeeesesssnnnneeeessessssnnnssessssssssnnnssesessssssnnnnsesssssssssnnnseessssssssnnnseesssssssnnnneessssens 932
A o) RSP RRRRTRRTRR 933
A< 1's Lo Yo IREE RS SRRRRRRRRRRR 935
74 < SRR 937
ZIWW ettt et e et e e e e et e e e e e e e ———eeeeee s e —————eeeeeea e ———teeeeeaaaa bbb tteeeeeseaarareeeeeeesssnrrnees 939
A 2 s s VOSSPSR 940
16. Score Statements and GEN ROULIIIEScoooevvvieiiiiviieiiiieeeeeieeeeeeteeeeesaeeeesssaeeeeesseeeessseseessssessssssseesssnes 943
NI o0) (S = =) 010 1<) 0 LT 943
a Statement (OF AAVANCE STATEIMIEIIT) ...uvveeereeeereereeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeseesesseessesssessssssssssssssssses 943

o3 £ 1 7<) 0.0 L3 s | SRR 943

LSRN =1 0=) 0 1<) 0 | RPN 944

f Statement (or Function Table StateIMEnTt)oooivverieiieiiiiieiieeeeee e e e eeearree e e e e eeaes 945

i Statement (Instrument Or NOte StAtEINEIIL)eeeeieiieeiivrereeeeiieiiiiieeeeeeeeeeirreeeeeeeeeeenrrreeeeeeeeennns 946

M StatemMent (IMATK STATEITIEIIT)eeeeeeee e e e e e e e e e e e eeeeeeeeeeeeeeeeessesesssasssassssasessaasanas 949

LT £ L) 010 1<) 0 L S 950

r Statement (Repeat STateIMENT)ccccevviiiiiiiiiiiiieeeeeeeeee et 950

SR £ 11510 1<) o | HR RPN 951

t Statement (TemPO STATEIMENT)cooviiriieiiiiieeeeeeete ettt e st e s e s eseeesaee e 952

AN < L) 01 1<) o | RSO UIRt 953

D Q] K= 1<) 80 1<) 0 | S 954

(€ 23\ 2 0] UL 01 0 T 955
(€325 [0 1 ORI 955

(0 SN[12U 956

(€ SN[1S TR 956
GEINOZ...oeeieeeeeeeeee ettt ree e et e ettt b eeeeeeese e s b e seeeessssaaaasseeessssssaasssseesssssasasssssessssssnnsnnsees 957

(0 SN[1S YOS 958

(€ 1A\ TSRS 959
GEIN O 7 ettt e ettt e et e e et e b eeeeeeese e s b s e e eesessasaaaseeasssssaasssseeesssssatasssseessssssnnnnssees 960

19

GENDO....cc ettt ettt ettt e ettt e e ettt e s et e e e e s bt e e e s st e e e e nbae e e st e e e e nseeeaenraeeeentaeeeenneeeens 962

GEINT0...eiteetee ettt ettt ettt e b e s bt et et b et et et e bt b e b et e ae e b et et et e st et et et entebesbeneeneens 963

GENT L.ttt ettt et ettt sttt et b et a et et b e b et et e b e b et et et eb et e e entesensenseneenis 964

GENL2Z..cceete ettt ettt s et et e s bt e et e e s bt e st e e s bt e s sabe e abaesabaeeste e abeasabaesnbaessaessteesnbaanns 965

GENL3..cc ettt ettt b ettt b e bt et e h e b et et e st e b et et eat e bt e b et et e bt e b et et eneebebenean 966

GENTA ..ottt ettt et ettt sttt b sttt b e b et et e b b et et et e b et e e et esesbeteneenis 967

GEIN LD ..ttt ettt ettt et e et e e s bt e s bt e s st e s sbeesabeesasaesste s nbeesabeeebaeesbeesabaesabaessaenas 968

GENTB ...ttt ettt b e bbb bt et h e b et et et e b et et et e bt e b et et eneebe st et entebenbenean 969

GEN L7 ettt et ettt st et b sttt s b ettt b e b et et et eb et e e ent e st sbeaentens 970

GEINLSB...ceteteee ettt ettt ettt et e st e e st e s bt e et e e st e e s b e e s st e s st e s abeesabaeessaessbeesabaesnsaasnsaenns 971

GENTO.c. ettt ettt b ettt ettt h e bt e b et e bt b et et e bt e b et et e st e be b et entebenbenean 972

GENZ20..... ettt ettt ettt ettt sttt b ettt b e bt e e bt e bt et nt b e b et et besseneen 973

GEINZL ..ttt ettt et e et e et e e st e e s bt e e st e e abeesabe e s st e esbe e abeesabeeestessbeesabeesnbaeesaenns 974

GEIN23... ettt ettt ettt et et b ettt b et et et e b et et et a e bt et e neebe st et et ebenbenean 976

GEN24 ...ttt ettt ettt et b ettt b e bttt b ettt e b b et besbeneen 976

GEINZD ..ttt ettt et e bt e et e e et e e e bt e s bt e e st e e e abe e e bt e e bt e e at e e abeeebe e e bt e e abeeeabeeeabeeesaeens 977

GEIN27 .ttt ettt b ettt ettt b et e bt e b e bt et bt e b et et e nt b et et et e beebentan 978

GENZ2B..... ettt ettt b ettt et et b e bttt e b ettt e b et e et st nten 979

GEINSB0..eeeteet ettt et ettt e bt e ettt e et e e st e s bt e e st e e s ab e e s bt e e bt e e st e e abeeebe e e b te e nbeeeabeasbaeenaeans 981

GENB L.ttt ettt b ettt e et et b et e b et e bt b et et e st e b et et e st e b et et et ebesbenten 981

GENB2... ettt ettt ettt ettt b e bttt b ettt be b et ne b ten 982

GEIN B3ttt e sttt ettt e st e e bt e e bt e et e e et e e e bt e e bt e e ab e et e e e be e e bte e nbeeeabeeebeeeaaeens 984

GENB....ce ettt ettt ettt e et et b ettt e bt b et et st e bt et et e bt e st et e beebentan 985

GEINZO...... ettt et ettt ettt et et b e bttt e bttt b et et e st s aeneen 987

GEINAL ...ttt ettt e ettt ettt e et e et e s bt e e st e e s a b e e s bt e e st e e sabe e abeeeabeeesbeesnbeesabaasnsaesaseenns 988

GEINA2....ceeee ettt ettt b ettt b et b et e b et e bbb et st e b et et et e b et et et seebeean 988

17. The Utility PIOGIAIMIS. ...c..civveriereieieienieetertesiesitetesteste st et e e sbesaeesbesbessesstessesbessasasessessesssensensessesssensessessesns 991
DATECTOTIES. «.veeuteeeiieeetteete ettt e ettt ettt e et e et e e et e e at e e sab e e sabeeeabe e e bt e e sbe e abeeeaseesaseessteesbeesabeeaasaesaseas 991
SOUNALIIE FOTIMALS. ...eevuiiiiieiieiieeieeteeteeteet ettt ettt et e st e st e st e st e s st e sabesabesabesabessbesnsesssasasesasans 991
CIEAILS vttt ettt ettt ettt ettt b e bt s b bt et e e b ettt b ettt be b e e et s s nnen 991
ANAlYSiS FIle GENETATIONeoveriiiiiiieiiiierienieete ettt ettt e st s b st sbesbe s bt et e besbesseessessessenns 992
RLEETO. ettt et ettt e e sttt et e b e et e et e et e e beebe e be e be e beentas 992

IPANAL ..ttt ettt ettt b e bt et b e b e s bt et e besbe et e besbesaeens 993

PVANAL ..uviiiiieiieeiieeieeteet et et et e et e e te st e s te st e et e e b e et e e ba s st e et e e se e st e enseenba e se e beebeenseeseeteenreenses 995

CVANIAL ¢ttt ettt e e et s e st sa e et e st e et e e a b e e a b e e a b e et e s st e et e eat e et e st e eabesatesatens 996

FILE QUETIES ..eovveeeereeeiieeeiieeete e et e et e eeteeeeteeebeeebee e taeestseesaseeeabeeessaeesaeessseestsaeesseeensesensseessseessseeenseeensens 997

] 016 110} {0 JU OO U OO SRRSO PRRR 998

FIle COMVETSION ...ouutiiieiiieiieeiteeteeteet ettt ettt s e st s b e st esat e s st e st e s st e sabesabesabesabesasesabasasesnsesasesasens 998
AIIOTSE ..ttt ettt et b et a ettt b e e s nen 999

PVIOOK c. ittt sttt s e st s e st e s at e s e e st e st e s st e e st e saeesseesseenseenaaenns 1001

SAIF2AA ..ttt ettt b e b een 1005

3 (010 L 1006

18. CSCOTE .ttt ettt et et e et e et e e at e e sab e e e ub e e e bt e e st e e abeeeaseeeasee e bt e e nbeaeaseeeaseeenseeensbeesaseenane 1009
Events, Lists, aNd OPETAtIONSccevirruiiriiriiniinitentertertesie ettt et esaeesbeesaeesbeesaeesaeessesssessseesseenses 1009
WIiting @ Main PrOGIam......ccoueiiiiiiniiiieeieeteetcetcet ettt sttt s e st s e st et s st st saesane s 1010
More AdVanNCed EXAIMPLES......ccccovciiriiriiniintintestestese et et e st st e saeesseesaeesseesaeesseessaessaessesssesssaensesnses 1015
Compiling @ CSCOTE PrOZIAIML....ccc.civiiriiiiiiitieieniteetertesit ettt ettt sbeesae e beesaeesaeesseesbe e beesbeennes 1017

19. Adding your own Cmodules t0 CSOUNAccererieierierinierienieneetetesieseetestestesstessessessesaeessessesseenes 1019
|20 o Lot o) o T 21 o) (<P 1021
AQAItIONAL SPACEeetiiiieieeieeteetee ettt ettt et e bttt e e e st et e bt e b e be e b e be e be e be e beenaas 1021

FHlE SNATING ..ottt ettt ettt ettt st enes 1021
SEING ATGUITIEIITS ...oveviiieiiiiieeieeteeteet ettt et e a s s s b s b s be e e e be e ne e se e be e seeneennes 1022

A. Pitch Conversion 1025
B. Sound Intensity Values 1029
C. Formant Values 1031
D. Window Functions 1037

20

E. SoundFont2 File Format
F. Quick Reference

Index

21

22

Preface

Preface to the Csound Manual
Barry Vercoe
by Barry L. Vercoe, MIT Media Lab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different manner
of control. Direct synthesis generates waveforms by sampling a stored function representing a single cycle;
additive synthesis generates the many partials of a complex tone, each with its own loudness envelope;
subtractive synthesis begins with a complex tone and filters it. Non-linear synthesis uses frequency
modulation and waveshaping to give simple signals complex characteristics, while sampling and storage of a
natural sound allows it to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is really a
computer program that can produce sound, while a score is a body of data which that program can react to.
Whether a rise-time characteristic is a fixed constant in an instrument, or a variable of each note in the score,
depends on how the user wants to control it.

The instruments in a Csound orchestra (see) are defined in a simple syntax that invokes complex audio
processing routines. A score (see) passed to this orchestra contains numerically coded pitch and control
information, in standard numeric score format. Although many users are content with this format, higher
level score processing languages are often convenient.

The programs making up the Csound system have a long history of development, beginning with the Music 4
program written at Bell Telephone Laboratories in the early 1960’s by Max Mathews. That initiated the stored
table concept and much of the terminology that has since enabled computer music researchers to
communicate. Valuable additions were made at Princeton by the late Godfrey Winham in Music 4B; my own
Music 360 (1968) was very indebted to his work. With Music 11 (1973) I took a different tack: the two distinct
networks of control and audio signal processing stemmed from my intensive involvement in the preceding
years in hardware synthesizer concepts and design. This division has been retained in Csound.

Because it is written entirely in C, Csound is easily installed on any machine running Unix or C. At MIT it runs
on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI’s under 5.0, on IBM PC’s under DOS 6.2 and
Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single language for defining the audio
signal processing, and portable audio formats like AIFF and WAV, users can move easily from machine to
machine.

The 1991 version added phase vocoder, FOE and spectral data types. 1992 saw MIDI converter and control
units, enabling Csound to be run from MIDI score-files and external keyboards. In 1994 the sound analysis
programs (Ipc, pvoc) were integrated into the main load module, enabling all Csound processing to be run
from a single executable, and Cscore could pass scores directly to the orchestra for iterative performance. The
1995 release introduced an expanded MIDI set with MIDI-based linseg, butterworth filters, granular
synthesis, and an improved spectral-based pitch tracker. Of special importance was the addition of run-time
event generating tools (Cscore and MIDI) allowing run-time sensing and response setups that enable
interactive composition and experiment. It appeared that real-time software synthesis was now showing
some real promise.

Copyright Notice
Copyright 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.I.T., Cambridge,
Massachusetts, with partial support from the System Development Foundation and from National Science
Foundation Grant # IRI-8704665.

Permission to use, copy, or modify these programs and their documentation for educational and research
purposes only and without fee is hereby granted, provided that this copyright and permission notice appear

23

Preface

on all copies and supporting documentation. For any other uses of this software, in original or modified form,
including but not limited to distribution in whole or in part, specific prior permission from M.I.T. must be
obtained. M.I.T. makes no representations about the suitability of this software for any purpose. It is provided
"as is" without express or implied warranty

The original Hypertext Edition of the MIT Csound Manual was prepared for the World Wide Web by Peter J.
Nix of the Department of Music at the University of Leeds and Jean Piché of the Faculté de musique de
I'Université de Montréal. A Print Edition, in Adobe Acrobat format, was then maintained by David M. Boothe.
The editors fully acknowledge the rights of the authors of the original documentation and programs, as set
out above, and further request that this notice appear wherever this material is held.

Contributors

In addition to the core code developed by Barry L. Vercoe at M.1.T., a large part of the Csound code was
modified, developed and extended by an independent group of programmers, composers and scientists.
Copyright to this code is held by the respective authors:

Table 1. Contributors

Mike Berry Richard Karpen
Eli Breder Victor Lazzarini
Michael Casey Allan Lee
Michael Clark David Macintyre
Perry Cook Gabriel Maldonado
Sean Costello Max Mathews
Richard Dobson Hans Mikelson
Mark Dolson Peter Neubécker
Rasmus Ekman Ville Pulkki

Dan Ellis Marc Resibois
Tom Erbe Paris Smaragdis
John ffitch Rob Shaw

Bill Gardner Greg Sullivan
Matt Ingalls Bill Verplank
Istvan Varga Robin Whittle
Jean Piché Peter Nix

The official manual was compiled from the canonical Csound Manual sources maintained by John ffitch,
Richard Boulanger, Jean Piché, Peter Nix, and David M. Boothe. The Alternative Csound Reference Manual is
maintained by Kevin Conder.

Why is this called the Alternative Csound Reference Manual?

When I originally started my manual project, there was already an Official Csound Reference Manual (last
known address: http://www.lakewoodsound.com/csound/hypertext/manual.htm). The Official manual was
maintained by David M. Boothe. I found its layout confusing and I wanted to change it. But since it was
maintained with commercial word processing programs, I couldn’t. I could neither afford those programs nor
were they available for my main computing platform.

So I created an alternative to the Official Csound Reference Manual. I changed the layout: used actual page
numbers, renamed the index section to "Index" and moved it to the end, add working examples, got rid of the

24

Preface

HTML frames, etc. I distributed my manual using the DocBook/SGML format so that anyone on any platform
could edit it with a text editor. This manual can also be produced with freely available programs.

David M. Boothe wasn'’t interested in maintaining my DocBook/SGML version of the manual. He was also
concerned that people would confuse his project (the "Official" one) with mine. So out of respect for his
wishes, I named my project the Alternative Csound Reference Manual. I made this decision so that nobody
would confuse my project (the "Alternative" one) with his.

It’s frustrating that members of the tight-knit Csound community have attacked me for merely using the term
"Alternative". Some have tried to confuse my readers by referring to my manual using my last name, often
misspelling it. One outspoken member of the Csound community has personally attacked me for being
"confrontational”" and suggested that I change my manual’s name to be more "neutral". For the record, I
chose my project’s name out of respect to David M. Boothe not malice. Changing it now would only confuse
my regular readers.

Written by Kevin Conder, October 2002.

25

Preface

26

|. Overview

Chapter 1. Introduction

Where to Get Public Csound and the Csound Manual
Public Csound is available for download from :
ftp:/iftp.cs.bath.ac.uk/publ/dream/newest/

This Hypertext Edition of the manual, as well as the Print Edition, in Adobe Acrobat format (.pdf) are
available for browser download from:

http:/lwww.kevindumpscore.com/download/

How to Install Csound

Linux
Detailed instructions for installing and configuring Csound on a Linux system may be obtained from:
http:/lwww.csounds.com/secondprinting/cdroms/installing/linux/

Macintosh
Detailed instructions for installing and configuring Csound on Macintosh systems may be obtained from:
http:/lwww.csounds.com/installing/howtomacintosh/index.html

MS-DOS and Windows 95/NT

Detailed instructions for installing and configuring Csound on a MS-DOS or Windows 95/NT system may be
obtained from:

http://hem.passagen.se/rasmuse/PCinstal. htm

Windows 95/98/2000

Detailed instructions for installing and configuring Csound on a Windows 95, Windows 98, or Windows 2000
system may be obtained from:

http:/lwww.csounds.com/installing/howtowindows/index.html

Other Platforms
For information on availability of Csound for other platforms, see The Csound FrontPage:
http://mitpress.mit.edu/e-books/csound/frontpage.html

The Csound Mailing List
A Csound Mailing List exists to discuss Csound. It is run by John ffitch of Bath University, UK.
To have your name put on the mailing list send an empty message to:
csound-subscribe@lists.bath.ac.uk

Posts sent to csound@lists.bath.ac.uk go to all subscribed members of the list.

29

Chapter 1. Introduction

Bug Reports
Suspected bugs in the code may be submitted to the list.

30

Chapter 2. The Csound Command

Csound is a command for passing anorchestra file andscore file to Csound to generate a soundfile. The score
file can be in one of many different formats, according to user preference. Translation, sorting, and
formatting into orchestra-readable numeric text is handled by various preprocessors; all or part of the score is
then sent on to the orchestra. Orchestra performance is influenced by command flags, which set the level of
displays and console reports, specify I/0 filenames and sample formats, and declare the nature of real-time
sensing and control.

Order of Precedence

With some recent additions to Csound, there are now three places (and in some cases four) where options for
Csound performance may be set. They are processed in the following order:

1. Csound’s own defaults

2. .csoundrc file

3. Csound command line

4. <CsOptions> tag in a .csd file

5. Orchestra header (for sr, kr, ksmps, nchnls)

The last assignment of an option will override any earlier ones.

Description

Flags may appear anywhere in the command line, either separately or bundled together. A flag taking a Name
or Number will find it in that argument, or in the immediately subsequent one. The following are thus
equivalent commands:

csound -nm3 orchname -Sxxfilename scorename
csound -n -m 3 orchname -x xfilename -S scorename

All flags and names are optional. The default values are:

csound -s -otest -b1024 -B1024 -m7 -P128 orchname scorename

where orchname is a file containing Csound orchestra code, and scorename is a file of score data in standard
numeric score format, optionally presorted and time-warped. If scorename is omitted, there are two default
options:

1. if real-time input is expected (-L, -M or -F), a dummy score file is substituted consisting of the single
statement 'f 0 3600’ (i.e. listen for RT input for one hour)

2. else CSound uses the previously processed score.srt in the current directory.

Csound reports on the various stages of score and orchestra processing as it goes, doing various syntax and
error checks along the way. Once the actual performance has begun, any error messages will derive from

31

Chapter 2. The Csound Command

either the instrument loader or the unit generators themselves. A CSound command may include any
rational combination of flag arguments.

Command-line Flags

Many flags are generic Csound command-line flags. Various platform implementations may not react the
same way to different flags!

The format of a command is either:

csound [-flags] [orchname] [scorename]

or

csound [-flags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a “-”), and name arguments (such as
filenames). Certain flag arguments take a following name or numeric argument.

Command-line Flags

-@ FILE
Provide an extended command-line in file “FILE”

-3, --format=24bit

Use 24-bit audio samples.

-8, --format=uchar

Use 8-bit unsigned character audio samples.

-A, --aiff
Write an AIFF format soundfile. Use with the -c, -s, -/, or -f flags.

-a, --format=alaw

Use a-law audio samples.

-B NUM, --hardwarebufsamps=NUM

Number of audio sample-frames held in the DAC hardware buffer. This is a threshold on which software
audio I/0 (above) will wait before returning. A small number reduces audio I/0 delay; but the value is
often hardware limited, and small values will risk data lates. The default is 1024.

-b NUM, --iobufsamps=NUM

Number of audio sample-frames per sound i/ o software buffer. Large is efficient, but small will reduce
audio I/0 delay. The default is 1024. In real-time performance, Csound waits on audio I/0 on NUM
boundaries. It also processes audio (and polls for other input like MIDI) on orchestra ksmps boundaries.
The two can be made synchronous. For convenience, if NUM = -NUM (is negative) the effective value is
ksmps * NUM (audio synchronous with k-period boundaries). With NUM small (e.g. 1) polling is then
frequent and also locked to fixed DAC sample boundaries.

-C, --cscore

Use Cscore processing of the scorefile.

32

Chapter 2. The Csound Command

-c, --format=schar

Use 8-bit signed character audio samples.

-D, --defer-genl

Defer GENO1 soundfile loads until performance time.
-d, --nodisplays

Suppress all displays.

-ENUM, --graphs=NUM

Mac only. Number of tables in graphics window. (was -G)

-e, --format=rescale

Mac only. Rescale floats as shorts to max amplitude.

-F FILE, --midifile=FILE
Read MIDI events from MIDI file FILE.

-f, --format=float

Use single-precision float audio samples (not playable, but can be read by -i, soundin and GEN01
-G, --postscriptdisplay

Suppress graphics, use PostScript displays instead.
-g, --asciidisplay

Suppress graphics, use ASCII displays instead.

-H#, --heartbeat=NUM
Print a heartbeat after each soundfile buffer write:
« no NUM, a rotating bar.
« NUM =1, arotating bar.
« NUM=2,adot(.)
« NUM = 3, filesize in seconds.
« NUM =4, sound a bell.

-h, --noheader

No header on output soundfile. Don’t write a file header, just binary samples.
--help

Display on-line help message.
-1, --i-only

i-time only. Allocate and initialize all instruments as per the score, but skip all p-time processing (no
k-signals or a-signals, and thus no amplitudes and no sound). Provides a fast validity check of the score
pfields and orchestra i-variables.

-i FILE, --input=FILE

Input soundfile name. If not a full pathname, the file will be sought first in the current directory, then in
that given by the environment variable SSDIR (if defined), then by SFDIR. The name stdin will cause

33

Chapter 2. The Csound Command

audio to be read from standard input. If RTAUDIO is enabled, the name devaudio will request sound
from the host audio input device.

-J, --ircam
Write an IRCAM format soundfile.

-j FILE
Currently disabled. Use database FILE for messages to print to console during performance.

-K, --nopeaks
Do not generate any PEAK chunks.

-k NUM, --control-rate=NUM
Override the control rate (KR) supplied by the orchestra.

-L DEVICE, --score-in=DEVICE

Read line-oriented real-time score events from device DEVICE. The name stdin will permit score events
to be typed at your terminal, or piped from another process. Each line-event is terminated by a
carriage-return. Events are coded just like those in a standard numeric score, except that an event with
p2=0 will be performed immediately, and an event with p2=T will be performed T seconds after arrival.
Events can arrive at any time, and in any order. The score carry feature is legal here, as are held notes (p3
negative) and string arguments, but ramps and pp or np references are not.

-1, --format=long

Use long integer audio samples.

-M DEVICE, --midi-device=DEVICE
Read MIDI events from device DEVICE.

-m NUM, --messagelevel=NUM

Message level for standard (terminal) output. Takes the sum of 3 print control flags, turned on by the
following values:

« 1 =note amplitude messages
» 2 =samples out of range message

+ 4 =warning messages

The default value is m?7 (all messages on).

-N, --notify
Notify (ring the bell) when score or MIDI track is done.

-n, --nosound

No sound. Do all processing, but bypass writing of sound to disk. This flag does not change the
execution in any other way.

-O FILE, --logfile=FILE
Log output to file FILE.

34

Chapter 2. The Csound Command

-0 FILE, --output=FILE

Output soundfile name. If not a full pathname, the soundfile will be placed in the directory given by the
environment variable SFDIR (if defined), else in the current directory. The name stdout will cause audio
to be written to standard output. If no name is given, the default name will be test. If RTAUDIO is
enabled, the name devaudio will send to the host audio output device.

-P NUM, --pollrate=NUM

Mac only. Poll events every NUM buffer writes.

-p, --play-on-end
Mac only. Play after rendering.

-Q DEVICE, -Q DIRECTORY, --analysis-directory=DIRECTORY

Beos and Linux only. Enables MIDI OUT operations and optionally chooses device id DEVICE (if the
DEVICE argument is present). This flag allows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely managed by DAC buffer sample flow. So
MIDI OUT operations can present some time irregularities. These irregularities can be fully eliminated
when suppressing DAC operations themselves (see -Y flag).

Mac only. Define the analysis (SADIR) directory.

-q DIRECTORY, --sample-directory=DIRECTORY
Mac only. Define the sound sample-in (SSDIR) directory.

-R, --rewrite
Continually rewrite the header while writing the soundfile (WAV/AIFF).

-r NUM, --sample-rate=NUM
Override the sampling rate (SR) supplied by the orchestra.

-3, --format=short

Use short integer audio samples.

--sched

Linux only. Use real-time scheduling and lock memory. (Also requires -d and either -o dac or -o
devaudio).

-T, --terminate-on-midi

Terminate the performance when MIDI track is done.

-10, --keep-sorted-score

Prevents Csound from deleting the sorted score file, score.srt, upon exit.

-t NUM, --tempo=NUM

Use the uninterpreted beats of score.srt for this performance, and set the initial tempo at NUM beats per
minute. When this flag is set, the tempo of score performance is also controllable from within the
orchestra.

-U UTILITY, --utility=UTILITY
Invoke the utility program UTILITY.

35

Chapter 2. The Csound Command

-u, --format=ulaw

Use u-law audio samples.

-V NUM, --screen-buffer=NUM, --volume=NUM
Linux only. Set real-time audio output volume to NUM (1 to 100).

Mac only. Number of chars in the screen buffer for the output window.

-v, --verbose
Verbose translate and run. Prints details of orch translation and performance, enabling errors to be more
clearly located.

-W, --wave

Write a WAV format soundfile.
-w, --save-midi
Mac only. Record and save MIDI input to a file.

-X DIRECTORY, --sound-directory=DIRECTORY
Mac only. Define the sound file (SFDIR) directory.

-x FILE, --extract-score=FILE

Extract a portion of the sorted score, score.srt, using the extract file FILE (see Extract).

-Y NUM, --progress-rate=NUM

Currently disabled. Mac only. Enables progress display at rate NUM in seconds, or for negative NUM, at
-NUM kperiods.

-y NUM, --profile-rate=NUM

Currently disabled. Mac only. Enables profile display at rate NUM in seconds, or for negative NUM, at
-NUM kperiods.

-7, --dither

Switch on dithering of audio conversion from internal floating point to 32, 16 and 8-bit formats.

-z NUM, --list-opcodesNUM
List opcodes in this version:
« no NUM, just show names
« NUM =0, just show names

« NUM =1, show arguments to each opcode using the format <opname> <inargs> <outargs>

Unified File Format for Orchestras and Scores

Description

The Unified File Format, introduced in Csound version 3.50, enables the orchestra and score files, as well as
command line flags, to be combined in one file. The file has the extension .csd. This format was originally
introduced by Michael Gogins in AXCsound.

36

Chapter 2. The Csound Command

The file is a structured data file which uses markup language, similar to any SGML such as HTML. Start tags
(<tag>) and end tags (</tag>) are used to delimit the various elements. The file is saved as a text file.

Structured Data File Format

Mandatory Elements

The Csound Element is used to alert the csound compiler to the .csd format. The file must begin with the start
tag < CsoundSynthesizer>. The last line of the file must be the end tag </CsoundSynthesizer>. The remaining
elements are defined below.

Options

Csound command line flags are put in the Options Element. This section is delimited by the start tag
< CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Instruments (Orchestra)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax in
this section are identical to the Csound orchestra file, and have the same requirements, including the header
statements (sr, kr, etc.) This Instruments Element is delimited with the start tag < CsInstruments> and the
end tag </CsInstruments>.

Score

Csound score statements are put in the Score Element. The statements and syntax in this section are identical
to the Csound score file, and have the same requirements. The Score Element is delimited by the start tag
< CsScore> and the end tag </CsScore>.

Optional Elements

Included Base64 Files

Base64 encoded MIDI files may be included with the tag < CsMidifileB filename=filename>, where filename
is the name of the file containing the MIDI information. There is no matching end tag. New in Csound
version 4.07.

Base64 encoded sample files may be included with the tag < CsSampleB filename=filename>, where filename
is the name of the file containing the sample. There is no matching end tag. New in Csound version 4.07.

Version Blocking

Versions of Csound may blocked by placing one of the following statements between the start tag
<CsVersion> and the end tag </CsVersion>:

Before #.#
or

After #.#

37

Chapter 2. The Csound Command

where #.# is the requested Csound version number. The second statement may be written simply as:

#H#

See example below. New in Csound version 4.09.

Example

Below is a sample file, test.csd, which renders a .wav file at 44.1 kHz sample rate containing one second of a 1
kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and tone.sco, with the
addition of command line flags.

<CsoundSynthesizer >;
; test.csd - a Csound structured data file

<CsOptions >
-W -d -0 tone.wav
</CsOptions >

<CsVersion > ;optional section
Before 4.10 ;these two statements check for
After 4.08 ; Csound version 4.09

</CsVersion >

<Cslnstruments >
; originally tone.orc
sr = 44100
kr = 4410
ksmps = 10
nchnls =1
instr 1
al oscil p4, p5, 1 ; simple oscillator
out al
endin
</Cslnstruments >

<CsScore >
; originally tone.sco
fl 0 8192 10 1
il 0 1 20000 1000 ;play one second of one kHz tone
e
</CsScore >

</CsoundSynthesizer >

Command Line Parameter File

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden. It
uses the same form as a .csd file. Lines beginning with # or ; are treated as comments.

38

Chapter 2. The Csound Command

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:275 to 22

The component labels may be abbreviated as i, f and t. The time points denote the beginning and end of the
extract in terms of:

[section no.] : [beat no.].

each of the three parts is also optional. The default values for missing i, f or t are:

all instruments, beginning of score, end of score.

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance (it
exists as soon as score preprocessing has completed), the user may sometimes want to run these phases
independently. The command

scot filename

will process the Scot formatted filename, and leave a standard numeric score result in a file named score for
perusal or later processing.

The command

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in outfile.

Likewise extract, also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an already sorted score. An unsorted score should first be sent through Scsort then
piped to the extract program:

39

Chapter 2. The Csound Command

scsort < scorefile | extract xfile > score.extract

40

Chapter 3. Syntax of the Orchestra

An orchestra statement in Csound has the format:

label: result opcode argumentl ,argument2 ,... ;comments

The label is optional and identifies the basic statement that follows as the potential target of a go-to operation
(see Program Flow Control). A label has no effect on the statement per se.

Comments are optional and are for the purpose of letting the user document his orchestra code. Comments
always begin with a semicolon (;) and extend to the end of the line.

The remainder (result, opcode, and arguments) form the basic statement. This also is optional, i.e. a line may
have only a label or comment or be entirely blank. If present, the basic statement must be complete on one
line, and is terminated by a carriage return and line feed.

The opcode determines the operation to be performed; it usually takes some number of input values (or
arguments, with a maximum value of about 800); and it usually has a result field variable to which it sends
output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)
2. once at the beginning of each note (at initialization (init) time: i-rate)
3. once every performance-time control loop (perf-time control rate, or k-rate)

4. once each sound sample of every control loop (perf-time audio rate, or a-rate)

Directories and Files

Many generators and the Csound command itself specify filenames to be read from or written to. These are
optionally full pathnames, whose target directory is fully specified. When not a full path, filenames are sought
in several directories in order, depending on their type and on the setting of certain environment variables.
The latter are optional, but they can serve to partition and organize the directories so that source files can be
shared rather than duplicated in several user directories. The environment variables can define directories
for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include files for orchestra and score
files INCDIR.

The search order is:

1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.
2. Soundfiles for reading are sought in the current directory, then SSDIR, then SFDIR.
3. Analysis control files for reading are sought in the current directory, then SADIR.

4. Files of code to be included in orchestra and score files (with #include) are sought first in the current
directory, then in the same directory as the orchestra or score file (as appropriate), then finally INCDIR.

Beginning with Csound version 3.54, the file “csound.txt” contains the messages (in binary format) that
Csound uses to provide information to the user during performance. This allows for the messages to be in
any language, although the default is English. This file must be placed in the same directory as the Csound
executable. Alternatively, this file may be stored in SFDIR, SSDIR, or SADIR. Unix users may also keep this file
in “/usr/local/lib/”. The environment variable CSSTRNGS may be used to define the directory in which the
database resides. This can be overridden with the -j command line option. (New in version 3.55)

41

Chapter 3. Syntax of the Orchestra

Nomenclature

Throughout this document, opcodes are indicated in boldface and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs), and
the result is usually denoted by the letter 7. Both are preceded by a type qualifier i, k, a, or x (e.g. kamp, iphs,
ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control (scalar) and audio
(vector) values, modified and referenced continuously throughout performance (i.e. at every control period
while the instrument is active). Arguments are used at the prefix-listed times; results are created at their listed
times, then remain available for use as inputs elsewhere. With few exceptions, argument rates may not
exceed the rate of the result. The validity of inputs is defined by the following:

« arguments with prefix i must be valid at init time;
» arguments with prefix k can be either control or init values (which remain valid);
« arguments with prefix a must be vector inputs;

« arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most opcodes
(such as linen and oscil) can be used in more than one mode, which one being determined by the prefix of the
result symbol.

Thoughout this manual, the term "opcode" is used to indicate a command that usually produces an a-, k-, or
i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as "+" or
"sin(x)" or, "(a>=b ?c:d)" are called "operators."

Orchestra Statement Types

An orchestra program in Csound is comprised of orchestra header statements which set various global
parameters, followed by a number of instrument blocks representing different instrument types. An
instrument block, in turn, is comprised of ordinary statements that set values, control the logical flow, or
invoke the various signal processing subroutines that lead to audio output.

An orchestra header statement operates once only, at orchestra setup time. It is most commonly an
assignment of some value to a global reserved symbol , e.g. st = 20000. All orchestra header statements belong
to a pseudo instrument 0, an init pass of which is run prior to all other instruments at score time 0. Any
ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09) provided it is an
init-time only operation.

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for k-
and a-rate results), with the sole exception of the init opcode. Most generators and modifiers, however,
produce signals that depend not only on the instantaneous value of their arguments but also on some
preserved internal state. These performance-time units therefore have an implicit init-time component to set
up that state. The run time of an operation which produces no result is apparent in the opcode.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and conditional
values.

Constants and Variables

constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and do
not change in value.

variables are named cells containing numbers. They are available continuously and may be updated at one of
the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e. they take on
only one value at any given time) and are primarily used to store and recall controlling data, that is, data that

42

Chapter 3. Syntax of the Orchestra

changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables). i- and k-variables are
therefore useful for storing note parameter values, pitches, durations, slow-moving frequencies, vibratos, etc.
a-rate variables, on the other hand, are arrays or vectors of information. Though renewed on the same
perf-time control pass as k-rate variables, these array cells represent a finer resolution of time by dividing the
control period into sample periods (see ksmps). a-rate variables are used to store and recall data changing at
the audio sampling rate (e.g. output signals of oscillators, filters, etc.).

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved, and
they may carry information from pass to pass (e.g. from initialization time to performance time) within a
single instrument. Local variable names begin with the letter p, i, k, or a. The same local variable name may
appear in two or more different instrument blocks without conflict.

global variables are cells that are accessible by all instruments. The names are either like local names
preceded by the letter g, or are special reserved symbols. Global variables are used for broadcasting general
values, for communicating between instruments (semaphores), or for sending sound from one instrument to
another (e.g. mixing prior to reverberation).

given these distinctions, there are eight forms of local and global variables:

Table 3-1. Types of Variables

Type 'When Renewable Local Global
reserved symbols permanent -- r symbol
score pfields i-time p number --

v-set symbols i-time v number gv number
init variables i-time i name gi name
MIDI controllers any time c number --

control signals p-time, k-rate k name gk

audio signals p-time, k-rate a name ga name
spectral data types k-rate ‘W name --

where rsymbol is a special reserved symbol (e.g. s7;, kr), number is a positive integer referring to a score pfield
or sequence number, and name is a string of letters and/or digits with local or global meaning. As might be
apparent, score parameters are local i-rate variables whose values are copied from the invoking score
statement just prior to the init pass through an instrument, while MIDI controllers are variables which can be
updated asynchronously from a MIDI file or MIDI device.

Expressions

Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper rate.
For instance, if the terms within a sub-expression all change at the control rate or slower, the sub-expression
will be evaluated only at the control rate; that result might then be used in an audio-rate evaluation. For
example, in

kl + abs(int (p5) + frac (p5) * 100/12 + sqrt (k1))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the remainder of
the expression evaluated every k-period. The whole might occur in a unit generator argument position, or be

43

Chapter 3. Syntax of the Orchestra

part of an assignment statement.

Orchestra Header Statements

Statements that are normally placed in an orchestra header are ctrlinit, figen, kr, ksmps, massign, nchnls,
pgmassign, pset, seed, sr, and strset.

Instrument Block Statements

Statements that define an instrument block are endin and instr.

Variable Initialization

Opcodes that let one initialize variables are assign, divz, init, and tival.

44

Chapter 4. Instrument Control

Clock Control

The opcodes to start and stop internal clocks are clockoff and clockon.

Conditional Values

The opcodes for conditional values are ==, >=, >, <, <=, and /=

Duration Control Statements

The opcodes one can use to manipulate a note’s duration are ihold, turnoff, and turnon.

Instrument Invocation

The opcodes one can use to create score events from within a orchestra are event, schedule, schedwhen, and
schedkwhen.

Macros

The opcodes one can use to create, call, or undefine macros are #define, SNAME, #include, and #undef.

Program Flow Control

The opcodes to manipulate which orchestra statements are executed are cggoto, cigoto, ckgoto, cngoto, elseif,
else, endif, goto, if, igoto, kgoto, tigoto, and timout.

Real-time Performance Control

Opcodes that monitor and control real-time performance are active, cpuprc, maxalloc, and prealloc.

Reinitialization

The opcodes that can generate another initialization phase are reinit, rigoto, and rireturn.

Sensing and Control

Opcodes that read from signals or on-screen controls are button, checkbox, control, follow, follow2, peak,
pitch, pitchamdf, sense, sensekey, setctrl, tempest, tempo, tempoval, setime, trigger, trigseq, and xyin.

Sub-instrument Control

These opcodes let one define and use a sub-instrument: ink, outk, and subinstr.

45

Chapter 4. Instrument Control

Time Reading

Opcodes one can use to read time values are readclock, rtclock, timeinstk, timeinsts, timek, and times.

46

Chapter 5. Function Table Control

Table Queries
Opcodes the query tables for information are ftchnls, ftlen, ftlptim, ftsr, nsamp, and tableng.

Read/Write Operations

Opcodes that read and write to a table are ftloadk, ftload, ftsavek, ftsave, tablecopy, tablegpw, tableicopy,
tableigpw, tableimix, tableiw, tablemix, tablera, tablew, tablewa, and tablewkt.

Table Selection
Opcodes that let one dynamically select tables are tableikt, tablekt, and tablexkt.

47

Chapter 5. Function Table Control

48

Chapter 6. Mathematical Operations

Amplitude Converters

Opcodes to convert between different amplitude measurements are ampdb, ampdbfs, dbamp, and dbfsamp.

Arithmetic and Logic Operations

Opcodes that perform arithmetic and logic operations are -, +, &&, ||, *, /, *, and %.

Mathematical Functions

Opcodes that perform mathematical functions are abs, exp, frac, int, log, logl0, logbtwo, powoftwo, and sqrt.

Opcode Equivalents of Functions
Opcodes that perform the equivalent of mathematical functions are mac, maca, pow, product, and sum.

Random Functions

Opcodes that perform random functions are birnd and rnd.

Trigonometric Functions

Opcodes that perform trigonometric functions are cos, cosh, cosinv, sin, sinh, sininv, tan, tanh, taninv, and
taninv2.

49

Chapter 6. Mathematical Operations

50

Chapter 7. MIDI Support

Controller Input

Opocodes that accept MIDI input are aftouch, chanctrl, ctrl7, ctrli4, ctrl21, initc7, initc14, initc21, midic7,
midicl4, midic21, midichannelaftertouch, midichn, midicontrolchange, mididefault, midinoteoff,
midinoteoncps, midinoteonkey, midinoteonoct, midinoteonpch, midipitchbend, midipolyaftertouch,
midiprogramchange, and polyaft.

Converters

Opcodes that convert MIDI values are ampmidi, cpsmidi, cpsmidib, cpstmid, midictrl, notnum, octmidi,
octmidib, pchbend, pchmidi, pchmidib, and veloc.

Event Extenders

Opcodes that let one extend the duration of an event are release and xtratim.

Generic Input and Output

Opcodes for generic MIDI input and output are midiin and midiout.

Note-on/Note-off

Opcodes to turn MIDI notes on or off are midion, midion2, moscil, noteoff, noteon, noteondur, and
noteondur?2.

MIDI Message Output

Opcodes that send MIDI output are mdelay, nrpn, outiat, outic, outicl4, outipat, outipb, outipc, outkat,
outkc, outkcl4, outkpat, outkpb, and outkpc.

Real-time Messages

Opcodes for real-time MIDI messages are mclock and mrtmsg.

Slider Banks

Opcodes for slider banks of MIDI controls are s16b14, s32b14, slider16, slider16f, slider32, slider32f, slider64,
slider64f, slider8, and slider8f.

51

Chapter 7. MIDI Support

52

Chapter 8. Pitch Converters

Functions

Opcodes that provide common pitch functions are cent, cpsoct, cpspch, db, octave, octcps, octpch, pchoct,
and semitone.

Tuning Opcodes

Opcodes that provide tuning functions are cps2pch, cpsxpch, cpstun, and cpstuni.

53

Chapter 8. Pitch Converters

54

Chapter 9. Signal Generators

Additive Synthesis/Resynthesis

The opcodes for additive synthesis and resynthesis are adsyn, adsynt, and hsboscil.

Basic Oscillators

The basic oscillator opcodes are Ifo, oscbnk, oscil, oscil3, oscili, oscils, poscil, and poscil3.

Dynamic Spectrum Oscillators

The opcodes that generate dynamic spectra are buzz, gbuzz, mpulse, and vco.

FM Synthesis
The FM synthesis opcodes are fmb3, fmbell, fmmetal, fmpercfl, fmrhode, fmvoice, fmwurlie, foscil, and foscili,

Granular Synthesis
The granular synthesis opcodes are fof, fof2, fog, grain, grain2, grain3, granule, sndwarp, and sndwarpst.

Linear and Exponential Generators

The opcodes that generate linear or exponential curves or segments are adsr, expon, expseg, expsega, expsegr,
jspline, line, linseg, linsegr, loopseg, Ipshold, madsr, mxadsr, rspline, transeg, and xadsr.

Linear Predictive Coding (LPC) Resynthesis

The linear predictive coding resynthesis opcodes are Ipfreson, lpinterp, Ipread, Ipreson, and Ipslot.

Models and Emulations

The opcodes that model or emulate the sounds of other instruments are bamboo, cabasa, crunch, dripwater,
gogobel, guiro, lorenz, mandol, marimba, moog, planet, sandpaper, sekere, shaker, sleighbells, stix,
tambourine, vibes, and voice.

Phasors

The opcodes that generate a moving phase value phasor and phasorbnk.

Random (Noise) Generators

Opcodes that generate random numbers are betarnd, bexprnd, cauchy, cuserrnd, duserrnd, exprand, gauss,
linrand, noise, pcauchy, pinkish, poisson, rand, randh, randi, rnd31, rand, randomh, randomi, trirand,
unirand, urd, and weibull.

55

Chapter 9. Signal Generators

Sample Playback

Opcodes that implement sample playback are bbcutm, bbcuts, loscil, loscil3, Iphasor, Iposcil, Iposcil3, sfilist,
sfinstr, sfinstr3, sfinstr3m, sfinstrm, sfload, sfpassign, sfplay, sfplay3, sfplay3m, sfplaym, sfplist, sfpreset, and
waveset.

Scanned Synthesis

Scanned synthesis is a variant of physical modeling, where a network of masses connected by springs is used
to generate a dynamic waveform. The opcode scanu defines the mass/spring network and sets it in motion.
The opcode scans follows a predefined path (trajectory) around the network and outputs the detected
waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio, or as
controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentially, this offers the
possibility of reconnecting the masses in different orders, causing the signal to propagate quite differently.
They do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the effect
of “molding” this surface into a radically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the following
grid describing the possible connections:

1
2
3
4

Whenever two masses are connected, the point they define is 1. If two masses are not connected, then the
point they define is 0. For example, a unidirectional string has the following connections: (1,2), (2,3), (3,4). If it
is bidirectional, it also has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix appears:

(=l el el e
o O[O ||
o O |~ |O W
S |H= O O (s

1
2
3
4

The above table format of the connection matrix is for conceptual convenience only. The actual values shown
in te table are obtained by scans from an ASCII file using GEN23. The actual ASCII file is created from the
table model row by row. Therefore the ASCII file for the example table shown above becomes:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use many
more masses than four, so their matrices will be much larger and more complex. See the example in the scans
documentation.

56

Chapter 9. Signal Generators

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, centering,

and damping can cause the system to “blow up” and the most interesting sounds to emerge from your
loudspeakers!

The supplement to this manual contains a tutorial on scanned synthesis. The tutorial, examples, and other
information on scanned synthesis is available from the Scanned Synthesis page at cSounds.com.

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval Research between
1998 and 2000.

Opcodes that implement scanned synthesis are scanhammer, scans, scantable, scanu, xscanmap, xscans, and
xscanu.

Short-time Fourier Transform (STFT) Resynthesis

Use of PVOC-EX files with the old Csound pvoc opcodes: All the original pvoc opcodes can now read a PVOC-EX
file, as well as the native non-portable file format. As the PVOC-EX file uses a double-size analysis window, users may
find that this gives a useful improvement in quality, for some sounds and processes, despite the fact that the
resynthesis does not use the same window size.

Apart from the window size parameter, the main difference between the original .pv format and PVOC-EX is in the
amplitude range of analysis frames. While rescaling is applied, so that no significant difference in output level is
experienced, whichever file format is used, some slight loss of amplitude can still arise, as the double window usage
itself modifies frame amplitudes, of which the resynthesis code is unaware. Note that all the original pvoc opcodes
expect a mono analysis file, and multi-channel PVOC-EX files will accordingly be rejected.

Opcodes the implement STFT resynthesis are ktableseg, pvadd, pvbufread, pvcross, pvinterp, pvoc, pvread,
tableseg, tablexseg, and vpvoc.

Table Access

The opcodes that access tables are oscill, oscilli, osciln, oscilx, table, table3, and tablei.

Wave Terrain Synthesis

The opcode that uses wave terrain synthesis is wterrain.

Waveguide Physical Modeling

The opcodes that implement waveguide physical modeling are pluck, repluck, wgbow, wgbowedbar, wgbrass,
wgclar, wgflute, wgpluck, and wgpluck2.

57

Chapter 9. Signal Generators

58

Chapter 10. Signal Input and Output

File Input and Output

The opcodes for file input and output are clear, dumpk, dumpk2, dumpk3, dumpk4, fiopen, fin, fini, fink,
fout, fouti, foutir, foutk, readk, readk2, readk3, readk4, and vincr.

Input

The opcodes that receive audio signals are: diskin, in, in32, inch, inh, ino, inq, ins, invalue, inx, inz, and
soundin.

Output

The opcodes that write audio signals are: out, out32, outc, outch, outh, outo, outq, outql, outq2, outq3, outq4,
outs, outsl, outs2, outvalue, outx, outz, and soundout.

Printing and Display
Opcodes for printing and displaying values are dispfft, display, flashtxt, print, printk, printk2, and printks.

Sound File Queries
The opcodes that query information about files are filelen, filenchnls, filepeak, and filesr.

59

Chapter 10. Signal Input and Output

60

Chapter 11. Signal Modifiers

Amplitude Modifiers

The opcodes that modify amplitude are balance, clip, dam, gain, and rms.

Convolution and Morphing

The opcodes that convolve and morph signals are convle, convolve, cross2, dconv, and ftmorf.

Delay

The opcodes that implement delay are delay, delayl, delayr, delayw, deltap, deltap3, deltapi, deltapn,
deltapx, deltapw, multitap, vdelay, vdelay3, vdelayx, vdelayxs, vdelayxq, vdelayxw, vdelayxwq, and
vdelayxws.

Envelope Modifiers

The opcodes that modify envelopes are envipx, envipxr, linen, and linenr.

Panning and Spatialization

The opcodes that one can use for panning and spatialization are hritfer, locsend, locsig, pan, space, spat3d,
spat3di, spat3dt, spdist, spsend, vbapl6, vbapl6move, vbap4, vbap4move, vbap8, vbap8move, vbaplsinit,
vbapz, and vbapzmove.

Reverberation

The opcodes one can use for reverberation are alpass, babo, comb, nestedap, nreverb, reverb2, reverb, valpass,
and vcomb

Sample Level Operators

The opcodes one may use to modify signals are a, diff, downsamp, fold, i, integ, interp, ntrpol, samphold,
and upsamp.

Signal Limiters

Opcodes that one can use to limit signals are limit, mirror, and wrap.

Special Effects

Opcodes that generate special effects are distortl, flanger, harmon, jitter, jitter2, phaserl, phaser2, vibr, and
vibrato.

61

Chapter 11. Signal Modifiers

Specialized Filters
The opcodes that recreate specialized filters are dcblock, nlfilt, and pareq.

Standard Filters

The opcodes for standard filters are areson, aresonk, atone, atonek, atonex, biquad, biquada, butbp, butbr,
buthp, butlp, butterbp, butterbr, butterhp, butterlp, clfilt, filter2, hilbert, lineto, lowpass2, lowres, lowresx,

Ipf18, moogucf, port, portk, reson, resonk, resonr, resonx, resony, resonz, rezzy, svfilter, tbvcf, tlineto, tone,

tonek, tonex, vlowres, and zfilter.

Waveguides

The opcodes that use waveguides to modify a signal are streson, wguidel, and wguide2.

62

Chapter 12. Spectral Processing

Non-standard Spectral Processing

These units generate and process non-standard signal data types, such as down-sampled time-domain
control signals and audio signals, and their frequency-domain (spectral) representations. The data types (d-,
w-) are self-defining, and the contents are not processable by any other Csound units. These unit generators
are experimental, and subject to change between releases, they will also be joined by others later.

The opcodes for non-standard spectral processing are specaddm, specdiff, specdisp, specfilt, spechist,
specptrk, specscal, specsum, and spectrum.

Tools for Real-time Spectral Processing

With these opcodes, two new core facilities are added to Csound. They offer improved audio quality, and fast
performance, enabling high-quality analysis and resynthesis (together with transformations) to be applied in
real-time to live signals. The original Csound phase vocoder remains unaltered; the new opcodes use an
entirely separate set of functions based on “pvoc.c” in the CARL distribution, written by Mark Dolson.

The Csound dnoise and srconv utilities (also by Dolson, from CARL) also use this pvoc engine. CARL pvoc is
also the basis for the phase vocoder included in the Composer’s Desktop Project. A few small but important
modifications have been made to the original CARL code to support real-time streaming.

1. Support for the new PVOC-EX analysis file format. This is a fully portable (cross-platform) open file
format, supporting three analysis formats, and multi-channel signals. Currently only the standard
amplitude+frequency format has been implemented in the opcodes, but the file format itself supports
amplitude+phase and complex (real-imaginary) formats. In addition to the new opcodes, the original
Csound pvoc opcodes have been extended (and thereby with enhanced audio quality in some cases) to
read PVOC-EX files as well as the original (non-portable) format.

Full details of the structure of a PVOC-EX file are available via the website:
http:/fwww.bath.ac.uk/~masjpfINCD/researchdev/pvocex/pvocex.html. This site also gives details of the
freely available console programs pvocex and pvocex2 which can be used to create PVOC-EX files in all
supported formats.

2. A new frequency-domain signal type, fully streamable, with f as the leading character. In this document
it is conveniently referred to as an fsig. Primary support for fsigs is provided by the opcodes pvsanal and
pvsynth, which perform conventional phase vocoder overlap-add analysis and resynthesis,
independently of the orchestra control-rate. The only requirement is that the control-rate kr be higher
than or equal to the analysis rate, whch can be expressed by the requirement that ksmps <= overlap,
where overlap is the distance in samples between analysis frames, as specified for pvsanal. As overlap is
typically at least 128, and more usually 256, this is not an onerous restriction in practice. The opcode
pvsinfo can be used at init time to acquire the properties of an fsig.

The fsig enables the nominal separation between the analysis and resynthesis stages of the phase
vocoder to be exposed to the Csound programmer, so that not only can alternatives be employed for
either or both of these stages (not only oscillator-bank resynthesis, but also the generation of synthetic
fsig streams), but opcodes, operating on the fsig stream, can themselves become more elemental. Thus
the fsig enables the creation of a true streaming plugin framework for frequency domain signals. With
the old pvoc opcodes, each opcode is required to act as a resynthesiser, so that facilities such as pitch
scaling are duplicated in each opcode; and in many cases the opcodes are parameter-rich. The
separation of analysis and synthesis stages by means of the fsig encourages the development of a wide
range of simple building-block opcodes implementing one or two functions, with which more elaborate
processes can be constructed.

63

Chapter 12. Spectral Processing

This is very much a preliminary and experimental release, and it is possible that the precise definition of the
opcodes may change, in response to user feedback. Also, clearly, many new possibilities for opcodes are
opened up; these factors may also have a retrospective influence on the opcodes presented here.

Note that some opcode parameters currently have restricted or missing implementation. This is at least in
part in order to keep the opcodes simple at this stage, and also because they highlight important design
issues on which no decision has yet been made, and on which opinions from users are sought.

One important point about the new signal type is that because the analysis rate is typically much lower than
kr, new analysis frames are not available on each k-cycle. Internally, the opcodes track ksmps, and also
maintain a frame counter, so that frames are read and written at the correct times; this process is generally
transparent to the user. However, it means that k-rate signals only act on an fsig at the analysis rate, not at
each k-cycle. The opocde pvsftw returns a k-rate flag that is set when new fsig data is valid.

Because of the nature of the overlap-add system, the use of these opcodes incurs a small but significant delay,
or latency, determined by the window size (max(ifftsize,iwinsize)). This is typically around 23msecs. In this
first release, the delay is slightly in excess of the theoretical minimum, and it is hoped that it can be reduced,
as the opcodes are further optimized for real-time streaming.

The opcodes for real-time spectral processing are pvsadsyn, pvsanal, pvscross, pvsfread, puvsftr, pvsftw,
pusinfo, pvsmaska, and pvsynth.

64

Chapter 13. Zak Patch System

The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak system can be
thought of as a global array of variables. These opcodes are useful for performing flexible patching or routing
from one instrument to another. The system is similar to a patching matrix on a mixing console or to a
modulation matrix on a synthesizer. It is also useful whenever an array of variables is required.

The zak system is initialized by the zakinit opcode, which is usually placed just after the other global
initializations: sr, kr, ksmps, nchnls. The zakinit opcode defines two areas of memory, one area for i- and
k-rate patching, and the other area for a-rate patching. The zakinit opcode may only be called once. Once the
zak space is initialized, other zak opcodes can be used to read from, and write to the zak memory space, as
well as perform various other tasks.

Opcodes for the zak patch system are zacl, zakinit, zamod, zar, zarg, zaw, zawm, zir, ziw, ziwm, zkcl,
zkmod, zkr, zkw, and zkwm.

65

Chapter 13. Zak Patch System

66

Chapter 14. The Standard Numeric Score

Preprocessing of Standard Scores

A Score (a collection of score statements) is divided into time-ordered sections by the s statement. Before
being read by the orchestra, a score is preprocessed one section at a time. Each section is normally processed
by 3 routines: Carry, Tempo, and Sort.

Carry

Within a group of consecutive i statements whose pl whole numbers correspond, any pfield left empty will
take its value from the same pfield of the preceding statement. An empty pfield can be denoted by a single
point (.) delimited by spaces. No point is required after the last nonempty pfield. The output of Carry
preprocessing will show the carried values explicitly. The Carry Feature is not affected by intervening
comments or blank lines; it is turned off only by a non- i statement or by an i statement with unlike p1 whole
number.

Three additional features are available for p2 alone: +, A + x, and » - x. The symbol + in p2 will be given the
value of p2 + p3 from the preceding i statement. This enables note action times to be automatically
determined from the sum of preceding durations. The + symbol can itself be carried. It is legal only in p2. E.g.:
the statements

i1 0 5 100
i, o+

will result in

i1 0 5 100
il 5 5 100
i1 1 5 100

The symbols » + x and » - x determine the current p2 by adding or subtracting, respectively, the value of x
from the preceding p2. These may be used in p2 only.

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input typing
and will simplify later changes.

Tempo

This operation time warps a score section according to the information in a ¢ statement. The tempo operation
converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the units required
by the orchestra. After time warping, score files will be seen to have orchestra-readable format demonstrated
by the following: i p1 p2beats p2seconds p3beats p3seconds p4 p5

Sort

This routine sorts all action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an fstatement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted into
ascending p1 value order. If they also have the same p1 value, they will be sorted into ascending p3 value

67

Chapter 14. The Standard Numeric Score

order. Score sorting is done section by section (see s statement). Automatic sorting implies that score
statements may appear in any order within a section.

N.B.

The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score file, to produce a
new file in orchestra-readable format (see the Tempo example). Processing can be invoked either explicitly
by the Scsort command, or implicitly by CSound which processes the score before calling the orchestra.
Source-format files and orchestra-readable files are both in ASCII character form, and may be either perused
or further modified by standard text editors. User-written routines can be used to modify score files before or
after the above processes, provided the final orchestra-readable statement format is not violated. Sections of
different formats can be sequentially batched; and sections of like format can be merged for automatic
sorting.

Next-P and Previous-P Symbols

At the close of any of the operations Carry, Tempo, and Sort, three additional score features are interpreted
during file writeout: next-p, previous-p, and ramping.

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previous i statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played by this
instrument. np and pp symbols are recursive and can reference other np and pp symbols which can reference
others, etc. References must eventually terminate in a real number or a ramp symbol. Closed loop references
should be avoided. np and pp symbols are illegal in p1, p2 and p3 (although they may reference these). np
and pp symbols may be Carried. np and pp references cannot cross a Section boundary. Any forward or
backward reference to a non-existent note-statement will be given the value zero.

E.g.: the statements

i1 0 1 10 np4 pp5
i1 1 1 20
il 1 1 30

will result in

i1 O 1 10 20 O
i1 1 1 20 30 20
i1 2 1 30 O 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to
glissando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may
not be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsorted
statements, the operation that interprets these symbols is acting on a time-warped and fully sorted version of
the score.

68

Chapter 14. The Standard Numeric Score

Ramping

i statement pfields containing the symbol < will be replaced by values derived from linear interpolation of a
time-based ramp. Ramps are anchored at each end by the first real number found in the same pfield of a
preceding and following note played by the same instrument. E.g.: the statements

il 0 1 100
il 1 1 <
il 2 1 <
il 3 1 400
il 4 1 <
il 5 1 0
will result in

il 0 1 100
il 1 1 200
il 2 1 300
il 3 1 400
il 4 1 200
il 5 1 0

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although they
may be referenced by these). Ramp symbols are illegal in p1, p2 and p3. Ramp symbols may be Carried. Note,
however, that while the Carry feature will propagate ramp symbols through unsorted statements, the
operation that interprets these symbols is acting on a time-warped and fully sorted version of the score. In
fact, time-based linear interpolation is based on warped score-time, so that a ramp which spans a group of
accelerating notes will remain linear with respect to strict chronological time.

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation ramp,
similar to expon. The symbols { and } to define an exponential ramp have been deprecated. Using the symbol
~ will result in uniform, random distribution between the first and last values of the ramp. Use of these
functions must follow the same rules as the linear ramp function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros. This
can can allow for simpler score writing, and provide an elementary alternative to full score generation
systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a simple macro. The name of the macro must begin with a letter and can consist of
any combination of letters and numbers. Case is significant. This form is limiting, in that the variable names
are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a'b'c') -- defines a macro with arguments. This can be used in more complex situations. The
name of the macro must begin with a letter and can consist of any combination of letters and numbers.
Within the replacement text, the arguments can be substituted by the form: $A. In fact, the implementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any choice
of letters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The name is
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not to

69

Chapter 14. The Standard Numeric Score

terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with #undef
NAME.

Syntax
#define NAME # replacement text #
#define NAME(a' b' c') # replacement text #
$NAME.
#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Another Use For Macros. When writing a complex score it is sometimes all too easy to forget to what the
various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #il#
#define Whoop #i2#

$Flute. 0 10 4000 440
$Whoop. 5 1

Examples

Example 14-1. Simple Macro

A note-event has a set of p-fields which are repeated:

#define ARGS # 1.01 2.33 138#
i1 01 800 1000 $ARGS
i1 01801 1500 $ARGS
i1 01 802 1200 $ARGS
i1 01 8.03 1000 $ARGS

This will get expanded before sorting into:
il 01800 1000 1.01 2.33 138
il 01801 1500 1.01 2.33 138
i1 01802 1200 1.01 2.33 138

70

i1 01 8.03 1000 1.01 2.33 138

Chapter 14. The Standard Numeric Score

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a second
macro (there is no real limit on the number of macros one can define).

#define ARGS1 # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
i1 01 800 1000 $ARGS1

i1 01 801 1500 $ARGS2

i1 01 802 1200 $ARGS1

i1 01 803 1000 $ARGS2

Example 14-2. Macros with arguments

#define ARG(A) # 2.345 103 $A 234.9%
i1 0 1 8.00 1000 $ARG(2.0)
i1 + 1 8.01 1200 $ARG(3.0)

which expands to

i1 0 1 8.00 1000 2.345 1.03 2.0 2349
il + 1 8.01 1200 2.345 1.03 3.0 2349

Credits
Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

Multiple File Score

Description
Using the score in more than one file.

71

Chapter 14. The Standard Numeric Score

Syntax

#include “filename”

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text

#include "filename"

where the character " can be replaced by any suitable character. For most uses the double quote symbol will
probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. There is currently
a limit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer’s style. It could
also be used to provide repeated sections.

s
#include :sectionl:
;; Repeat that

s

#include :sectionl:

Alternative methods of doing repeats, use the r statement, m statement, and n statement.

Credits
Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions

In earlier versions of Csound the numbers presented in a score were used as given. There are occasions when
some simple evaluation would be easier. This need is increased when there are macros. To assist in this area
the syntax of an arithmetic expressions within square brackets [| has been introduced. Expressions built from
the operations +, -, *, /, %, and A are allowed, together with grouping with (). The expressions can include
numbers, and naturally macros whose values are numeric or arithmetic strings. All calculations are made in
floating point numbers. Note that unary minus is not yet supported.

New in Csound version 3.56 are @x (next power-of-two greater than or equal to x) and @@x (next
power-of-two-plus-one greater than or equal to x).

2

Chapter 14. The Standard Numeric Score

Example

r3 CNT

i1 0 [0.3*$CNT]
i1 + [($CNT./3)+0.2]

e

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this expands to

i1 0 03

il 0.3 0.533333
S

i1 0 06

il 0.6 0.866667
S

i1 0 0.9

i1 09 1.2

e

This is an extreme form, but the evaluation system can be used to ensure that repeated sections are subtly
different.

Credits
Author: John ffitch
University of Bath/Codemist Ltd.
Bath, UK
April, 1998 (New in Csound version 3.48)

Score Statements

The statements used in scores are a, b, e, f, i, m, n, 1, s, t, v, and x.

Sine/Cosine Generators

The GEN routines that generate sine or cosine values are GEN09, GEN10, GEN11, GEN19, GEN30, GEN33, and
GEN34.

Line/Exponential Segment Generators

GEN routines that generate tables with linear or exponential segments are GEN05, GEN06, GEN07, GENO08,
GEN16, GEN25, and GEN27.

73

Chapter 14. The Standard Numeric Score

File Access GEN Routines
The GEN routines that access files are GEN0O1, GEN23, and GEN28.

Numeric Value Access GEN Routines
The GEN routines that generate tables from numeric values are GENO2 and GEN17.

Window Function GEN Routines
The GEN routine for window functions is GEN20.

Random Function GEN Routines
GEN routines the generate random distributions are GEN21, GEN40, GEN41, and GEN42.

Waveshaping GEN Routines
The GEN routines that have waveshaping functionality are GEN03, GEN13, GEN14, and GEN15.

Amplitude Scaling GEN Routines
GEN routines that perform amplitude scaling are GEN04, GEN12, and GEN24.

Mixing GEN Routines
GEN routines that mix together waverforms are GEN18, GEN31, and GEN32.

74

Il. Reference

Chapter 15. Orchestra Opcodes and Operators
1=
I= — Determines if one value is not equal to another.

Description

Determines if one value is not equal to another.

Syntax
(@al=b?2vl:v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For

n_nmn

convenience, a sole "=" will function as "==".)
NB.: If vI or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *,/, & and |[|).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the != opcode. It uses the files notequal.orc and notequal.sco.

Example 15-1. Example of the != opcode.

/* notequal.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

. Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it not equal to 3? (1 = true, 0 = false)
k2 = (p4 =32 1 :0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* notequal.orc */

77

Chapter 15. Orchestra Opcodes and Operators

/* notequal.sco */
[* Written by Kevin Conder */

; Call Instrument #1 with a p4 = 2.
il10052
; Call Instrument #1 with a p4 = 3.
il1053
; Call Instrument #1 with a p4 = 4.
il2054

e
/* notequal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 1.000000
k1 = 3.000000, k2 = 0.000000
k1 = 4.000000, k2 = 1.000000
See Also
== >=, >, <5, <

#define
#define — Defines a macro.
Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

#define NAME -- defines a simple macro. The name of the macro must begin with a letter and can consist of
any combination of letters and numbers. Case is significant. This form is limiting, in that the variable names
are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a'b'c') -- defines a macro with arguments. This can be used in more complex situations. The
name of the macro must begin with a letter and can consist of any combination of letters and numbers.
Within the replacement text, the arguments can be substituted by the form: $A. In fact, the implementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any choice
of letters. Remember that case is significant in macro names.

Syntax
#define NAME # replacement text #
#define NAME(a' b' ¢') # replacement text #

78

Chapter 15. Orchestra Opcodes and Operators

Initialization

#replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Examples

Here is a simple example of the defining a macro. It uses the files define.orc and define.sco.

Example 15-1. Simple example of the define macro.

/* define.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the macros.
#define VOLUME #5000#
#define FREQ #440#
#define TABLE #1#

; Instrument #1

instr 1
; Use the macros.
; This will be expanded to "al oscil 5000, 440, 1".
al oscil $VOLUME, $FREQ, $TABLE

; Send it to the output.
out al

endin

/* define.orc */

/* define.sco */

/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* define.sco */

Its output should include lines like this:
Macro definition for VOLUME

Macro definition for CPS
Macro definition for TABLE

79

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the defining a macro with arguments. It uses the files define_args.orc and
define_args.sco.

Example 15-2. Example of the define macro with arguments.

/* define_args.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the oscillator macro.
#define OSCMACRO(VOLUME'FREQ'TABLE) #oscil $VOLUME, $FREQ, $TABLE#

. Instrument #1

instr 1
; Use the oscillator macro.
; This will be expanded to "al oscil 5000, 440, 1".
al $OSCMACRO(5000440'1)

; Send it to the output.
out al

endin

/* define_args.orc */

/* define_args.sco */

/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

[* define_args.sco */

Its output should include lines like this:

Macro definition for OSCMACRO

See Also
$NAME, #undef

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

80

Chapter 15. Orchestra Opcodes and Operators

#include

#include — Includes an external file for processing.

Description

Includes an external file for processing.

Syntax
#include “filename”

Performance

It is sometimes convenient to have the orchestra arranged in a number of files, for example with each
instrument in a separate file. This style is supported by the #include facility which is part of the macro system.
Aline containing the text

#include “filename”

where the character " can be replaced by any suitable character. For most uses the double quote symbol will
probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. There is currently
a limit of 20 on the depth of included files and macros.

Another suggested use of #include would be to define a set of macros which are part of the composer’s style.

An extreme form would be to have each instrument defines as a macro, with the instrument number as a
parameter. Then an entire orchestra could be constructed from a number of #include statements followed by
macro calls.

#include “clarinet”
#include “flute”
#include “bassoon”
$CLARINET(1)
$FLUTE(2)
$BASSOON(3)

It must be stressed that these changes are at the textual level and so take no cognizance of any meaning.

Examples

Here is an example of the include opcode. It uses the files include.orc, include.sco, and tablel.inc.

Example 15-1. Example of the include opcode.

/* include.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr 44100

kr 4410

81

Chapter 15. Orchestra Opcodes and Operators

10
1

ksmps
nchnls

. Instrument #1 - a basic oscillator.
instr 1

kamp = 10000

kcps = 440
ifn = 1

al oscil kamp, kcps, ifn
out al

endin

[* include.orc */

/* tablel.inc */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

/* tablel.inc */

[* include.sco */
[* Written by Kevin Conder */

; Include the file for Table #1.
#include "tablel.inc"

; Play Instrument #1 for 2 seconds.
i102

e

/* oscil.sco */

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

#undef

#undef — Un-defines a macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with #undef
NAME.

82

Chapter 15. Orchestra Opcodes and Operators

Syntax
#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

See Also
#define, NAME

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

$NAME

$NAME— Calls a defined macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

$NAME -- calls a defined macro. To use a macro, the name is used following a $ character. The name is
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not to
terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

Syntax
$NAME

83

Chapter 15. Orchestra Opcodes and Operators

Initialization

#replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Examples

Here is an example of the calling a macro. It uses the files define.orc and define.sco.

Example 15-1. An example of the calling a macro.

/* define.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the macros.
#define VOLUME #5000#
#define FREQ #440#
#define TABLE #1#

; Instrument #1

instr 1
; Use the macros.
; This will be expanded to "al oscil 5000, 440, 1".
al oscil $VOLUME, $FREQ, $TABLE

; Send it to the output.
out al

endin

/* define.orc */

/* define.sco */

/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* define.sco */

Its output should include lines like this:
Macro definition for VOLUME

Macro definition for CPS
Macro definition for TABLE

84

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the calling a macro with arguments. It uses the files define_args.orc and define_args.sco.

Example 15-2. An example of the calling a macro with arguments.

/* define_args.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Define the oscillator macro.
#define OSCMACRO(VOLUME'FREQ'TABLE) #oscil $VOLUME, $FREQ, $TABLE#

. Instrument #1

instr 1
; Use the oscillator macro.
; This will be expanded to "al oscil 5000, 440, 1".
al $OSCMACRO(5000440'1)

; Send it to the output.
out al

endin

/* define_args.orc */

/* define_args.sco */

/* Written by Kevin Conder */

; Define Table #1 with an ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

[* define_args.sco */

Its output should include a line like this:

Macro definition for OSCMACRO

See Also
#define, #undef

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

85

Chapter 15. Orchestra Opcodes and Operators

%

% — Modulus operator.

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with x taking b and c and then + taking a and b * c.

2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

The operator % returns the value of a reduced by b, so that the result, in absolute value, is that of the absolute
value of b, by repeated subtraction. This is the same as modulus function in integers. New in Csound version
3.50.

86

Chapter 15. Orchestra Opcodes and Operators

Syntax
a % b (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the % operator. It uses the files modulus.orc and modulus.sco.

Example 15-1. Example of the % operator.

/* modulus.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls 1

; Instrument #1.
instr 1
il =5% 3
print il
endin
/* modulus.orc */

/* modulus.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* modulus.sco */

Its output should include a line like this:

instr 1: i1 = 2.000

See Also
D +y &&) ||) *, /, B

&&

&&— Logical AND operator.

87

Chapter 15. Orchestra Opcodes and Operators

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with * taking b and ¢ and then + taking aand b = c.
2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a && b (logical AND; not audio-rate)

where the arguments a and b may be further expressions.

88

Chapter 15. Orchestra Opcodes and Operators

See Also
B +7 ||J *, /; A) %

>

> — Determines if one value is greater than another.

Description

Determines if one value is greater than another.

Syntax
(@a>b?vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, aless than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For

n_nmn

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[|).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the > opcode. It uses the files greaterthan.orc and greaterthan.sco.

Example 15-1. Example of the > opcode.

[* greaterthan.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps 1

nchnls 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it greater than 3? (1 = true, 0 = false)
k2 = (p4 >37?21:0)

89

Chapter 15. Orchestra Opcodes and Operators

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* greaterthan.orc */

[* greaterthan.sco */
/* Written by Kevin Conder */

; Call Instrument #1 with a p4 = 2.
i10052

; Call Instrument #1 with a p4 = 3.
il1053

; Call Instrument #1 with a p4 = 4.
il12054

e

/* greaterthan.sco */

Its output should include lines like this:

k1l = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 0.000000
k1l = 4.000000, k2 = 1.000000
See Also
==, >= <5 <, 15
>=
= — Determines if one value is greater than or equal to another.
Description

Determines if one value is greater than or equal to another.

Syntax
(a>=b2?2vl:v2)

where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For

n_nmn

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and 2, and) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[|).

90

Chapter 15. Orchestra Opcodes and Operators

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples

Here is an example of the >= opcode. It uses the files greaterequal.orc and greaterequal.sco.

Example 15-1. Example of the >= opcode.

[* greaterequal.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

. Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it greater than or equal to 3? (1 = true, 0 = false)
k2 = (p4 >=37?21:0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
[* greaterequal.orc */

/* greaterequal.sco */
[* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.

il10052
; Call Instrument #1 with a p4 = 3.
il1053
; Call Instrument #1 with a p4 = 4.
il2054

e
[* greaterequal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 1.000000
See Also

== >) <:» <’ !:

91

Chapter 15. Orchestra Opcodes and Operators

<

< — Determines if one value is less than another.

Description

Determines if one value is less than another.

Syntax
(a<b?vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, aless than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "==".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *,/, & and |[]).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the < opcode. It uses the files lessthan.orc and lessthan.sco.

Example 15-1. Example of the < opcode.

/* lessthan.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it less than 3? (1 = true, 0 = false)
k2 = (p4 <3?21:0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* lessthan.orc */

/* lessthan.sco */

/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.

92

Chapter 15. Orchestra Opcodes and Operators

i10052
; Call Instrument #1 with a p4 = 3.
il11053
; Call Instrument #1 with a p4 = 4.
il12054

e
/* lessthan.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 1.000000
k1 = 3.000000, k2 = 0.000000
k1 = 4.000000, k2 = 0.000000
See Also
==, >=, >, <:, !:

<=

<=— Determines if one value is less than or equal to another.

Description

Determines if one value is less than or equal to another.

Syntax
(a<=b?2vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For

n_n

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[|).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

93

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the <= opcode. It uses the files lessequal.orc and lessequal.sco.

Example 15-1. Example of the <= opcode.

/* lessequal.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

; Is it less than or equal to 3? (1 = true, 0 = false)
k2 = (p4 <=37?21:0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
/* lessequal.orc */

/* lessequal.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.

il10052

; Call Instrument #1 with a p4 = 3.
il1053

; Call Instrument #1 with a p4 = 4.
il12054

e

/* lessequal.sco */

Its output should include lines like this:

ki = 2.000000, k2 = 1.000000
ki1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 0.000000
See Also

==>=>,< =

+ — Multiplication operator.

94

Chapter 15. Orchestra Opcodes and Operators

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with * taking b and ¢ and then + taking aand b = c.
2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a * b (no rate restriction)

where the arguments a and b may be further expressions.

95

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the x operator. It uses the files multiplies.orc and multiplies.sco.

Example 15-1. Example of the « operator.

/* multiplies.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 44100

kr = 4410

ksmps = 1
1

= 10
nchnls =

; Instrument #1.
instr 1
i1 =24*8
print il
endin
/* multiplies.orc */

/* multiplies.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

[* multiplies.sco */

Its output should include a line like this:

instr 1: i1l = 192.000

See Also
5 +) &&) ||) /) A) %

+

-+ — Addition operator

Description

Arithmetic operators perform operations of change-sign (negate), don't-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

96

Chapter 15. Orchestra Opcodes and Operators

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with * taking b and ¢ and then + takinga and b = c.
2. 4 and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

(a&&(b-c)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci
is taken as

(@a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
+ a (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the + operator. It uses the files adds.orc and adds.sco.

Example 15-1. Example of the + operator.

[* adds.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.
instr 1

97

i1=24+38
print i1
endin

/* adds.orc */

[* adds.sco */
/* Written by Kevin Conder */

; Play Instrument #1 for one second.

il101
e
/* adds.sco */

Its output should include lines like:

instr 1: i1l = 32.000

See Also
) &&v ||’ *, /» A) %

- — Subtraction operator.

Description

Chapter 15. Orchestra Opcodes and Operators

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+(b*c)

with x taking b and ¢ and then + taking a and b = c.

2. 4 and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-cl|d

is taken as

98

(a&&((b-0)||d

Chapter 15. Orchestra Opcodes and Operators

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(@a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax

- a (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the - operator. It uses the files subtracts.orc and subtracts.sco.

Example 15-1. Example of the - operator.

[* subtracts.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
i1 =24 -8
print i1
endin
/* subtracts.orc */

/* subtracts.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* subtracts.sco */

Its output should include lines like this:

instr 1: i1l = 16.000

99

Chapter 15. Orchestra Opcodes and Operators

See Also
+) &&) ||’ *, /» A’ %

| — Division operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+(b*c)

with * taking b and ¢ and then + taking a and b = c.

2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c|d

is taken as

(a&&(b-c)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

100

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a /b (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the / operator. It uses the files divides.orc and divides.sco.

Example 15-1. Example of the / operator.

/* divides.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.
instr 1
il =241/8
print il
endin
/* divides.orc */

/* divides.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* divides.sco */

Its output should include lines like this:

instr 1: i1l = 3.000

See Also
B +7 &&7 ||; *, A; %

101

= — Performs a simple assignment.

Syntax
ar = xarg
ir = iarg

kr = karg

Description

Performs a simple assignment.

Initialization

Chapter 15. Orchestra Opcodes and Operators

= (simple assignment) - Put the value of the expression iarg (karg, xarg) into the named result. This provides

a means of saving an evaluated result for later use.

Examples

Here is an example of the assign opcode. It uses the files assign.orc and assign.sco.

Example 15-1. Example of the assign opcode.

[* assign.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Assign a value to the variable il.

i1 = 1234

; Print the value of the il variable.

print il
endin
[* assign.orc */

/* assign.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

/* assign.sco */

Its output should include a line like this:

instr 1: i1l = 1234.000

102

Chapter 15. Orchestra Opcodes and Operators

See Also

divz, init, tival

== — Compares two values for equality.

Description
Compares two values for equality.

Syntax
(@a==b?2vl:v2)
where a, b, vl and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of vJ; if the relation is false, the expression has the value of v2. (For

n_n

convenience, a sole "=" will function as "==".
NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, *, /, & and |[]).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples
Here is an example of the == opcode. It uses the files equal.orc and equal.sco.

Example 15-1. Example of the == opcode.

[* equal.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

; Instrument #1.

instr 1
; Get the 4th p-field from the score.
ki = p4

103

Chapter 15. Orchestra Opcodes and Operators

; Is it equal to 3? (1 = true, 0 = false)
k2 = (p4 == 3?2 1 :0)

; Print the values of k1 and k2.

printks "k1 = %f, k2 = %f\n", 1, k1, k2
endin
[* equal.orc */

/* equal.sco */
[* Written by Kevin Conder */

; Call Instrument #1 with a p4 = 2.
i10052
; Call Instrument #1 with a p4 = 3.
il11053
; Call Instrument #1 with a p4 = 4.
il12054

e
/* equal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 0.000000
See Also

>z, >, <5, <, =

— “Power of” operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

104

Chapter 15. Orchestra Opcodes and Operators

with * taking b and ¢ and then + taking a and b = c.

2.+ and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c|d

is taken as

(@&&(b-c)|ld

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(@a-b)-c

Parentheses may be used as above to force particular groupings.

The operator "raises a to the b power. b may not be audio-rate. Use with caution as precedence may not
work correctly. See pow. (New in Csound version 3.493.)

Syntax
a” b (b not audio-rate)

where the arguments a and b may be further expressions.

Examples
Here is an example of the ~ operator. It uses the files raises.orc and raises.sco.

Example 15-1. Example of the " operator.

/* raises.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
i1=2"12
print il
endin

105

/* raises.orc */

[* raises.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* raises.sco */

Its output should include a line like this:

instr 1: i1l = 4096.000

See Also
B +7 &&7 ||) *, /; %

|| — Logical OR operator.

Description

Chapter 15. Orchestra Opcodes and Operators

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a+b*c.

In such cases three rules apply:

1. x and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a+((Mb*c)

with * taking b and c and then + takinga and b = c.

2. 4 and - bind more strongly than &&, which in turn is stronger than ||:

a&&b-c||d

is taken as

@&&(b-0)|ld

106

Chapter 15. Orchestra Opcodes and Operators

3. When both operators bind equally strongly, the operations are done left to right:

a-b-ci

is taken as

(a-b)-c

Parentheses may be used as above to force particular groupings.

Syntax
a || b (logical OR; not audio-rate)

where the arguments a and b may be further expressions.

See Also
D +) &&) *, /) A) %

Odbfs

0dbfs — Sets the value of 0 decibels using full scale amplitude.

Description

Sets the value of 0 decibels using full scale amplitude.

Syntax
0dbfs = iarg

Initialization

iarg -- the value of 0 decibels using full scale amplitude.

107

Performance
The default is 32767, so all existing orcs should work.
These calls should all work:

ipeak = Odbfs

asig oscil 0dbfs,freq,1
out asig * 0.3 * Odbfs

and so on.

Chapter 15. Orchestra Opcodes and Operators

As for documentation: the usage should be obvious - the main thing is for people to start to code
0dbfs-relatively (and use the ampdb() opcodes a lot more!), rather than use explicit sample values.

Floats written to a file, when 0dbfs = 1, will in effect go through no range translation at all. So the nunbers in

the file are exactly what the orc says they are.

BIG NB: All the main sample formats are supported, but | haven’'t got around to dealing with the char formats. Probably

it’s straight-forward...

I have tried to cover the main utils - adsyn,Ipanal etc. But there are bound to be things missing, sorry.

Some of the parsing code is a bit grungy because | have a variable with a leading digit!

Examples

Here is an example of the 0dbfs opcode. It uses the files 0dbfs.orc and 0dbfs.sco.

Example 15-1. Example of the 0dbfs opcode.

/* Odbfs.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Set the 0dbfs to the 16-bit maximum.
Odbfs = 32767

. Instrument #1.

instr 1
; Linearly increase the amplitude value "kamp" from
; 0 to 1 over the duration defined by p3.
kamp line 0, p3, 1

; Generate a basic tone using our amplitude value.
al oscil kamp, 440, 1

; Multiply the basic tone (with its amplitude between
; 0 and 1) by the full-scale 0dbfs value.
out al * Odbfs

endin

/* 0dbfs.orc */

108

Chapter 15. Orchestra Opcodes and Operators

/* Odbfs.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for three seconds.
i103

e
/* Odbfs.sco */

Credits
Author: Richard Dobson
May 2002

New in version 4.20

a

a — Converts a k-rate parameter to an a-rate value with interpolation.

Description

Converts a k-rate parameter to an a-rate value with interpolation.

Syntax
a(x) (control-rate args only)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

See Also

i

Credits
Author: Gabriel Maldonado

New in version 4.21

abetarand

abetarand — Deprecated.

109

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the betarand opcode instead.

abexprnd

abexprnd — Deprecated.

Description

Deprecated as of version 3.49. Use the bexprnd opcode instead.

abs

abs — Returns an absolute value.

Description

Returns the absolute value of x.

Syntax
abs(x) (no rate restriction)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the abs opcode. It uses the files abs.orc and abs.sco.

Example 15-1. Example of the abs opcode.

[* abs.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
i1
i2

-6
abs(il)

print i2
endin
/* abs.orc */

/* abs.sco */

110

Chapter 15. Orchestra Opcodes and Operators

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* abs.sco */

Its output should include lines like:

instr 1: i2 = 6.000

See Also
exp, frac, int, log, logl0, i, sqrt

acauchy

acauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the cauchy opcode instead.

active
active — Returns the number of active instances of an instrument.
Description

Returns the number of active instances of an instrument.

Syntax
ir active insnum

kr active kinsnum

Initialization

insnum -- number of the instrument to be reported

111

Performance

kinsnum -- number of the instrument to be reported

Chapter 15. Orchestra Opcodes and Operators

active returns the number of active instances of instrument number insnum/kinsnum. As of Csound4.17 the
output is updated at k-rate (if input arg is k-rate), to allow running count of instr instances.

Examples

Here is a simple example of the active opcode. It uses the files active.orc and active.sco.

Example 15-1. Simple example of the active opcode.

/* active.orc */
[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1 - a noisy waveform.
instr 1

; Generate a really noisy waveform.

anoisy rand 44100

; Turn down its amplitude.

aoutput gain anoisy, 2500

; Send it to the output.

out aoutput
endin

; Instrument #2 - counts active instruments.
instr 2
; Count the active instances of Instrument #1.
icount active 1
; Print the number of active instances.
print icount
endin
/* active.orc */

/* active.sco */

/* Written by Kevin Conder */

; Start the first instance of Instrument #1 at 0:00 seconds.
i 100 3.0

; Start the second instance of Instrument #1 at 0:015 seconds.

il11515

; Play Instrument #2 at 0:01 seconds, when we have only
; one active instance of Instrument #1.
i 21001

; Play Instrument #2 at 0:02 seconds, when we have
; two active instances of Instrument #1.

i 22001

e

/* active.sco */

Its output should include lines like this:

instr 2: icount = 1.000

112

instr 2: icount = 2.000

Chapter 15. Orchestra Opcodes and Operators

Here is a more advanced example of the active opcode. It displays the results of the active opcode at k-rate

instead of i-rate. It uses the files active_k.orc and active_k.sco.

Example 15-2. Example of the active opcode at k-rate.

[* active_k.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1 - a noisy waveform.
instr 1
; Generate a really noisy waveform.
anoisy rand 44100
; Turn down its amplitude.
aoutput gain anoisy, 2500
; Send it to the output.
out aoutput
endin

. Instrument #2 - counts active instruments at k-rate.
instr 2
; Count the active instances of Instrument #1.
kcount active 1
; Print the number of active instances.
printk2 kcount
endin
/* active_k.orc */

/* active_k.sco */

/* Written by Kevin Conder */

; Start the first instance of Instrument #1 at 0:00 seconds.
i 100 3.0

; Start the second instance of Instrument #1 at 0:015 seconds.

i11515

; Play Instrument #2 at 0:01 seconds, when we have only
; one active instance of Instrument #1.
i 21001

; Play Instrument #2 at 0:02 seconds, when we have
; two active instances of Instrument #1.

i 22001

e

/* active_k.sco */

Its output should include lines like:

i2 1.00000
i2 2.00000

113

Credits
Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK
July, 1999

New in Csound version 3.57

adsr

Chapter 15. Orchestra Opcodes and Operators

adsr — Calculates the classical ADSR envelope using linear segments.

Description

Calculates the classical ADSR envelope using linear segments.

Syntax
ar adsr iatt, idec, islev, irel [, idel]

kr adsr iatt, idec, islev, irel [, idel]

Initialization

iatt -- duration of attack phase
idec -- duration of decay

islev -- level for sustain phase

irel -- duration of release phase

idel -- period of zero before the envelope starts

114

Performance

Chapter 15. Orchestra Opcodes and Operators

The envelope is the range 0 to 1 and may need to be scaled further. The envelope may be described as:

1sler

s

Picture of an ADSR envelope.

«—1rel ﬁ‘

The length of the sustain is calculated from the length of the note. This means adsr is not suitable for use with
MIDI events. The opcode madsr uses the linsegr mechanism, and so can be used in MIDI applications.

adsr is new in Csound version 3.49.

Examples

Here is an example of the adsr opcode. It uses the files adsr.orc and adsr.sco.

Example 15-1. Example of the adsr opcode.

[* adsr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1 - a simple instrument.
instr 1
; Set the amplitude.
kamp init 20000
; Get the frequency from the fourth p-field.
kecps = cpspch(p4)

al vco kamp, kecps, 1
out al
endin

; Instrument #2 - instrument with an ADSR envelope.

instr 2
jiatt = 0.05
idec = 0.5
islev = 0.08
irel = 0.008

115

Chapter 15. Orchestra Opcodes and Operators

; Create an amplitude envelope.
kenv adsr iatt, idec, islev, irel
kamp = kenv * 20000

; Get the frequency from the fourth p-field.
kecps = cpspch(p4)

al vco kamp, kecps, 1
out al

endin

/* adsr.orc */

/* adsr.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Set the tempo to 120 beats per minute.
t 0 120

; Play a melody with Instrument #1.
; p4 = frequency in pitch-class notation.
i 1 0 1 8.04

i 8.04

8.05

8.07

8.07

8.05

8.04

8.02

8.00

8.00

8.02

8.04

8.04

8.02

O©CO~NOOTAWNPE

RPRRPRRPRRRRERRRERRERRRERE
NNRPRRRRRRRERRRERE

; Repeat the melody with Instrument #2.
; p4 = frequency in pitch-class notation.
i 2 16 1 8.04
i 8.04
8.05
8.07
8.07
8.05
8.04
8.02
8.00
8.00
8.02
8.04
8.04
8.02

NRORNNRORNNNONNNDNN
N
w
NNRRPRRRRPRRRRERRRER

e
/* adsr.sco */

116

Chapter 15. Orchestra Opcodes and Operators

See Also

madsr, mxadsr, xadsr

adsyn

adsyn — Output is an additive set of individually controlled sinusoids, using an oscillator bank.

Description

Output is an additive set of individually controlled sinusoids, using an oscillator bank.

Syntax
ar adsyn kamod, kfmod, ksmod, ifilcod

Initialization

ifilcod -- integer or character-string denoting a control-file derived from analysis of an audio signal. An
integer denotes the suffix of a file adsyn.m or pvoc.m; a character-string (in double quotes) gives a filename,
optionally a full pathname. If not fullpath, the file is sought first in the current directory, then in the one given
by the environment variable SADIR (if defined). adsyn control contains breakpoint amplitude- and
frequency-envelope values organized for oscillator resynthesis, while pvoc control contains similar data
organized for fft resynthesis. Memory usage depends on the size of the files involved, which are read and held
entirely in memory during computation but are shared by multiple calls (see also Ipread).

Performance
kamod -- amplitude factor of the contributing partials.

kfmod -- frequency factor of the contributing partials. It is a control-rate transposition factor: a value of 1
incurs no transposition, 1.5 transposes up a perfect fifth, and .5 down an octave.

ksmod -- speed factor of the contributing partials.

adsyn synthesizes complex time-varying timbres through the method of additive synthesis. Any number of
sinusoids, each individually controlled in frequency and amplitude, can be summed by high-speed
arithmetic to produce a high-fidelity result.

Component sinusoids are described by a control file describing amplitude and frequency tracks in
millisecond breakpoint fashion. Tracks are defined by sequences of 16-bit binary integers:

-1, time, amp, time, amp,...
-2, time, freq, time, freq,...

such as from hetrodyne filter analysis of an audio file. (For details see hetro.) The instantaneous amplitude
and frequency values are used by an internal fixed-point oscillator that adds each active partial into an
accumulated output signal. While there is a practical limit (limit removed in version 3.47) on the number of
contributing partials, there is no restriction on their behavior over time. Any sound that can be described in
terms of the behavior of sinusoids can be synthesized by adsyn alone.

Sound described by an adsyn control file can also be modified during re-synthesis. The signals kamod,
kfmod, ksmod will modify the amplitude, frequency, and speed of contributing partials. These are
multiplying factors, with kfmod modifying the frequency and ksmod modifying the speed with which the

117

Chapter 15. Orchestra Opcodes and Operators

millisecond breakpoint line-segments are traversed. Thus .7, 1.5, and 2 will give rise to a softer sound, a
perfect fifth higher, but only half as long. The values 1,1,1 will leave the sound unmodified. Each of these
inputs can be a control signal.

Examples

Here is an example of the adsyn opcode. It uses the files adsyn.orc, adsyn.sco, and kickroll.het. The file
“kickroll.het” was created by using the hetro utility with the audio file kickroll. wav.

Example 15-1. Example of the adsyn opcode.

/* adsyn.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; If the modulation amounts are set to 1, adsyn
; will not perform any special modulation.
kamod init 1
kfmod init 1
ksmod init 1

; Re-synthesizes the file "kickroll.het".
al adsyn kamod, kfmod, ksmod, "kickroll.het"

out al * 32768
endin
/* adsyn.orc */
[* adsyn.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101
e
/* adsyn.sco */

adsynt

adsynt — Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.

Description

Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.

118

Chapter 15. Orchestra Opcodes and Operators

Syntax
ar adsynt kamp, kcps, iwfn, ifreqfn, iampfn, icnt [, iphs]

Initialization

iwfn -- table containing a waveform, usually a sine. Table values are not interpolated for performance
reasons, so larger tables provide better quality.

ifreqfn -- table containing frequency values for each partial. ifreqfrn may contain beginning frequency values
for each partial, but is usually used for generating parameters at runtime with tablew. Frequencies must be
relative to kcps. Size must be at least icnt.

iampfn -- table containing amplitude values for each partial. iampfn may contain beginning amplitude
values for each partial, but is usually used for generating parameters at runtime with tablew. Amplitudes
must be relative to kamp. Size must be at least icnt.

icnt -- number of partials to be generated

iphs -- initial phase of each oscillator, if iphs = -1, initialization is skipped. If iphs > 1, all phases will be
initialized with a random value.

Performance
kamp -- amplitude of note
kcps -- base frequency of note. Partial frequencies will be relative to kcps.

Frequency and amplitude of each partial is given in the two tables provided. The purpose of this opcode is to
have an instrument generate synthesis parameters at k-rate and write them to global parameter tables with
the tablew opcode.

Examples

Here is an example of the adsynt opcode. It uses the files adsynt.orc and adsynt.sco. These two instruments
perform additive synthesis. The output of each sounds like a Tibetan bowl. The first one is static, as
parameters are only generated at init-time. In the second one, parameters are continuously changed.

Example 15-1. Example of the adsynt opcode.

/* adsynt.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Generate a sinewave table.

giwave ftgen 1, 0, 1024, 10, 1

; Generate two empty tables for adsynt.
gifrgs ftgen 2, 0, 32, 7, 0, 32, 0

; A table for freqency and amp parameters.
giamps ftgen 3, 0, 32, 7, 0, 32, O

; Generates parameters at init time
instr 1

; Generate 10 voices.

icnt = 10

; Init loop index.

index = 0

119

Chapter 15. Orchestra Opcodes and Operators

; Loop only executed at init time.
loop:

; Define non-harmonic partials.

ifreq pow index + 1, 1.5

; Define amplitudes.

iamp = 1 / (index+1)

;. Write to tables.

tableiw ifreq, index, gifrgs

; Used by adsynt.

tableiw iamp, index, giamps

index = index + 1
; Do loop/
if (index < icnt) igoto loop

asig adsynt 5000, 150, giwave, gifrgs, giamps, icnt
out asig
endin

; Generates parameters every k-cycle.

instr 2
; Generate 10 voices.
icnt = 10
; Reset loop index.
kindex = 0

; Loop executed every k-cycle.
loop:
; Generate Ifo for frequencies.
kspeed pow kindex + 1, 1.6
; Individual phase for each voice.
kphas phasorbnk kspeed * 0.7, kindex, icnt
kifo table kphas, giwave, 1
; Arbitrary parameter twiddling...
kdepth pow 1.4, kindex
kfreq pow kindex + 1, 1.5
kfreq = kfreq + klfo*0.006*kdepth

; Write freqs to table for adsynt.
tablew kfreq, kindex, gifrgs

; Generate Ifo for amplitudes.

kspeed pow kindex + 1, 0.8

; Individual phase for each voice.

kphas phasorbnk kspeed*0.13, kindex, icnt, 2
kifo table kphas, giwave, 1

; Arbitrary parameter twiddling...

kamp pow 1 / (kindex + 1), 0.4

kamp = kamp * (0.3+0.35*(klfo+1))

; Write amps to table for adsynt.
tablew kamp, kindex, giamps

kindex = kindex + 1
; Do loop.
if (kindex < icnt) kgoto loop

asig adsynt 5000, 150, giwave, gifrgs, giamps, icnt
out asig

endin

/* adsynt.orc */

/* adsynt.sco */
; Play Instrument #1 for 2.5 seconds.

120

Chapter 15. Orchestra Opcodes and Operators

il1025

; Play Instrument #2 for 2.5 seconds.
i2325

e

/* adsynt.sco */

Credits

Author: Peter Neubicker
Munich, Germany

August, 1999

New in Csound version 3.58

aexprand

aexprand — Deprecated.

Description
Deprecated as of version 3.49. Use the exprand opcode instead.

aftouch

aftouch — Get the current after-touch value for this channel.

Description
Get the current after-touch value for this channel.

Syntax
kaft aftouch [imin] [, imax]

Initialization

imin (optional, default=0) -- minimum limit on values obtained.

imax (optional, default=127) -- maximum limit on values obtained.

121

Chapter 15. Orchestra Opcodes and Operators

Performance

Get the current after-touch value for this channel. Note that this access to pitch-bend data is independent of
the MIDI pitch, enabling the value here to be used for any arbitrary purpose.

Examples
Here is an example of the aftouch opcode. It uses the files aftouch.orc and aftouch.sco.

Example 15-1. Example of the aftouch opcode.

/* aftouch.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
k1l aftouch

printk2 k1
endin
/* aftouch.orc */

[* aftouch.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 12 seconds.
i10 12

e

/* aftouch.sco */

See Also

ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry
MIT - Mills

May 1997

agauss

agauss — Deprecated.

122

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the gauss opcode instead.

agogobel

agogobel — Deprecated.

Description
Deprecated as of version 3.52. Use the gogobel opcode instead.

alinrand

alinrand — Deprecated.

Description
Deprecated as of version 3.49. Use the linrand opcode instead.

alpass
alpass — Reverberates an input signal with a flat frequency response.
Description

Reverberates an input signal with a flat frequency response.

Syntax
ar alpass asig, krvt, ilpt [, iskip] [, insmps]

Initialization

ilpt -- loop time in seconds, which determines the “echo density” of the reverberation. This in turn
characterizes the “color” of the filter whose frequency response curve will contain ilpt * sr/2 peaks spaced
evenly between 0 and sr/2 (the Nyquist frequency). Loop time can be as large as available memory will
permit. The space required for an n second loop is 4n*sr bytes. The delay space is allocated and returned as in
delay.

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.
insmps (optional, default=0) -- delay amount, as a number of samples.

123

Chapter 15. Orchestra Opcodes and Operators

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

This filter reiterates the input with an echo density determined by loop time ilpt. The attenuation rate is
independent and is determined by krvt, the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Output will begin to appear immediately.

Examples

Here is an example of the alpass opcode. It uses the files alpass.orc and alpass.sco.

Example 15-1. Example of the alpass opcode.

/* alpass.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Initialize the audio mixer.
gamix init O

; Instrument #1.

instr 1
; Generate a source signal.
al oscili 30000, cpspch(p4), 1
; Output the direct sound.
out al

; Add the source signal to the audio mixer.
gamix = gamix + al
endin

; Instrument #99 (highest instr number executed last)

instr 99
krvt = 1.5
ilpt = 0.1

; Filter the mixed signal.
a99 alpass gamix, krvt, ilpt
; Output the result.

out a99

; Empty the mixer for the next pass.
gamix = 0

endin

[* alpass.orc */

/* alpass.sco */
; Table #1, a sine wave.
f10 128 10 1

; p4 = frequency (in a pitch-class)

; Play Instrument #1 for a tenth of a second, p4=7.00
i100.17.00

; Play Instrument #1 for a tenth of a second, p4=7.02
i110.17.02

; Play Instrument #1 for a tenth of a second, p4=7.04

124

Chapter 15. Orchestra Opcodes and Operators

il120.17.04
; Play Instrument #1 for a tenth of a second, p4=7.06
i 13 0.1 7.06

; Make sure the filter remains active.
i99 05

e

[* alpass.sco */

See Also

comb, reverb, valpass, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)
University of Texas at Austin

Austin, Texas USA

January 2002

ampdb

ampdb — Returns the amplitude equivalent of the decibel value x.

Description
Returns the amplitude equivalent of the decibel value x. Thus:

+ 60 dB =1000

» 66 dB =1995.262
« 72dB=3891.07

« 78dB =7943.279
« 84dB=15848.926
+ 90dB =31622.764

Syntax

ampdb(x) (no rate restriction)

125

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the ampdb opcode. It uses the files ampdb.orc and ampdb.sco.

Example 15-1. Example of the ampdb opcode.

/* ampdb.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

instr 1
idb = 90
iamp = ampdb(idb)
print iamp

endin

/* ampdb.orc */

[* ampdb.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

/* ampdb.sco */

Its output should include lines like:

instr 1: iamp = 31622.764

See Also
ampdbfs, db, dbamp, dbfsamp

ampdbfs

ampdbfs — Returns the amplitude equivalent of the decibel value x, which is relative to full scale amplitude.

Description

Returns the amplitude equivalent of the decibel value x, which is relative to full scale amplitude. Full scale is
assumed to be 16 bit. New is Csound version 4.10.

Syntax

ampdbfs(x) (no rate restriction)

126

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the ampdbfs opcode. It uses the files ampdbfs.orc and ampdbfs.sco.

Example 15-1. Example of the ampdbfs opcode.

/* ampdbfs.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

instr 1
idb = -1
iamp = ampdbfs(idb)
print iamp

endin

/* ampdbfs.orc */

[* ampdbfs.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

/* ampdbfs.sco */

Its output should include lines like:

instr 1: iamp = 29203.621

See Also
ampdb, dbamp, dbfsamp

ampmidi
ampmidi — Get the velocity of the current MIDI event.

Description
Get the velocity of the current MIDI event.

Syntax

iamp ampmidi iscal [, ifn]

127

Chapter 15. Orchestra Opcodes and Operators

Initialization
iscal -- i-time scaling factor

ifn (optional, default=0) -- function table number of a normalized translation table, by which the incoming
value is first interpreted. The default value is 0, denoting no translation.

Performance

Get the velocity of the current MIDI event, optionally pass it through a normalized translation table, and
return an amplitude value in the range 0 - iscal.

Examples

Here is an example of the ampmidi opcode. It uses the files ampmidi.orc and ampmidi.sco.

Example 15-1. Example of the ampmidi opcode.

/* ampmidi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Scale the amplitude between 0 and 1.
il ampmidi 1
print il
endin
/* ampmidi.orc */
/* ampmidi.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i10 12

e
/* ampmidi.sco */

See Also

aftouch, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry
MIT - Mills

May 1997

128

Chapter 15. Orchestra Opcodes and Operators

apcauchy

apcauchy — Deprecated.

Description
Deprecated as of version 3.49. Use the pcauchy opcode instead.

apoisson

apoisson — Deprecated.

Description

Deprecated as of version 3.49. Use the poisson opcode instead.

apow

apow — Deprecated.

Description

Deprecated as of version 3.48. Use the pow opcode instead.

areson

areson — A notch filter whose transfer functions are the complements of the reson opcode.

Description

A notch filter whose transfer functions are the complements of the reson opcode.

Syntax

ar areson asig, kcf, kbw [, iscl] [, iskip]

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white

129

Chapter 15. Orchestra Opcodes and Operators

noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

ar -- the output signal at audio rate.

asig -- the input signal at audio rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

areson is a filter whose transfer functions is the complement of reson. Thus areson is a notch filter whose
transfer functions represents the “filtered out” aspects of their complements. However, power scaling is not
normalized in areson but remains the true complement of the corresponding unit. Thus an audio signal,
filtered by parallel matching reson and areson units, would under addition simply reconstruct the original
spectrum.

This property is particularly useful for controlled mixing of different sources (see I[preson). Complex response
curves such as those with multiple peaks can be obtained by using a bank of suitable filters in series. (The
resultant response is the product of the component responses.) In such cases, the combined attenuation may
result in a serious loss of signal power, but this can be regained by the use of balance.

Examples

Here is an example of the areson opcode. It uses the files areson.orc and areson.sco.

Example 15-1. Example of the areson opcode.

/* areson.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1
; Instrument #1 - an unfiltered noise waveform.
instr 1

; Generate a white noise signal.

asig rand 20000

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; Generate a white noise signal.

asig rand 20000

; Filter it using the areson opcode.
kcf init 1000

kbw init 100

afilt areson asig, kcf, kbw

; Clip the filtered signal's amplitude to 85 dB.
al clip afilt, 2, ampdb(85)

130

Chapter 15. Orchestra Opcodes and Operators

out al
endin
/* areson.orc */

/* areson.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* areson.sco */

See Also

aresonk, atone, atonek, port, portk, reson, resonk, tone, tonek

aresonk

aresonk — A notch filter whose transfer functions are the complements of the reson opcode.

Description

A notch filter whose transfer functions are the complements of the reson opcode.

Syntax
kr aresonk ksig, kcf, kbw [, iscl] [, iskip]

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white
noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

131

Chapter 15. Orchestra Opcodes and Operators

aresonk is a filter whose transfer functions is the complement of reson. Thus aresonk is a notch filter whose
transfer functions represents the “filtered out” aspects of their complements. However, power scaling is not
normalized in aresonk but remains the true complement of the corresponding unit.

See Also
areson, atone, atonek, port, portk, reson, resonk, tone, tonek

atone

atone — A notch filter whose transfer functions are the complements of the tone opcode.

Description

A notch filter whose transfer functions are the complements of the tone opcode.

Syntax
ar atone asig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

ar -- the output signal at audio rate.

asig -- the input signal at audio rate.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

atone is a filter whose transfer functions is the complement of fone. atone is thus a form of high-pass filter
whose transfer functions represent the “filtered out” aspects of their complements. However, power scaling is
not normalized in atone but remains the true complement of the corresponding unit. Thus an audio signal,
filtered by parallel matching tone and atone units, would under addition simply reconstruct the original
spectrum.

This property is particularly useful for controlled mixing of different sources (see I[preson). Complex response
curves such as those with multiple peaks can be obtained by using a bank of suitable filters in series. (The
resultant response is the product of the component responses.) In such cases, the combined attenuation may
result in a serious loss of signal power, but this can be regained by the use of balance.

132

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the atone opcode. It uses the files atone.orc and atone.sco.

Example 15-1. Example of the atone opcode.

[* atone.orc */

; Initialize the global variables.
sr = 22050

kr = 2205

ksmps 10

nchnls 1

. Instrument #1 - an unfiltered noise waveform.
instr 1

; Generate a white noise signal.

asig rand 20000

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; Generate a white noise signal.

asig rand 20000

; Filter it using the atone opcode.
khp init 2000
afilt atone asig, khp

; Clip the filtered signal's amplitude to 85 dB.
al clip afilt, 2, ampdb(85)
out al

endin

[* atone.orc */

/* atone.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* atone.sco */

See Also

areson, aresonk, atonek, port, portk, reson, resonk, tone, tonek

atonek

atonek — A notch filter whose transfer functions are the complements of the tone opcode.

133

Chapter 15. Orchestra Opcodes and Operators

Description

A notch filter whose transfer functions are the complements of the tone opcode.

Syntax
kr atonek ksig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

atonek is a filter whose transfer functions is the complement of fonek. atonek is thus a form of high-pass filter
whose transfer functions represent the “filtered out” aspects of their complements. However, power scaling is
not normalized in atonek but remains the true complement of the corresponding unit.

See Also

areson, aresonk, atone, port, portk, reson, resonk, tone, tonek

atonex

atonex — Emulates a stack of filters using the atone opcode.

Description

atonex is equivalent to a filter consisting of more layers of atone with the same arguments, serially connected.
Using a stack of a larger number of filters allows a sharper cutoff. They are faster than using a larger number
instances in a Csound orchestra of the old opcodes, because only one initialization and k- cycle are needed at
time and the audio loop falls entirely inside the cache memory of processor.

Syntax
ar atonex asig, khp [, inumlayer] [, iskip]

Initialization

inumlayer (optional) -- number of elements in the filter stack. Default value is 4.

134

Chapter 15. Orchestra Opcodes and Operators

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance
asig -- input signal
khp -- the response curve’s half-power point. Half power is defined as peak power / root 2.

See Also

resonx, tonex

Credits

Author: Gabriel Maldonado (adapted by John ffitch)
Italy

New in Csound version 3.49

atrirand

atrirand — Deprecated.

Description
Deprecated as of version 3.49. Use the trirand opcode instead.

aunirand

aunirand — Deprecated.

Description
Deprecated as of version 3.49. Use the unirand opcode instead.

aweibull

aweibull — Deprecated.

135

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the weibull opcode instead.

babo

babo — A physical model reverberator.

Description

babo stands for ball-within-the-box. It is a physical model reverberator based on the paper by Davide
Rocchesso "The Ball within the Box: a sound-processing metaphor", Computer Music Journal, Vol 19, N.4,
pp-45-47, Winter 1995.

The resonator geometry can be defined, along with some response characteristics, the position of the listener
within the resonator, and the position of the sound source.

Syntax
al, a2 babo asig, ksrcx, ksrcy, ksrcz, irx, iry, irz [, idiff] [, ifno]

Initialization
irx, iry, irz -- the coordinates of the geometry of the resonator (length of the edges in meters)

idiff -- is the coefficient of diffusion at the walls, which regulates the amount of diffusion (0-1, where 0 = no
diffusion, 1 = maximum diffusion - default: 1)

ifno -- expert values function: a function number that holds all the additional parameters of the resonator.
This is typically a GEN2--type function used in non-rescaling mode. They are as follows:

 decay -- main decay of the resonator (default: 0.99)
« hydecay -- high frequency decay of the resonator (default: 0.1)

 rcvx, revy, revz -- the coordinates of the position of the receiver (the listener) (in meters; 0,0,0 is the
resonator center)

« rdistance -- the distance in meters between the two pickups (your ears, for example - default: 0.3)
« direct -- the attenuation of the direct signal (0-1, default: 0.5)
« early_diff -- the attenuation coefficient of the early reflections (0-1, default: 0.8)

Performance
asig -- the input signal

ksrcx, ksrcy, ksrcz -- the virtual coordinates of the source of sound (the input signal). These are allowed to
move at k-rate and provide all the necessary variations in terms of response of the resonator.

136

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is a simple example of the babo opcode. It uses the files babo.orc, babo.sco, and beats.wav.

Example 15-1. A simple example of the babo opcode.

[* babo.orc */

/* Written by Nicola Bernardini */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 2

; minimal babo instrument

instr 1

¢ = p4 ; x position of source
iy = p5 ; y position of source
iz = p6 ; z position of source
ixsize = p7 ; width of the resonator
iysize = p8 ; depth of the resonator
izsize = p9 ; height of the resonator

ainput soundin "beats.wav"

al,ar babo ainput*0.7, ix, iy, iz, ixsize, iysize, izsize

outs al,ar
endin
/* babo.orc */

[* babo.sco */
/* Written by Nicola Bernardini */
; simple babo usage:

pd : X position of source
p5 .y position of source
;p6 . z position of source
p7 : width of the resonator
;p8 . depth of the resonator
P9 : height of the resonator

i 1 0 106 4 3 14.39 11.86 10

VAVAYAVAVAVAVAN NANNNNNNNNNNNNN

+++++++++; source position

@

/* babo.sco */

I ++++++++++++++; optimal room dims according to
I Milner and Bernard JASA 85(2), 1989

Here is an advanced example of the babo opcode. It uses the files babo_expert.orc, babo_expert.sco, and

beats.wav.

137

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. An advanced example of the babo opcode.

/* babo_expert.orc */

/* Written by Nicola Bernardini */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

; full blown babo instrument with movement

instr 2

ixstart = p4 ; start x position of source (left-right)
ixend = p7 ; end x position of source
iystart = p5 ; start y position of source (front-back)
iyend = p8 ; end y position of source
izstart = p6 ; start z position of source (up-down)
izend = p9 ; end z position of source
ixsize = pl0 ; width of the resonator
iysize = pll ; depth of the resonator
izsize = pl2 ; height of the resonator
idiff = p13 ; diffusion coefficient
iexpert = pl4 ; power user values stored in this function
ainput soundin "beats.wav"
ksource_x line ixstart, p3, ixend
ksource_y line iystart, p3, iyend
ksource_z line izstart, p3, izend
al,ar babo ainput*0.7, ksource_x, ksource_y, ksource_z, ixsize, iysize, izsize, idiff, iexpert
outs al,ar
endin

/* babo_expert.orc */

/* babo_expert.sco */
[* Written by Nicola Bernardini */
; full blown instrument

pa . start x position of source (left-right)
p5 . end X position of source

;p6 . start y position of source (front-back)
p7 : end y position of source

;p8 . start z position of source (up-down)
P9 : end z position of source

;p10 : width of the resonator

pll : depth of the resonator

;p12 . height of the resonator

pl13 . diffusion coefficient

;pla . power user values stored in this function

; decay hidecay rx ry rz rdistance direct early_diff

fl 08 -2 0.95 0.95 0O 0 O 0.3 0.5 0.8 ; brighter

f2 08 -2 0.95 0.5 0 0 O 0.3 0.5 0.8 ; default (to be set as)

f3 08 -2 095 0.01 0O 0 O 0.3 0.5 0.8 ; darker

f4 08 -2 0.95 0.7 0O 0 O 0.3 0.1 0.4 ; to hear the effect of diffusion
f5 08 -2 09 0.5 0O 0 O 0.3 2.0 0.98 ; to hear the movement

f6 08 -2 0.99 0.1 0 0 O 0.3 0.5 0.8 ; default vals

. N

e gen. number: negative to avoid rescaling

i2010 6 4 3 6 4 3 1439 1186 10 1 6 ; defaults

2+ 4 6 4 3 6 4 3 1439 1186 10 1 1 ; hear brightness 1

138

Chapter 15. Orchestra Opcodes and Operators

2+ 4 6 4 3 -6 -4 3 1439 1186 10 1 2 ; hear brightness 2
2+ 4 6 4 3 -6 -4 3 1439 1186 10 1 3 ; hear brightness 3
2+ 3.6 .4.3-6-4.3 1439 1.186 1.0 0.0 4 ; hear diffusion 1

2+ 3.6 .4.3-6-4.3 1439 1186 1.0 1.0 4 ; hear diffusion 2

2+ 412 4 3 -12 -4 -3 2439 2186 20 1 5 ; hear movement

52 + 4 6 4 3 6 4 3 1439 11.86 10 1 1 ; hear brightness 1
2+ 4 6 4 3 -6 -4 3 1439 11.86 10 1 2 ; hear brightness 2
2+ 4 6 4 3 -6 -4 3 1439 11.86 10 1 3 ; hear brightness 3
2+ 3.6 .4.3-6-4.3 1439 1.186 1.0 0.0 4 ; hear diffusion 1

2+ 3.6 .4.3-6-4.3 1439 1186 1.0 1.0 4 ; hear diffusion 2

2+ 412 4 3 -12 -4 -3 2439 21.86 20 1 5 ; hear movement

. NANNNNNNNNNNNNNNNNNN NANNNNNNNNNNNNNNNN N N

; (HUTHIIRE IV 1 - expert values function

; (THTIUTIRT (e +-: diffusion _ _

; T e —— . optimal room dims according to Milner and Bernard JASA 85(2), 1989
; N

T e . source position start and end

e

/* babo_expert.sco */

Credits

Author: Paolo Filippi
Padova, Italy

1999

Nicola Bernardini
Rome, Italy

2000

New in Csound version 4.09

balance

balance — Adjust one audio signal according to the values of another.

Description

The rms power of asig can be interrogated, set, or adjusted to match that of a comparator signal.

Syntax
ar balance asig, acomp [, ihp] [, iskip]

139

Chapter 15. Orchestra Opcodes and Operators

Initialization
ihp (optional) -- half-power point (in Hz) of a special internal low-pass filter. The default value is 10.

iskip (optional, default=0) -- initial disposition of internal data space (see reson). The default value is 0.

Performance

asig -- input audio signal

acomp -- the comparator signal

balance outputs a version of asig, amplitude-modified so that its rms power is equal to that of a comparator
signal acomp. Thus a signal that has suffered loss of power (eg., in passing through a filter bank) can be

restored by matching it with, for instance, its own source. It should be noted that gain and balance provide
amplitude modification only - output signals are not altered in any other respect.

Examples
Here is an example of the balance opcode. It uses the files balance.orc and balance.sco.

Example 15-1. Example of the balance opcode.

/* balance.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Generate a band-limited pulse train.
asrc buzz 30000, 440, sr/440, 1

; Send the source signal through 2 filters.
al reson asrc, 1000, 100
a2 reson al, 3000, 500

; Balance the filtered signal with the source.
afin balance a2, asrc

out afin
endin
/* balance.orc */

/* balance.sco */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for two seconds.
i102

e

/* balance.sco */

140

Chapter 15. Orchestra Opcodes and Operators

See Also

gain, rms

bamboo

bamboo — Semi-physical model of a bamboo sound.

Description

bamboo is a semi-physical model of a bamboo sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax
ar bamboo kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization
idettack -- period of time over which all sound is stopped
inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 1.25.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.9999 + (idamp * 0.002)

The default damping _amount is 0.9999 which means that the default value of idamp is 0. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 0.05.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 2800.
ifreql (optional) -- the first resonant frequency. The default value is 2240.
ifreq2 (optional) -- the second resonant frequency. The default value is 3360.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

Examples
Here is an example of the bamboo opcode. It uses the files bamboo.orc and bamboo.sco.

Example 15-1. Example of the bamboo opcode.

/* bamboo.orc */

141

Chapter 15. Orchestra Opcodes and Operators

Sr 44100
kr 4410

ksmps = 10
nchnls = 1

instr 01 ;example of bamboo
al bamboo p4, 0.01

out al

endin
/* bamboo.orc */

/* bamboo.sco */
i1 0 1 20000

e
/* bamboo.sco */

See Also

dripwater, guiro, sleighbells, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)
Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

bbcutm

bbcutm — Generates breakbeat-style cut-ups of a mono audio stream.

Description

The BreakBeat Cutter automatically generates cut-ups of a source audio stream in the style of drum and
bass/jungle breakbeat manipulations. There are two versions, for mono (bbcutm) or stereo (bbcuts) sources.
Whilst originally based on breakbeat cutting, the opcode can be applied to any type of source audio.

The prototypical cut sequence favoured over one bar with eighth note subdivisions would be

3+3R+2

where we take a 3 unit block from the source’s start, repeat it, then 2 units from the 7th and 8th eighth notes of
the source.

We talk of rendering phrases (a sequence of cuts before reaching a new phrase at the beginning of a bar) and
units (as subdivision th notes).

142

Chapter 15. Orchestra Opcodes and Operators

The opcode comes most alive when multiple synchronised versions are used simultaneously.

Syntax

al bbcutm asource, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats [, istutterspeed] [, istutterchance] |,
ienvchoice]

Initialization

ibps -- Tempo to cut at, in beats per second.

isubdiv -- Subdivisions unit, for a bar. So 8 is eighth notes (of a 4/4 bar).

ibarlength -- How many beats per bar. Set to 4 for default 4/4 bar behaviour.

iphrasebars -- The output cuts are generated in phrases, each phrase is up to iphrasebars long

inumrepeats -- In normal use the algorithm would allow up to one additional repeat of a given cut at a time.
This parameter allows that to be changed. Value 1 is normal- up to one extra repeat. 0 would avoid repeating,
and you would always get back the original source except for enveloping and stuttering.

istutterspeed -- (optional, default=1) The stutter can be an integer multiple of the subdivision speed. For
instance, if subdiv is 8 (quavers) and stutterspeed is 2, then the stutter is in semiquavers (sixteenth notes=
subdiv 16). The default is 1.

istutterchance -- (optional, default=0) The tail of a phrase has this chance of becoming a single repeating one
unit cell stutter (0.0 to 1.0). The default is 0.

ienvchoice -- (optional, default=1) choose 1 for on (exponential envelope for cut grains) or 0 for off. Off will
cause clicking, but may give good noisy results, especially for percussive sources. The default is 1, on.

Performance

asource -- The audio signal to be cut up. This version runs in real-time without knowledge of future audio.

Examples

Example 15-1. First steps- mono and stereo versions

<CsoundSynthesizer >
<Cslnstruments >

sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

instr 1
asource diskin "break7.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!
; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; no enveloping
asig bbcutm asource, 2.6937, 8,4,4,1, 2,0.1,0
outs asig,asig

endin

instr 2 ;stereo version
asourcel,asource2 diskin "break7stereo.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!

143

Chapter 15. Orchestra Opcodes and Operators

; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; no enveloping

asigl,asig2 bbcuts asourcel, asource2, 2.6937, 8,4,4,1, 2,0.1,0

outs asigl,asig2
endin

</Cslnstruments >
<CsScore >

i1 0 10

i2 11 10

e

<ICsScore >
</CsoundSynthesizer >

Example 15-2. Multiple simultaneous synchronised breaks

<CsoundSynthesizer >
<Cslnstruments >

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
instr 1

ibps = 2.6937

iplaybackspeed = ibps/p5
asource diskin p4,iplaybackspeed,0,1

asig bbcutm asource, 2.6937, p6,4,4,p7, 2,011

out asig
endin

</Cslnstruments >
<CsScore >

; source bps cut repeats

il 0 10 "breakl.wav" 2.3 8 2 //2.3 is the source original tempo
il 0 10 "break2.wav" 2.4 8 3

il 0 10 "break3.wav" 2.5 16 4

e

<[/CsScore >

</CsoundSynthesizer >

Example 15-3. Cutting up any old audio- much more interesting noises than this should be possible!

<CsoundSynthesizer >
<Cslnstruments >

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

144

Chapter 15. Orchestra Opcodes and Operators

instr 1
asource oscil 20000,70,1
; ain,bps,subdiv,barlength,phrasebars,numrepeats,
;stutterspeed,stutterchance,envelopingon
asig bbcutm asource, 2, 32,1,1,2, 4,0.6,1
outs asig
endin

</Cslnstruments >
<CsScore >

f1 0 256 10 1

i1 0 10

e

</CsScore >
</CsoundSynthesizer >

Example 15-4. Constant stuttering- faked, not possible since can only stutter in last half bar could make
extra stuttering option parameter

<CsoundSynthesizer >
<CslInstruments >

Sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

asource diskin "break7.wav",1,0,1

:16th note cuts- but cut size 2 over half a beat.
:each half beat will eiather survive intact or be turned into
;the first sixteenth played twice in succession

asig bbcutm asource,2.6937,2,0.5,1,2, 2,1.0,0
outs asig
endin

</Cslnstruments >
<CsScore >

i1 0 30

e

</CsScore >
</CsoundSynthesizer >

See Also
bbcuts

145

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Nick Collins
London

August 2001

New in version 4.13

bbcuts
bbcuts — Generates breakbeat-style cut-ups of a stereo audio stream.
Description

The BreakBeat Cutter automatically generates cut-ups of a source audio stream in the style of drum and
bass/jungle breakbeat manipulations. There are two versions, for mono (bbcutm) or stereo (bbcuts) sources.
Whilst originally based on breakbeat cutting, the opcode can be applied to any type of source audio.

The prototypical cut sequence favoured over one bar with eighth note subdivisions would be

3+3R+2

where we take a 3 unit block from the source’s start, repeat it, then 2 units from the 7th and 8th eighth notes of
the source.

We talk of rendering phrases (a sequence of cuts before reaching a new phrase at the beginning of a bar) and
units (as subdivision th notes).

The opcode comes most alive when multiple synchronised versions are used simultaneously.

Syntax

al,a2 bbcuts asourcel, asource2, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats [, istutterspeed] [,
istutterchance] [, ienvchoice]

Initialization

ibps -- Tempo to cut at, in beats per second.

isubdiv -- Subdivisions unit, for a bar. So 8 is eighth notes (of a 4/4 bar).

ibarlength -- How many beats per bar. Set to 4 for default 4/4 bar behaviour.

iphrasebars -- The output cuts are generated in phrases, each phrase is up to iphrasebars long

inumrepeats -- In normal use the algorithm would allow up to one additional repeat of a given cut at a time.
This parameter allows that to be changed. Value 1 is normal- up to one extra repeat. 0 would avoid repeating,
and you would always get back the original source except for enveloping and stuttering.

istutterspeed -- (optional, default=1) The stutter can be an integer multiple of the subdivision speed. For
instance, if subdiv is 8 (quavers) and stutterspeed is 2, then the stutter is in semiquavers (sixteenth notes=
subdiv 16). The default is 1.

istutterchance -- (optional, default=0) The tail of a phrase has this chance of becoming a single repeating one
unit cell stutter (0.0 to 1.0). The default is 0.

146

Chapter 15. Orchestra Opcodes and Operators

ienvchoice -- (optional, default=1) choose 1 for on (exponential envelope for cut grains) or 0 for off. Off will
cause clicking, but may give good noisy results, especially for percussive sources. The default is 1, on.

Performance

asource -- The audio signal to be cut up. This version runs in real-time without knowledge of future audio.

Examples

Example 15-1. First steps- mono and stereo versions

<CsoundSynthesizer >
<Cslnstruments >

Sr = 44100

kr = 4410

ksmps = 10

nchnls = 2

instr 1
asource diskin "break7.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!
; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; ho enveloping
asig bbcutm asource, 2.6937, 8,4,4,1, 2,0.1,0
outs asig,asig

endin

instr 2 ;stereo version
asourcel,asource?2 diskin "break7stereo.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!

; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; no enveloping

asigl,asig2 bbcuts asourcel, asource2, 2.6937, 8,4,4,1, 2,0.1,0

outs asigl,asig2
endin

</Cslnstruments >
<CsScore >

i1 0 10

i2 11 10

e

</CsScore >
</CsoundSynthesizer >

147

Example 15-2. Multiple simultaneous synchronised breaks

<CsoundSynthesizer
<Cslnstruments >
sr =
kr

ksmps
nchnls =

instr 1
ibps = 2.6937

>

44100
4410
10
1

iplaybackspeed = ibps/p5
asource diskin p4,iplaybackspeed,0,1

asig bbcutm asource, 2.6937, p6,4,4,p7, 2,011

out asig
endin

</Cslnstruments >
<CsScore >

; source bps
il 0 10 "breakl.wav"
il 0 10 "break2.wav"
il 0 10 "break3.wav"
e

<ICsScore >
</CsoundSynthesizer

cut repeats

Chapter 15. Orchestra Opcodes and Operators

23 8 2 //2.3 is the source original tempo

248 3
2516 4
>

Example 15-3. Cutting up any old audio- much more interesting noises than this should be possible!

<CsoundSynthesizer
<Cslnstruments >
sr
kr
ksmps
nchnls =

instr 1

>

44100
4410
10
1

asource oscil 20000,70,1

; ain,bps,subdiv,barlength,phrasebars,numrepeats,
;Stutterspeed,stutterchance,envelopingon

asig bbcutm asource, 2, 32,1,1,2, 4,0.6,1

outs asig
endin

</Cslnstruments >
<CsScore >

fl1 0 256 10 1

i1 0 10

e

</CsScore >
</CsoundSynthesizer

>

148

Chapter 15. Orchestra Opcodes and Operators

Example 15-4. Constant stuttering- faked, not possible since can only stutter in last half bar could make
extra stuttering option parameter

<CsoundSynthesizer >
<Cslnstruments >

Sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

asource diskin "break7.wav",1,0,1

:16th note cuts- but cut size 2 over half a beat.
;each half beat will eiather survive intact or be turned into
;the first sixteenth played twice in succession

asig bbcutm asource,2.6937,2,0.5,1,2, 2,1.0,0
outs asig
endin

</Cslnstruments >
<CsScore >

i1 0 30

e

</CsScore >
</CsoundSynthesizer >

See Also
bbcutm

Credits

Author: Nick Collins
London

August 2001

New in version 4.13

betarand

betarand — Beta distribution random number generator (positive values only).

Description

Beta distribution random number generator (positive values only). This is an x-class noise generator.

149

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar betarand krange, kalpha, kbeta
ir betarand krange, kalpha, kbeta
kr betarand krange, kalpha, kbeta

Performance

krange -- range of the random numbers (0 - krange).

kalpha -- alpha value. If kalpha is smaller than one, smaller values favor values near 0.
kbeta -- beta value. If kbeta is smaller than one, smaller values favor values near krange.

If both kalpha and kbeta equal one we have uniform distribution. If both kalpha and kbeta are greater than
one we have a sort of Gaussian distribution. Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the betarand opcode. It uses the files betarand.orc and betarand.sco.

Example 15-1. Example of the betarand opcode.

/* betarand.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Generate a number between 0 and 1 with a
; uniform distribution.

; krange = 1
; kalpha = 1
; kbeta = 1

il betarand 1, 1, 1

print il
endin
/* betarand.orc */

/* betarand.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* betarand.sco */

150

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like:

instr 1: i1l = 24583.412

See Also

bexprnd, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

bexprnd

bexprnd — Exponential distribution random number generator.

Description

Exponential distribution random number generator. This is an x-class noise generator.

Syntax
ar bexprnd krange
ir bexprnd krange

kr bexprnd krange

Performance
krange -- the range of the random numbers (-krange to +krange)

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,

Massachusetts: MIT press, pp. 351 - 379.

151

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the bexprnd opcode. It uses the files bexprnd.orc and bexprnd.sco.

Example 15-1. Example of the bexprnd opcode.

/* bexprnd.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 44100

kr = 4410

ksmps = 1
1

= 10
nchnls =

; Instrument #1.

instr 1
; Generate a random number between -1 and 1.
; krange = 1

il bexprnd 1
print il
endin
[* bexprnd.orc */
/* bexprnd.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101
e
/* bexprnd.sco */

Its output should include lines like:

instr 1: i1 = 1.141

See Also

betarand, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

biquad

biguad — A sweepable general purpose biquadratic digital filter.

152

Chapter 15. Orchestra Opcodes and Operators

Description

A sweepable general purpose biquadratic digital filter.

Syntax
ar biquad asig, kb0, kb1, kb2, ka0, kal, ka2 [, iskip]

Initialization

iskip (optional, default=0) -- if non-zero, intialization will be skipped. Default value 0. (New in Csound
version 3.50)

Performance
asig -- input signal

biquad is a general purpose biquadratic digital filter of the form:

a0*y(n) + al*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2]

This filter has the following frequency response:

B(Z) b0 +bl*Z*! +b2*7Z?
H(Z) = <-- = ==zeeeeeeeeeeeeees
A(Z) a0+ al*Z' +a2*Z?

This type of filter is often encountered in digital signal processing literature. It allows six user-defined k-rate
coefficients.

Examples

Here is an example of the biquad opcode. It uses the files biquad.orc and biquad.sco.

Example 15-1. Example of the biquad opcode.

/* biquad.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 2

. Instrument #1.

instr 1
;. Get the values from the score.
idur = p3
iamp = p4
icps = cpspch(pb)
kfco = p6
krez = p7

153

Chapter 15. Orchestra Opcodes and Operators

; Calculate the biquadratic filter's coefficients

kfcon = 2*3.14159265*kfco/sr

kalpha = 1-2*krez*cos(kfcon)*cos(kfcon)+krez*krez*cos(2*kfcon)
kbeta = krez*krez*sin(2*kfcon)-2*krez*cos(kfcon)*sin(kfcon)
kgama = 1+cos(kfcon)

kml = kalpha*kgama+kbeta*sin(kfcon)

km2 = kalpha*kgama-kbeta*sin(kfcon)

kden = sgrt(km1*km1l+km2*km2)

kb0 = 1.5*kalpha*kalpha+tkbeta*kbeta)/kden
kbl = kb0

kb2 = 0

ka0 = 1

kal = -2*krez*cos(kfcon)

ka2 = krez*krez

; Generate an input signal.
axn vco 1, icps, 1

; Filter the input signal.
ayn biquad axn, kb0, kbl, kb2, kaO, kal, ka2
outs ayn*iamp/2, ayn*iamp/2

endin

/* biquad.orc */

/* biquad.sco */
; Table #1, a sine wave.
f10 16384 10 1

; Sta Dur Amp Pitch Fco Rez
il 0.0 1.0 20000 6.00 1000 .8
il 1.0 1.0 20000 6.03 2000 .95
e

/* biquad.sco */

See Also

biquada, mooguvcf, rezzy

Credits
Author: Hans Mikelson
October 1998

New in Csound version 3.49

biquada

biguada — A sweepable general purpose biquadratic digital filter with a-rate parameters.

154

Chapter 15. Orchestra Opcodes and Operators

Description
A sweepable general purpose biquadratic digital filter.

Syntax
ar biquada asig, ab0, abl, ab2, aa0, aal, aa2 |, iskip]

Initialization

iskip (optional, default=0) -- if non-zero, intialization will be skipped. Default value 0. (New in Csound
version 3.50)

Performance
asig -- input signal

biquada is a general purpose biquadratic digital filter of the form:

a0*y(n) + al*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2]

This filter has the following frequency response:
B(Z) b0 +Db1*Z"' +b2*Z?

H(Z) = <-- = ==zeeeeeeeeeeeeees
A(Z) a0+ al*Z' +a2*Z?

This type of filter is often encountered in digital signal processing literature. It allows six user-defined a-rate
coefficients.

See Also
biquad

Credits
Author: Hans Mikelson
October 1998

New in Csound version 3.49

birnd

birnd — Returns a random number in a bi-polar range.

155

Chapter 15. Orchestra Opcodes and Operators

Description

Returns a random number in a bi-polar range.

Syntax
birnd(x) (init- or control-rate only)

Where the argument within the parentheses may be an expression. These value converters sample a global
random sequence, but do not reference seed. The result can be a term in a further expression.

Performance

Returns a random number in the bipolar range -x to x. rnd and birnd obtain values from a global
pseudo-random number generator, then scale them into the requested range. The single global generator will
thus distribute its sequence to these units throughout the performance, in whatever order the requests arrive.

Examples
Here is an example of the birnd opcode. It uses the files birnd.orc and birnd.sco.

Example 15-1. Example of the birnd opcode.

/* birnd.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
; Generate a random number from -1 to 1.
il = birnd(1)
print il

endin

/* birnd.orc */

/* birnd.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

; Play Instrument #1 for one second.
i111

e

/* birnd.sco */

Its output should include lines like:

0.947
-0.721

instr 1: il
instr 1: il

156

See Also

rnd

Credits

Author: Barry L. Vercoe

MIT

Cambridge, Massachussetts
1997

butbp

butbp — Same as the butterbp opcode.

Description
Same as the butterbp opcode.

Syntax
ar butbp asig, kfreq, kband [, iskip]

butbr

butbr — Same as the butterbr opcode.

Description

Same as the butterbr opcode.

Syntax
ar butbr asig, kfreq, kband [, iskip]

buthp

buthp — Same as the butterhp opcode.

Chapter 15. Orchestra Opcodes and Operators

157

Chapter 15. Orchestra Opcodes and Operators

Description
Same as the butterhp opcode.

Syntax
ar buthp asig, kfreq |, iskip]

butlp

butlp — Same as the butterlp opcode.

Description

Same as the butterlp opcode.

Syntax
ar butlp asig, kfreq [, iskip]

butterbp

butterbp — A band-pass Butterworth filter.

Description

Implementation of a second-order band-pass Butterworth filter. This opcode can also be written as butbp.

Syntax
ar butterbp asig, kfreq, kband [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.
kband -- Bandwidth of the bandpass and bandreject filters.

158

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the butterbp opcode. It uses the files butterbp.orc and butterbp.sco.

Example 15-1. Example of the butterbp opcode.

/* butterbp.orc */

; Initialize the global variables.
sr = 22050

kr = 2205

ksmps 10

nchnls 1

. Instrument #1 - an unfiltered noise waveform.

instr 1
; White noise signal
asig rand 22050

out asig
endin

. Instrument #2 - a filtered noise waveform.

instr 2
; White noise signal
asig rand 22050

; Filter it, passing only 1950 to 2050 Hz.

abp butterbp asig, 2000, 100

out abp
endin
[* butterbp.orc */

/* butterbp.sco */

; Play Instrument #1 for two seconds.
il102

; Play Instrument #2 for two seconds.
i222

e

[* butterbp.sco */

See Also
butterbr, butterhp, butterlp

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

159

Chapter 15. Orchestra Opcodes and Operators

butterbr

butterbor — A band-reject Butterworth filter.

Description
Implementation of a second-order band-reject Butterworth filter. This opcode can also be written as butbr.

Syntax
ar butterbr asig, kfreq, kband [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.
kband -- Bandwidth of the bandpass and bandreject filters.

Examples

Here is an example of the butterbr opcode. It uses the files butterbr.orc and butterbr.sco.

Example 15-1. Example of the butterbr opcode.

/* butterbr.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1
. Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal

asig rand 22050

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Filter it, cutting 2000 to 6000 Hz.
abr butterbr asig, 4000, 2000

160

Chapter 15. Orchestra Opcodes and Operators

out abr
endin
/* butterbr.orc */

/* butterbr.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* butterbr.sco */

See Also
butterbp, butterhp, butterlp

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

butterhp

butterhp — A high-pass Butterworth filter.

Description

Implementation of second-order high-pass Butterworth filter. This opcode can also be written as buthp.

Syntax
ar butterhp asig, kfreq [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.

161

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the butterhp opcode. It uses the files butterhp.orc and butterhp.sco.

Example 15-1. Example of the butterhp opcode.

[* butterhp.orc */

; Initialize the global variables.
sr = 22050

kr = 2205

ksmps 10

nchnls 1

. Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal

asig rand 22050

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Filter it, passing frequencies above 250 Hz.
ahp butterhp asig, 250

out ahp
endin
[* butterhp.orc */

/* butterhp.sco */

; Play Instrument #1 for two seconds.
il102

; Play Instrument #2 for two seconds.
i222

e

[* butterhp.sco */

See Also
butterbp, butterbr, butterlp

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

162

Chapter 15. Orchestra Opcodes and Operators

butterlp

butterlp — A low-pass Butterworth filter.

Description
Implementation of a second-order low-pass Butterworth filter. This opcode can also be written as butip.

Syntax
ar butterlp asig, kfreq [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.
kfreq -- Cutoff or center frequency for each of the filters.

Examples
Here is an example of the butterlp opcode. It uses the files butterlp.orc and butterlp.sco.

Example 15-1. Example of the butterlp opcode.

/* butterlp.orc */

; Initialize the global variables.
sr = 22050

kr = 2205

ksmps = 10

nchnls = 1

. Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal

asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Filter it, cutting frequencies above 1 KHz.
alp butterlp asig, 1000

out alp
endin

163

Chapter 15. Orchestra Opcodes and Operators

/* butterlp.orc */

/* butterlp.sco */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* butterlp.sco */

See Also
butterbp, butterbr, butterhp

Credits
Author: Paris Smaragdis
MIT, Cambridge

1995

button
button — Sense on-screen controls.
Description

Sense on-screen controls. Requires Winsound or TCL/TK.

Syntax

kr button knum

Performance

kr -- value of the button control. If the button has been pushed since the last k-period, then return 1,
otherwise return 0.

knum -- the number of the button. If it does not exist, it is made on-screen at initialization.

See Also
checkbox

164

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.
Bath, UK

September, 2000

New in Csound version 4.08

buzz

buzz — Output is a set of harmonically related sine partials.

Description

Output is a set of harmonically related sine partials.

Syntax
ar buzz xamp, xcps, knh, ifn [, iphs]

Initialization

ifn -- table number of a stored function containing a sine wave. A large table of at least 8192 points is
recommended.

iphs (optional, default=0) -- initial phase of the fundamental frequency, expressed as a fraction of a cycle (0 to
1). A negative value will cause phase initialization to be skipped. The default value is zero

Performance
xamp -- amplitude
xcps -- frequency in cycles per second

The buzz units generate an additive set of harmonically related cosine partials of fundamental frequency
xcps, and whose amplitudes are scaled so their summation peak equals xamp. The selection and strength of
partials is determined by the following control parameters:

knh -- total number of harmonics requested. New in Csound version 3.57, knh defaults to one. If knh is
negative, the absolute value is used.

buzz and gbuzz are useful as complex sound sources in subtractive synthesis. buzz is a special case of the
more general gbuzz in which klh = kr=1; it thus produces a set of knh equal-strength harmonic partials,
beginning with the fundamental. (This is a band-limited pulse train; if the partials extend to the Nyquist, i.e.
knh = int (sr / 2 / fundamental freq.), the result is a real pulse train of amplitude xamp.)

Although both knh and klh may be varied during performance, their internal values are necessarily integer
and may cause “pops” due to discontinuities in the output; kr, however, can be varied during performance to
good effect. Both buzz and gbuzz can be amplitude- and/or frequency-modulated by either control or audio
signals.

N.B. These two units have their analogs in GEN11, in which the same set of cosines can be stored in a
function table for sampling by an oscillator. Although computationally more efficient, the stored pulse train
has a fixed spectral content, not a time-varying one as above.

165

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the buzz opcode. It uses the files buzz.orc and buzz.sco.

Example 15-1. Example of the buzz opcode.

[* buzz.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
kamp = 20000
kcps = 440
knh = 3
ifn =1

al buzz kamp, kcps, knh, ifn
out al

endin

/* buzz.orc */

/* buzz.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one second.
i101

e

/* buzz.sco */

See Also
ghuzz

cabasa

cabasa — Semi-physical model of a cabasa sound.

Description

cabasa is a semi-physical model of a cabasa sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

166

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar cabasa iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.
idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 512.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping amount is 0.997 which means that the default value of idamp is -0.5. The maximum
damping amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.
Examples
Here is an example of the cabasa opcode. It uses the files cabasa.orc and cabasa.sco.

Example 15-1. Example of the cabasa opcode.

/* cabasa.orc */

;orchestra ---------------
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
instr 01 ;an example of a cabasa
al cabasa p4, 0.01
out al
endin

/* cabasa.orc */

/* cabasa.sco */
;SCOre =—-=-=-mmmmmmmeme

il 0 1 26000

e
/* cabasa.sco */

See Also

crunch, sandpaper, sekere, stix

167

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)
Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

cauchy

cauchy — Cauchy distribution random number generator.

Description
Cauchy distribution random number generator. This is an x-class noise generator.

Syntax

ar cauchy kalpha
ir cauchy kalpha
kr cauchy kalpha

Performance

kalpha -- controls the spread from zero (big kalpha = big spread). Outputs both positive and negative
numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the cauchy opcode. It uses the files cauchy.orc and cauchy.sco.

Example 15-1. Example of the cauchy opcode.

/* cauchy.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

168

Chapter 15. Orchestra Opcodes and Operators

; Instrument #1.

instr 1
; Generate a random number, spread from 10.
; kalpha = 10
il cauchy 10
print il
endin

[* cauchy.orc */

/* cauchy.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cauchy.sco */

Its output should include lines like:

instr 1: i1l = -0.106

See Also

betarand, bexprnd, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

cent

cent — Calculates a factor to raise/lower a frequency by a given amount of cents.

Description

Calculates a factor to raise/lower a frequency by a given amount of cents.

Syntax
cent(x)

This function works at a-rate, i-rate, and k-rate.

169

Chapter 15. Orchestra Opcodes and Operators

Initialization

X -- a value expressed in cents.

Performance

The value returned by the cent function is a factor. You can multiply a frequency by this factor to raise/lower
it by the given amount of cents.

Examples

Here is an example of the cent opcode. It uses the files cent.orc and cent.sco.

Example 15-1. Example of the cent opcode.

[* cent.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; The root note is A above middle-C (440 Hz)
iroot = 440

; Raise the root note by 300 cents to C.
icents = 300

; Calculate the new note.
ifactor = cent(icents)
inew = iroot * ifactor

; Print out of all of the values.
print iroot
print ifactor
print inew
endin
/* cent.orc */

/* cent.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cent.sco */

Its output should include lines like:
instr 1: iroot = 440.000

instr 1. ifactor = 1.189
instr 1:. inew = 523.229

170

Chapter 15. Orchestra Opcodes and Operators

See Also

db, octave, semitone

Credits
Author: Kevin Conder

New in version 4.16

cggoto

cggoto — Conditionally transfer control on every pass.

Description
Transfer control to label on every pass. (Combination of cigoto and ckgoto)

Syntax
cggoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, I=) (and =for convenience, see also under Conditional Values).

Examples

Here is an example of the cggoto opcode. It uses the files cggoto.orc and cggoto.sco.

Example 15-1. Example of the cggoto opcode.

[* cggoto.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.
instr 1
i1 =1

; If i1 is equal to one, play a high note.
; Otherwise play a low note.
cggoto (i1 == 1), highnote

lownote:
al oscil 10000, 220, 1
goto playit

highnote:
al oscil 10000, 440, 1
goto playit

171

Chapter 15. Orchestra Opcodes and Operators

playit:

out al
endin
/* cggoto.orc */

/* cggoto.sco */

/* Written by Kevin Conder */

; Table #1: a simple sine wave.
f10 32768 10 1

; Play Instrument #1 for one second.
i101

e

/* cggoto.sco */

See Also
cigoto, ckgoto, cngoto, if, igoto, kgoto, tigoto, timout

Credits
Added a note by Jim Aikin.

chanctrl

chanctrl — Get the current value of a MIDI channel controller.

Description

Get the current value of a controller and optionally map it onto specified range.

Syntax
ival chanctrl ichnl, ictlno [, ilow] [, ihigh]

kval chanctrl ichnl, ictlno [, ilow] [, ihigh]

Initialization

ichnl -- the MIDI channel (1-16).

ictlno -- the MIDI controller number (0-127).
ilow, ihigh -- low and high ranges for mapping

172

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Mike Berry

Mills College

May, 1997

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

checkbox

checkbox — Sense on-screen controls.

Description
Sense on-screen controls. Requires Winsound or TCL/TK.

Syntax

kr checkbox knum

Performance
kr -- value of the checkbox control. If the checkbox is set (pushed) then return 1, if not, return 0.

knum -- the number of the checkbox. If it does not exist, it is made on-screen at initialization.

Examples

Here is a simple example of the checkbox opcode. It uses the files checkbox.orc and checkbox.sco.

Example 15-1. Simple example of the checkbox opcode.

/* checkbox.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

instr 1
; Get the value from the checkbox.
k1 checkbox 1

; If the checkbox is selected then k2=440, otherwise k2=880.
k2 = (k1 == 0 ? 440 : 880)

al oscil 10000, k2, 1
out al

endin

/* checkbox.orc */

/* checkbox.sco */
[* Written by Kevin Conder */

173

; Just generate a nice, ordinary sine wave.

f10 32768 10 1

; Play Instrument #1 for ten seconds.
i10 10

e

/* checkbox.sco */

See Also

button

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.
Bath, UK

September, 2000

New in Csound version 4.08

cigoto
cigoto — Conditionally transfer control during the i-time pass.
Description

Chapter 15. Orchestra Opcodes and Operators

During the i-time pass only, unconditionally transfer control to the statement labeled by label.

Syntax
cigoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, /=) (and =for convenience, see also under Conditional Values).

Examples

Here is an example of the cigoto opcode. It uses the files cigoto.orc and cigoto.sco.

Example 15-1. Example of the cigoto opcode.

/* cigoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.

sr = 44100
kr = 4410
ksmps = 10

174

nchnls = 1

; Instrument #1.

instr 1
; Get the value of the 4th p-field from the score.
iparam = p4

; If iparam is 1 then play the high note.
; If not then play the low note.
cigoto (iparam ==1), highnote

igoto lownote

highnote:
ifreq = 880
goto playit

lownote:
ifreq = 440
goto playit

playit:
; Print the values of iparam and ifreq.
print iparam
print ifreq

al oscil 10000, ifreq, 1
out al

endin

[* cigoto.orc */

[* cigoto.sco */

[* Written by Kevin Conder */

; Table #1: a simple sine wave.
f10 32768 10 1

; p4: 1 = high note, anything else = low note

; Play Instrument #1 for one second, a low note.
i1010

; Play a Instrument #1 for one second, a high note.
i1111

e

/* cigoto.sco */

Its output should include lines like:

instr 1. iparam = 0.000
instr 1: ifreq = 440.000
instr 1: iparam = 1.000
instr 1: ifreq = 880.000
See Also

cggoto, ckgoto, cngoto, goto, if, kgoto, rigoto, tigoto, timout

Chapter 15. Orchestra Opcodes and Operators

175

Chapter 15. Orchestra Opcodes and Operators

Credits
Added a note by Jim Aikin.

ckgoto

ckgoto — Conditionally transfer control during the p-time passes.

Description

During the p-time passes only, unconditionally transfer control to the statement labeled by label.

Syntax
ckgoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, =) (and =for convenience, see also under Conditional Values).

Examples

Here is an example of the ckgoto opcode. It uses the files ckgoto.orc and ckgoto.sco.

Example 15-1. Example of the ckgoto opcode.

/* ckgoto.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
; Change kval linearly from 0 to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

; If kval is greater than or equal to 1 then play the high note.
; If not then play the low note.
ckgoto (kval >= 1), highnote

kgoto lownote

highnote:
kfreq = 880
goto playit
lownote:
kfreq = 440
goto playit
playit:

; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\n", 1, kval, kfreq

176

Chapter 15. Orchestra Opcodes and Operators

al oscil 10000, kfreq, 1
out al

endin

/* ckgoto.orc */

[* ckgoto.sco */

/* Written by Kevin Conder */
; Table: a simple sine wave.
f10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* ckgoto.sco */

Its output should include lines like:

kval = 0.000000, kfreq = 440.000000
kval = 0.999732, kfreq = 440.000000
kval = 1.999639, kfreq = 880.000000
See Also

cggoto, cigoto, cngoto, goto, if, igoto, tigoto, timout

Credits
Added a note by Jim Aikin.

clear

clear — Zeroes alist of audio signals.

Description

clear zeroes a list of audio signals.

Syntax
clear avarl [, avar2] [, avar3] [...]

Performance
avarl, avar2, avar3, ... -- signals to be zeroed

vincr (variable increment) and clear are intended to be used together. vincr stores the result of the sum of two
audio variables into the first variable itself (which is intended to be used as an accumulator in polyphony).
The accumulator variable can be used for output signal by means of fout opcode. After the disk writing
operation, the accumulator variable should be set to zero by means of clear opcode (or it will explode).

177

Chapter 15. Orchestra Opcodes and Operators

See Also

vincr

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

clfilt
clfilt — Implements low-pass and high-pass filters of different styles.
Description

Implements the classical standard analog filter types: low-pass and high-pass. They are implemented with
the four classical kinds of filters: Butterworth, Chebyshev Type I, Chebyshev Type I, and Elliptical. The
number of poles may be any even number from 2 to 80.

Syntax
ar clfilt asig, kfreq, itype, inpol [, ikind] [, ipbr] [, isba] [, iskip]

Initialization
itype -- 0 for low-pass, 1 for high-pass.
inpol -- The number of poles in the filter. It must be an even number from 2 to 80.

ikind (optional) -- 0 for Butterworth, 1 for Chebyshev Type I, 2 for Chebyshev Type II, 3 for Elliptical. Defaults
to 0 (Butterworth)

ipbr (optional) -- The pass-band ripple in dB. Must be greater than 0. It is ignored by Butterworth and
Chebyshev Type II. The default is 1 dB.

isba (optional) -- The stop-band attenuation in dB. Must be less than 0. It is ignored by Butterworth and
Chebyshev Type I. The default is -60 dB.

iskip (optional) -- 0 initializes all filter internal states to 0. 1 skips initialization. The default is 0.

Performance
asig -- The input audio signal.

kfreq -- The corner frequency for low-pass or high-pass.

178

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the clfilt opcode as a low-pass filter. It uses the files clfilt_lowpass.orc and

clfilt_lowpass.sco.

Example 15-1. Example of the clfilt opcode as a low-pass filter.

[* clfilt_lowpass.orc */
; Initialize the global variables.
sr = 22050

kr = 2205
ksmps = 10
nchnls = 1

. Instrument #1 - an unfiltered noise waveform.

instr 1
; White noise signal
asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.

instr 2
; White noise signal
asig rand 22050

; Lowpass filter signal asig with a
; 10-pole Butterworth at 500 Hz.
al clfilt asig, 500, 0, 10

out al
endin
[* clfilt_lowpass.orc */

/* clfilt_lowpass.sco */

; Play Instrument #1 for two seconds.

i102

; Play Instrument #2 for two seconds.

i222
e
/* clfilt_lowpass.sco */

Here is an example of the clfilt opcode as a high-pass filter. It uses the files clfilt_highpass.orc and

clfilt_highpass.sco.

Example 15-2. Example of the clfilt opcode as a high-pass filter.

[* clfilt_highpass.orc */
; Initialize the global variables.
sr = 22050

kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.

instr 1
; White noise signal
asig rand 22050

179

out asig
endin

. Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal

asig rand 22050

; Highpass filter signal asig with a 6-pole Chebyshev
; Type | at 20 Hz with 3 dB of passband ripple.
al clfilt asig, 20, 1, 6, 1, 3

out al
endin
[* clfilt_highpass.orc */
[* clfilt_highpass.sco */
; Play Instrument #1 for two seconds.
il102
; Play Instrument #2 for two seconds.
i222

e
[* clfilt_highpass.sco */

Credits
Author: Erik Spjut
New in version 4.20

clip
clip — Clips a signal to a predefined limit.

Description

Chapter 15. Orchestra Opcodes and Operators

Clips an a-rate signal to a predefined limit, in a “soft” manner, using one of three methods.

Syntax

ar clip asig, imeth, ilimit [, iarg]

Initialization

imeth -- selects the clipping method. The default is 0. The methods are:

« 0=Bram de Jong method (default)
« 1=sine clipping

180

Chapter 15. Orchestra Opcodes and Operators

+ 2 =tanh clipping

ilimit -- limiting value

iarg (optional, default=0.5) -- when imeth = 0, indicates the point at which clipping starts, in the range 0 - 1.
Not used when imeth =1 or imeth = 2. Default is 0.5.

Performance
asig -- a-rate input signal
The Bram de Jong method (imeth = 0) applies the algorithm:

| x| > a: f(x) = sin(x) * (a+(xa)(@+(xa))@- a) % |x| > 1. f(x) =sin(x) * (a+l)/2

This method requires that asig be normalized to 1.

The second method (imeth = 1) is the sine clip:

x| < limit : f(x) = limit * sin(#*x/(2* lmit)) f(x) = lmit * sin(x)

The third method (imeth = 0) is the tanh clip:

x| < limit : f(x) = lmit * tanh(xlimit)tanh(1) f(x) = lmit * sin(x)

Note: Method 1 appears to be non-functional at release of Csound version 4.07.

Examples

Here is an example of the clip opcode. It uses the files clip.orc and clip.sco.

Example 15-1. Example of the clip opcode.

[* clip.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1
; Generate a noisy waveform.
arnd rand 44100
; Clip the noisy waveform’s amplitude to 20,000
al clip arnd, 2, 20000

181

out al
endin
/* clip.orc */

[* clip.sco */

; Play Instrument #1 for one second.

i101
e
/* clip.sco */

Credits

Author: John ffitch

University of Bath, Codemist Ltd.
Bath, UK

August, 2000

New in Csound version 4.07

clock

clock — Deprecated.

Description

Deprecated. Use the rtclock opcode instead.

clockoff

clockoff =~ — Stops one of a number of internal clocks.

Description

Stops one of a number of internal clocks.

Syntax

clockoff inum

Chapter 15. Orchestra Opcodes and Operators

182

Chapter 15. Orchestra Opcodes and Operators

Initialization

inum -- the number of a clock. There are 32 clocks numbered 0 through 31. All other values are mapped to
clock number 32.

Performance

Between a clockon and a clockoff opcode, the CPU time used is accumulated in the clock. The precision is
machine dependent but is the millisecond range on UNIX and Windows systems. The readclock opcode reads
the current value of a clock at initialization time.

Examples
Here is an example of the clockoff opcode. It uses the files readclock.orc and readclock.sco.

Example 15-1. Example of the clockoff opcode.

/* readclock.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps 1

nchnls 1

; Instrument #1.

instr 1
. Start clock #1.
clockon 1

; Do something that keeps Csound busy.
al oscili 10000, 440, 1

out al
; Stop clock #1.
clockoff 1

; Print the time accumulated in clock #1.
il readclock 1
print il

endin

/* readclock.orc */

/* readclock.sco */
[* Written by Kevin Conder */

; Initialize the function tables.
; Table 1. an ordinary sine wave.
f10 32768 10 1

; Play Instrument #1 for one second starting at 0:00.
i101

; Play Instrument #1 for one second starting at 0:01.
il111

; Play Instrument #1 for one second starting at 0:02.
i121

e

[* readclock.sco */

Its output should include lines like this:

instr 1: i1 = 0.000

183

Chapter 15. Orchestra Opcodes and Operators

instr 1: i1l = 90.000
instr 1: i1l = 180.000
See Also

clockon, readclock

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

July, 1999

New in Csound version 3.56

clockon

clockon — Starts one of a number of internal clocks.

Description

Starts one of a number of internal clocks.

Syntax

clockon inum

Initialization

inum -- the number of a clock. There are 32 clocks numbered 0 through 31. All other values are mapped to
clock number 32.

Performance

Between a clockon and a clockoff opcode, the CPU time used is accumulated in the clock. The precision is
machine dependent but is the millisecond range on UNIX and Windows systems. The readclock opcode reads
the current value of a clock at initialization time.

184

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the clockon opcode. It uses the files readclock.orc and readclock.sco.

Example 15-1. Example of the clockon opcode.

[* readclock.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps 1

nchnls 1

; Instrument #1.

instr 1
; Start clock #1.
clockon 1

; Do something that keeps Csound busy.

al oscili 10000, 440, 1

out al
; Stop clock #1.
clockoff 1

; Print the time accumulated in clock #1.

il readclock 1
print i1

endin

/* readclock.orc */

[* readclock.sco */
/* Written by Kevin Conder */

; Initialize the function tables.
; Table 1: an ordinary sine wave.
f10 32768 10 1

; Play Instrument #1 for one second starting at 0:00.

i101

; Play Instrument #1 for one second starting at 0:01.

i111

; Play Instrument #1 for one second starting at 0:02.

i121
e
/* readclock.sco */

Its output should include lines like this:

instr 1: i1 = 0.000
instr 1: i1l = 90.000
instr 1: i1 = 180.000
See Also

clockoff, readclock

185

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

July, 1999

New in Csound version 3.56

cngoto

cngoto — Transfers control on every pass when a condition is not true.

Description

Transfers control on every pass when the condition is not true.

Syntax
cngoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, /=) (and = for convenience, see also under Conditional Values).

Examples
Here is an example of the cngoto opcode. It uses the files cngoto.orc and cngoto.sco.

Example 15-1. Example of the cngoto opcode.

[* cngoto.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
; Change kval linearly from O to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

; If kval *is not* greater than or equal to 1 then play
; the high note. Otherwise, play the low note.
cngoto (kval >= 1), highnote

kgoto lownote

highnote:
kfreq = 880
goto playit

lownote:

186

Chapter 15. Orchestra Opcodes and Operators

kfreq = 440
goto playit
playit:

; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\n", 1, kval, kfreq

al oscil 10000, kfreq, 1
out al

endin

/* cngoto.orc */

/* cngoto.sco */

/* Written by Kevin Conder */
; Table: a simple sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* cngoto.sco */

Its output should include lines like:

kval = 0.000000, kfreq = 880.000000
kval = 0.999732, kfreq = 880.000000
kval = 1.999639, kfreq = 440.000000
See Also

cggoto, cigoto, ckgoto, goto, if, igoto, tigoto, timout

Credits

New in version 4.21

comb

comb — Reverberates an input signal with a “colored” frequency response.

Description
Reverberates an input signal with a “colored” frequency response.

Syntax
ar comb asig, krvt, ilpt [, iskip] [, insmps]

187

Chapter 15. Orchestra Opcodes and Operators

Initialization

ilpt -- loop time in seconds, which determines the “echo density” of the reverberation. This in turn
characterizes the “color” of the comb filter whose frequency response curve will contain ilpt * sr/2 peaks
spaced evenly between 0 and sr/2 (the Nyquist frequency). Loop time can be as large as available memory
will permit. The space required for an n second loop is 4n*sr bytes. Delay space is allocated and returned as
in delay.

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

insmps (optional, default=0) -- delay amount, as a number of samples.

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

This filter reiterates input with an echo density determined by loop time ilpt. The attenuation rate is
independent and is determined by krvt, the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Output from a comb filter will appear only after
ilpt seconds.

Examples

Here is an example of the comb opcode. It uses the files comb.orc and comb.sco.

Example 15-1. Example of the comb opcode.

[* comb.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Initialize the audio mixer.
gamix init O

; Instrument #1.

instr 1
; Generate a source signal.
al oscili 30000, cpspch(p4), 1
; Output the direct sound.
out al

; Add the source signal to the audio mixer.
gamix = gamix + al
endin

; Instrument #99 (highest instr number executed last)

instr 99
krvt = 1.5
ilpt = 0.1

; Comb-filter the mixed signal.
a99 comb gamix, krvt, ilpt

; Output the result.

out a99

; Empty the mixer for the next pass.

188

gamix = 0

endin

/*
/*

f

/*

comb.orc */

comb.sco */
Table #1, a sine wave.
10128 10 1

p4 = frequency (in a pitch-class)

Play Instrument #1 for a tenth of a second, p4=7.00
10 0.1 7.00

Play Instrument #1 for a tenth of a second, p4=7.02
11 0.1 7.02

Play Instrument #1 for a tenth of a second, p4=7.04
1201704

Play Instrument #1 for a tenth of a second, p4=7.06
1301 7.06

Make sure the comb-filter remains active.
99 0 5

comb.sco */

See Also

alpass, reverb, valpass, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)

University of Texas at Austin
Austin, Texas USA
January 2002

control

control — Configurable slider controls for realtime user input.

Description

Chapter 15. Orchestra Opcodes and Operators

Configurable slider controls for realtime user input. Requires Winsound or TCL/TK. control reads a slider’s
value.

Syntax

kr control knum

189

Chapter 15. Orchestra Opcodes and Operators

Performance
knum -- number of the slider to be read.

Calling control will create a new slider on the screen. There is no theoretical limit to the number of sliders.
Windows and TCL/TK use only integers for slider values, so the values may need rescaling. GUIs usually pass
values at a fairly slow rate, so it may be advisable to pass the output of control through port.

Examples
Here is an example of the control opcode. It uses the files setctrl.orc and setctrl.sco.

Example 15-1. Example of the control opcode.

/* setctrl.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
; Display the label "Volume" on Slider #1.
setctrl 1, "Volume", 4
; Set Slider #1's initial value to 20.
setctrl 1, 20, 1

; Capture and display the values for Slider #1.
k1l control 1
printk2 k1

; Play a simple oscillator.
; Use the values from Slider #1 for amplitude.
kamp = k1 * 128
al oscil kamp, 440, 1
out al
endin
/* setctrl.orc */

/* setsctrl.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for thirty seconds.
i10 30

e

* setsctrl.sco */

Its output should include lines like this:

il 38.00000
il 40.00000
il 43.00000

190

Chapter 15. Orchestra Opcodes and Operators

See Also

setctrl

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.
Bath, UK

May, 2000

New in Csound version 4.06

convle
convle — Same as the convolve opcode.
Description

Same as the convolve opcode.

Syntax
arl [, ar2] [, ar3] [, ar4] convle ain, ifilcod [, ichannel]

convolve

convolve — Convolves a signal and an impulse response.

Description

Output is the convolution of signal ain and the impulse response contained in ifilcod. If more than one
output signal is supplied, each will be convolved with the same impulse response. Note that it is considerably
more efficient to use one instance of the operator when processing a mono input to create stereo, or quad,
outputs.

Note: this opcode can also be written as convle.

Syntax

arl [, ar2] [, ar3] [, ar4] convolve ain, ifilcod [, ichannel]

191

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifilcod -- integer or character-string denoting an impulse response data file. An integer denotes the suffix of a
file convolve.m; a character string (in double quotes) gives a filename, optionally a full pathname. If nota
fullpath, the file is sought first in the current directory, then in the one given by the environment variable
SADIR (if defined). The data file contains the Fourier transform of an impulse response. Memory usage
depends on the size of the data file, which is read and held entirely in memory during computation, but
which is shared by multiple calls.

ichannel (optional) -- which channel to use from the impulse response data file.

Performance
ain -- input audio signal.

convolve implements Fast Convolution. The output of this operator is delayed with respect to the input. The
following formulas should be used to calculate the delay:

For (1/kr) <= IRdur:
Delay = ceil(IRdur * kr) / kr
For (1/kr) IRdur:
Delay = IRdur * ceil(1/(kr*IRdur))
Where:
kr = Csound control rate
IRdur = duration, in seconds, of impulse response
ceil(n) = smallest integer not smaller than n

One should be careful to also take into account the initial delay, if any, of the impulse response. For example,
if an impulse response is created from a recording, the soundfile may not have the initial delay included.
Thus, one should either ensure that the soundfile has the correct amount of zero padding at the start, or,
preferably, compensate for this delay in the orchestra. (the latter method is more efficient). To compensate
for the delay in the orchestra, subtract the initial delay from the result calculated using the above formula(s),
when calculating the required delay to introduce into the 'dry’ audio path.

For typical applications, such as reverb, the delay will be in the order of 0.5 to 1.5 seconds, or even longer. This
renders the current implementation unsuitable for real time applications. It could conceivably be used for
real time filtering however, if the number of taps is small enough.

The author intends to create a higher-level operator at some stage, that would mix the wet & dry signals,
using the correct amount of delay automatically.

Examples

Create frequency domain impulse response file using the cvanal utility:

csound -Ucvanal 11_44.wav 11_44.cv

Determine duration of impulse response. For high accuracy, determine the number of sample frames in the
impulse response soundfile, and then compute the duration with:

duration = (sample frames)/(sample rate of soundfile)

192

Chapter 15. Orchestra Opcodes and Operators

This is due to the fact that the sndinfo utility only reports the duration to the nearest 10ms. If you have a
utility that reports the duration to the required accuracy, then you can simply use the reported value directly.

sndinfo 11_44.wav

length = 60822 samples, sample rate = 44100

Duration = 60822/44100 = 1.379s.

Determine initial delay, if any, of impulse response. If the impulse response has not had the initial delay
removed, then you can skip this step. If it has been removed, then the only way you will know the initial delay
is if the information has been provided separately. For this example, let’s assume that the initial delay is 60ms.
(0.06s)

Determine the required delay to apply to the dry signal, to align it with the convolved signal:

If kr = 441:
1/kr = 0.0023, which is <= IRdur (1.379s), so:
Delayl = ceil(IRdur * kr) / kr
= ceil(608.14) / 441
=609/441
=1.38s

Accounting for the initial delay:
Delay2 =0.06s
Total delay = delayl - delay2
=1.38-0.06
=1.32s

Create .orc file, e.g.:

; Simple demonstration of CONVOLVE operator, to apply reverb.
sr = 44100
kr = 441
ksmps = 100
nchnls = 2
instr 1
imix = 0.22 ; Wet/dry mix. Vary as desired.
; NB: 'Small' reverbs often require a much higher
; percentage of wet signal to sound interesting. 'Large’
; reverbs seem require less. Experiment! The wet/dry mix is
; very important - a small change can make a large difference.
ivol = 0.9 ; Overall volume level of reverb. May need to adjust
; when wet/dry mix is changed, to avoid clipping.

idel = 1.32 ; Required delay to align dry audio with output of convolve.

; This can be automatically calculated within the orc file,

; if desired.
adry soundin "anechoic.wav" ; input (dry) audio
awetl,awet?2 convolve adry,"l1_44.cv" ; stereo convolved (wet) audio
adrydel delay (1-imix)*adry,idel ; Delay dry signal, to align it with

; convolved signal. Apply level
; adjustment here too.
outs ivol*(adrydel+imix*awetl),ivol*(adrydel+imix*awet2)
; Mix wet & dry signals, and output

193

Chapter 15. Orchestra Opcodes and Operators

endin
Credits
Author: Greg Sullivan
1996
COs

cos — Performs a cosine function.

Description

Returns the cosine of x (x in radians).

Syntax

cos(x) (no rate restriction)

Examples
Here is an example of the cos opcode. It uses the files cos.orc and cos.sco.

Example 15-1. Example of the cos opcode.

/* cos.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1

irad = 25

i1 = cos(irad)

print il
endin
/* cos.orc */

/* cos.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cos.sco */

194

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like this:

instr 1: i1l = 0.991

See Also

cosh, cosinv, sin, sinh, sininv, tan, tanh, taninv

cosh

cosh — Performs a hyperbolic cosine function.

Description
Returns the hyperbolic cosine of x (x in radians).

Syntax

cosh(x) (no rate restriction)

Examples

Here is an example of the cosh opcode. It uses the files cosh.orc and cosh.sco.

Example 15-1. Example of the cosh opcode.

/* cosh.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.
instr 1

irad = 1

il = cosh(irad)

print i1
endin
/* cosh.orc */

/* cosh.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cosh.sco */

195

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like this:

instr 1: i1l = 1.543

See Also

cos, cosinv, sin, sinh, sininv, tan, tanh, taninv

cosinv
cosinv — Performs a arccosine function.
Description

Returns the arccosine of x (x in radians).

Syntax

cosinv(x) (no rate restriction)

Examples

Here is an example of the cosinv opcode. It uses the files cosinv.orc and cosinv.sco.

Example 15-1. Example of the cosinv opcode.

/* cosinv.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.
instr 1

irad = 0.5

i1 = cosinv(irad)

print i1
endin
/* cosinv.orc */

/* cosinv.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cosinv.sco */

196

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like this:

instr 1: i1 = 1.047

See Also

cos, cosh, sin, sinh, sininv, tan, tanh, taninv

cps2pch
cps2pch — Converts a pitch-class value into cycles-per-second for equal divisions of the octave.

Description

Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of the octave.

Syntax
icps cps2pch ipch, iequal

Initialization

ipch -- Input number of the form 8ve.pc, indicating an ’octave’ and which note in the octave.
iequal -- if positive, the number of equal intervals into which the 'octave’ is divided. Must be less than or
equal to 100. If negative, is the number of a table of frequency multipliers.

Note:

1. The following are essentially the same

ia = cpspch(8.02)
ib cps2pch 8.02, 12
ic cpsxpch 8.02, 12, 2, 1.02197503906

2. These are opcodes not functions

3. Negative values of ipch are allowed.

197

Chapter 15. Orchestra Opcodes and Operators

Examples
Here is an example of the cps2pch opcode. It uses the files cps2pch.orc and cps2pch.sco.

Example 15-1. Example of the cps2pch opcode.

[* cps2pch.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Use a normal twelve-tone scale.
ipch = 8.02
iequal = 12

icps cps2pch ipch, iequal

print icps
endin
[* cps2pch.orc */

/* cps2pch.sco */

; Play Instrument #1 for one second.
i101

e

/* cps2pch.sco */

Its output should include lines like this:

instr 1. icps = 293.666

Here is an example of the cps2pch opcode using a table of frequency multipliers. It uses the files
cps2pch_ftable.orc and cps2pch_ftable.sco.

Example 15-2. Example of the cps2pch opcode using a table of frequency multipliers.

/* cps2pch_ftable.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
. Instrument #1.
instr 1

ipch = 8.02

; Use Table #1, a table of frequency multipliers.
icps cps2pch ipch, -1

print icps
endin
[* cps2pch_ftable.orc */

[* cps2pch_ftable.sco */

198

; Table #1: a table of frequency multipliers.
; Creates a 10-note scale of unequal divisions.
f1016 -211112 131416 17 1.8 19

; Play Instrument #1 for one second.
i101

e

[* cps2pch_ftable.sco */

Its output should include lines like this:

instr 1: icps = 313.951

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the cps2pch opcode using a 19ET scale. It uses the files cps2pch_19et.orc and

cps2pch_19et.sco.

Example 15-3. Example of the cps2pch opcode using a 19ET scale.

/* cps2pch_19et.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
; Use 19ET scale.
ipch = 8.02
iequal = 19

icps cps2pch ipch, iequal
print icps
endin
/* cps2pch_19et.orc */
/* cps2pch_19et.sco */
; Play Instrument #1 for one second.
i101
e
/* cps2pch_19et.sco */

Its output should include lines like this:

instr 1: icps = 281.429

See Also
cpspch, cpsxpch

199

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

1997

Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

cpsmidi

cpsmidi — Get the note number of the current MIDI event, expressed in cycles-per-second.

Description

Get the note number of the current MIDI event, expressed in cycles-per-second.

Syntax
icps cpsmidi

Performance

Get the note number of the current MIDI event, expressed in cycles-per-second units, for local processing.

Examples

Here is an example of the cpsmidi opcode. It uses the files cpsmidi.orc and cpsmidi.sco.

Example 15-1. Example of the cpsmidi opcode.

/* cpsmidi.orc */
[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
. Instrument #1.
instr 1

i1 cpsmidi

print i1
endin
/* cpsmidi.orc */

[* cpsmidi.sco */

/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.

200

Chapter 15. Orchestra Opcodes and Operators

il10 12
e
/* cpsmidi.sco */

See Also

aftouch, ampmidi, cpsmidib, cpstmid, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib,
veloc

Credits

Author: Barry L. Vercoe - Mike Berry
MIT - Mills

May 1997

cpsmidib

cpsmidib — Get the note number of the current MIDI event and modify it by the current pitch-bend value,
express it in cycles-per-second.

Description

Get the note number of the current MIDI event and modify it by the current pitch-bend value, express it in
cycles-per-second.

Syntax
icps cpsmidib [irange]

kcps cpsmidib [irange]

Initialization

irange (optional) -- the pitch bend range in semitones.

Performance

Get the note number of the current MIDI event, modify it by the current pitch-bend value, and express the
result in cycles-per-second units. Available as an i-time value or as a continuous k-rate value.

201

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the cpsmidib opcode. It uses the files cpsmidib.orc and cpsmidib.sco.

Example 15-1. Example of the cpsmidib opcode.

/* cpsmidib.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 44100

kr = 4410

ksmps = 1
1

= 10
nchnls =

; Instrument #1.
instr 1
i1 cpsmidib
print il
endin
[* cpsmidib.orc */
[* cpsmidib.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
il1012

e
/* cpsmidib.sco */

See Also

aftouch, ampmidi, cpsmidi, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry
MIT - Mills

May 1997

cpsoct

cpsoct — Converts an octave-point-decimal value to cycles-per-second.

Description
Converts an octave-point-decimal value to cycles-per-second.

202

Chapter 15. Orchestra Opcodes and Operators

Syntax
cpsoct (oct) (no rate restriction)

where the argument within the parentheses may be a further expression.

Performance
These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

Table 15-1. Pitch and Frequency Values

Name Abbreviation
octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct, the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which kI varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples
Here is an example of the cpsoct opcode. It uses the files cpsoct.orc and cpsoct.sco.

Example 15-1. Example of the cpsoct opcode.

[* cpsoct.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.

203

Chapter 15. Orchestra Opcodes and Operators

instr 1
; Convert an octave-point-decimal value into a
; cycles-per-second value.
ioct = 8.75
icps = cpsoct(ioct)

print icps

endin
[* cpsoct.orc */

/* cpsoct.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cpsoct.sco */

Its output should include lines like this:

instr 1. icps = 440.000

See Also
cpspch, octeps, octpch, pchoct

cpspch
cpspch — Converts a pitch-class value to cycles-per-second.

Description

Converts a pitch-class value to cycles-per-second.

Syntax
cpspch (pch) (init- or control-rate args only)

where the argument within the parentheses may be a further expression.

Performance

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

204

Chapter 15. Orchestra Opcodes and Operators

Name Abbreviation
Table 15-1. Pitch and Frequency Values

Name Abbreviation
octave point pitch-class (8ve.pc) pch
octave point decimal oct
cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct, the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which kI varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples

Here is an example of the cpspch opcode. It uses the files cpspch.orc and cpspch.sco.

Example 15-1. Example of the cpspch opcode.

[* cpspch.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.
instr 1
; Convert a pitch-class value into a
; cycles-per-second value.
ipch = 8.09
icps = cpspch(ipch)

print icps
endin
[* cpspch.orc */

/* cpspch.sco */

205

Chapter 15. Orchestra Opcodes and Operators

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* cpspch.sco */

Its output should include lines like this:

instr 1. icps = 440.000

See Also
cps2pch, cpsoct, cpsxpch, octeps, octpch, pchoct

cpstmid

cpstmid — Get a MIDI note number (allows customized micro-tuning scales).

Description

This unit is similar to cpsmidi, but allows fully customized micro-tuning scales.

Syntax

icps cpstmid ifn

Initialization

ifn -- function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

Performance
Init-rate only

cpsmid requires five parameters, the first, ifn, is the function table number of the tuning ratios, and the other
parameters must be stored in the function table itself. The function table ifin should be generated by GENO2,
with normalization inhibited. The first four values stored in this function are:

1. numgrades -- the number of grades of the micro-tuning scale

2. interval -- the frequency range covered before repeating the grade ratios, for example 2 for one octave,
1.5 for a fifth etc.

3. basefreq -- the base frequency of the scale in Hz
4. basekeymidi -- the MIDI note number to which basefreq is assigned unmodified

206

Chapter 15. Orchestra Opcodes and Operators

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12 note scale
with the base frequency of 261 Hz assigned to the key number 60, the corresponding f-statement in the score
to generate the table should be:

; numgrades interval basefreq basekeymidi tuning ratios (equal temp)
flo64-2 12 2 261 60 1 1.059463094359 1.122462048309 1.189207115003 ..etc...

Another example with a 24 note scale with a base frequency of 440 assigned to the key number 48, and a
repetition interval of 1.5:

; numgrades interval basefreq basekeymidi tuning-ratios (equal temp)
fl064-2 24 1.5 440 48 1 1.01 1.02 1.03 ..etc...

Examples

Here is an example of the cpstmid opcode. It uses the files cpstmid.orc and cpstmid.sco.

Example 15-1. Example of the cpstmid opcode.

[* cpstmid.orc */

[* Written by Kevin Conder */

; Initialize the global variables.
= 44100

kr = 4410

ksmps = 10

nchnls =

; Table #1, a normal 12-tone equal temperament scale.

; numgrades = 12 (twelve tones)

; interval = 2 (one octave)

; basefreq = 261.659 (Middle C)

basekeymidi = 60 (Middle C)

gltemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \
1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

. Instrument #1.
instr 1
; Use Table #1.
ifn = 1
i1 cpstmid ifn

print il
endin
[* cpstmid.orc */

[* cpstmid.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 12 seconds.
i10 12

e

/* cpstmid.sco */

207

Chapter 15. Orchestra Opcodes and Operators

See Also
cpsmidi, GEN02

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

cpstun
cpstun — Returns micro-tuning values at k-rate.
Description

Returns micro-tuning values at k-rate.

Syntax
kcps cpstun ktrig, kindex, kfn

Performance

kcps -- Return value in cycles per second.

ktrig -- A trigger signal used to trigger the evaluation.
kindex -- An integer number denoting an index of scale.

kfn -- Function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

These opcodes are similar to cpstmid, but work without necessity of MIDI.

cpstun works at k-rate. It allows fully customized micro-tuning scales. It requires a function table number
containing the tuning ratios, and some other parameters stored in the function table itself.

kindex arguments should be filled with integer numbers expressing the grade of given scale to be converted
in cps. In cpstun, a new value is evaluated only when ktrig contains a non-zero value. The function table kfn
should be generated by GEN02 and the first four values stored in this function are parameters that express:

« numgrades -- The number of grades of the micro-tuning scale.

- interval -- The frequency range covered before repeating the grade ratios, for example 2 for one octave, 1.5
for a fifth etcetera.

» basefreq -- The base frequency of the scale in cycles per second.

« basekey -- The integer index of the scale to which to assign basefreq unmodified.

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12-grade
scale with the base-frequency of 261 cps assigned to the key-number 60, the corresponding f-statement in the
score to generate the table should be:

208

Chapter 15. Orchestra Opcodes and Operators

; numgrades basefreq tuning-ratios (eq.temp)
; interval basekey
fl 064 -2 12 2 261 60 1 1.059463 1.12246 1.18920 ..etc...

Another example with a 24-grade scale with a base frequency of 440 assigned to the key-number 48, and a
repetition interval of 1.5:

numgrades basefreq tuning-ratios
interval basekey
fl1 0 64 -2 24 1.5 440 48 1 1.01 1.02 1.03 ..etc...

Examples

Here is an example of the cpstun opcode. It uses the files cpstun.orc and cpstun.sco.

Example 15-1. Example of the cpstun opcode.

[* cpstun.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Table #1, a normal 12-tone equal temperament scale.

; numgrades = 12 (twelve tones)

; interval = 2 (one octave)

; basefreq = 261.659 (Middle C)

; basekeymidi = 60 (Middle C)

gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \
1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

; Instrument #1.
instr 1
; Set the trigger.
ktrig init 1
; Use Table #1.
kfn init 1

; If the base key (note #60) is C, then 9 notes
; above it (note #60 + 9 = note #69) should be A.
kindex init 69

k1l cpstun ktrig, kindex, kfn
printk2 k1

endin

[* cpstun.orc */

/* cpstun.sco */

[* Written by Kevin Conder */
; Play Instrument #1 for one second.

209

Chapter 15. Orchestra Opcodes and Operators

i101
e
/* cpstun.sco */

Its output should include lines like this:

il 440.11044

See Also
cpstmid, cpstuni, GEN0O2

cpstuni

cpstuni — Returns micro-tuning values at init-rate.

Description

Returns micro-tuning values at init-rate.

Syntax
icps cpstuni index, ifn

Initialization
icps -- Return value in cycles per second.
index -- An integer number denoting an index of scale.

ifn -- Function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

Performance
These opcodes are similar to cpstmid, but work without necessity of MIDI.

cpstuni works at init-rate. It allows fully customized micro-tuning scales. It requires a function table number
containing the tuning ratios, and some other parameters stored in the function table itself.

The index argument should be filled with integer numbers expressing the grade of given scale to be converted
in cps. The function table ifn should be generated by GEN02 and the first four values stored in this function
are parameters that express:

« numgrades -- The number of grades of the micro-tuning scale.

« interval -- The frequency range covered before repeating the grade ratios, for example 2 for one octave, 1.5
for a fifth etcetera.

« basefreq -- The base frequency of the scale in cycles per second.

210

Chapter 15. Orchestra Opcodes and Operators

« basekey -- The integer index of the scale to which to assign basefreq unmodified.

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12-grade
scale with the base-frequency of 261 cps assigned to the key-number 60, the corresponding f-statement in the
score to generate the table should be:

; numgrades basefreq tuning-ratios (eq.temp)
; interval basekey
fi 064 -2 12 2 261 60 1 1.059463 1.12246 1.18920 ..etc...

Another example with a 24-grade scale with a base frequency of 440 assigned to the key-number 48, and a
repetition interval of 1.5:

numgrades basefreq tuning-ratios
interval basekey
fl 0 64 -2 24 15 440 48 1 1.01 1.02 1.03 ..etc...

Examples

Here is an example of the cpstuni opcode. It uses the files cpstuni.orc and cpstuni.sco.

Example 15-1. Example of the cpstuni opcode.

/* cpstuni.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Table #1, a normal 12-tone equal temperament scale.

; numgrades = 12 (twelve tones)

; interval = 2 (one octave)

; basefreq = 261.659 (Middle C)

; basekeymidi = 60 (Middle C)

gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \
1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

. Instrument #1.
instr 1
; Use Table #1.
ifn = 1

; If the base key (note #60) is C, then 9 notes
; above it (note #60 + 9 = note #69) should be A.
index = 69
i1 cpstuni index, ifn
print il
endin
[* cpstuni.orc */

211

Chapter 15. Orchestra Opcodes and Operators

/* cpstuni.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

[* cpstuni.sco */

Its output should include lines like this:

instr 1. i1l = 440.110

See Also
cpstmid, cpstun, GEN0O2

cpsxpch
cpsxpch — Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of any interval.

Description

Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of any interval. There is a
restriction of no more than 100 equal divisions.

Syntax

icps cpsxpch ipch, iequal, irepeat, ibase

Initialization
ipch -- Input number of the form 8ve.pc, indicating an 'octave’ and which note in the octave.

iequal -- if positive, the number of equal intervals into which the 'octave’ is divided. Must be less than or
equal to 100. If negative, is the number of a table of frequency multipliers.

irepeat -- Number indicating the interval which is the 'octave.’ The integer 2 corresponds to octave divisions,
3 to a twelfth, 4 is two octaves, and so on. This need not be an integer, but must be positive.

ibase -- The frequency which corresponds to pitch 0.0
Note:
1. The following are essentially the same
ia = cpspch(8.02)

ib cps2pch 8.02, 12
ic cpsxpch 8.02, 12, 2, 1.02197503906

2. These are opcodes not functions

212

Chapter 15. Orchestra Opcodes and Operators

3. Negative values of ipch are allowed, but not negative irepeat, iequal or ibase.

Examples

Here is an example of the cpsxpch opcode. It uses the files cpsxpch.orc and cpsxpch.sco.

Example 15-1. Example of the cpsxpch opcode.

[* cpsxpch.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls 1

; Instrument #1.
instr 1
; Use a normal twelve-tone scale.
ipch = 8.02
iequal = 12
irepeat = 2
ibase = 1.02197503906

icps cpsxpch ipch, iequal, irepeat, ibase

print icps
endin
/* cpsxpch.orc */

/* cpsxpch.sco */

; Play Instrument #1 for one second.
i101

e

/* cpsxpch.sco */

Its output should include lines like this:

instr 1: icps = 293.666

Here is an example of the cpsxpch opcode using a 10.5 ET scale. It uses the files cpsxpch_105et.orc and

cpsxpch_105et.sco.

Example 15-2. Example of the cpsxpch opcode using a 10.5 ET scale.

[* cpsxpch_105et.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
; Use a 10.5ET scale.

213

Chapter 15. Orchestra Opcodes and Operators

ipch = 4.02
iequal = 21
irepeat = 4

ibase = 16.35160062496
icps cpsxpch ipch, iequal, irepeat, ibase

print icps
endin
/* cpsxpch_105et.orc */

/* cpsxpch_105et.sco */
; Play Instrument #1 for one second.
i101

e
/* cpsxpch_105et.sco */

Its output should include lines like this:

instr 1. icps = 4776.824

Here is an example of the cpsxpch opcode using a Pierce scale centered on middle A. It uses the files
cpsxpch_pierce.orc and cpsxpch_pierce.sco.

Example 15-3. Example of the cpsxpch opcode using a Pierce scale centered on middle A.

[* cpsxpch_pierce.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Use a Pierce scale centered on middle A.
ipch = 2.02
iequal = 12
irepeat = 3
ibase = 261.62561

icps cpsxpch ipch, iequal, irepeat, ibase
print icps

endin

[* cpsxpch_pierce.orc */

[* cpsxpch_pierce.sco */

; Play Instrument #1 for one second.

i101

e

[* cpsxpch_pierce.sco */

Its output should include lines like this:

instr 1. icps = 2827.762

214

Chapter 15. Orchestra Opcodes and Operators

See Also
cpspch, cps2pch

Credits

Author: John ffitch

University of Bath/Codemist Ltd.
Bath, UK

1997

Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

cpuprc

cpuprc — Control allocation of cpu resources on a per-instrument basis, to optimize realtime output.

Description

Control allocation of cpu resources on a per-instrument basis, to optimize realtime output.

Syntax

cpuprc insnum, ipercent

Initialization
insnum -- instrument number
ipercent -- percent of cpu processing-time to assign. Can also be expressed as a fractional value.

Performance

cpupre sets the cpu processing-time percent usage of an instrument, in order to avoid buffer underrun in
realtime performances, enabling a sort of polyphony theshold. The user must set ipercent value for each
instrument to be activated in realtime. Assuming that the total theoretical processing time of the cpu of the
computer is 100%, this percent value can only be defined empirically, because there are too many factors that
contribute to limiting realtime polyphony in different computers.

For example, if ipercent is set to 5% for instrument 1, the maximum number of voices that can be allocated in
realtime, is 20 (5% * 20 = 100%). If the user attempts to play a further note while the 20 previous notes are still
playing, Csound inhibits the allocation of that note and will display the following warning message:

can't allocate last note because it exceeds 100% of cpu time

215

Chapter 15. Orchestra Opcodes and Operators

In order to avoid audio buffer underruns, it is suggested to set the maximum number of voices slightly lower
than the real processing power of the computer. Sometimes an instrument can require more processing time
than normal. If, for example, the instrument contains an oscillator which reads a table that doesn't fit in
cache memory, it will be slower than normal. In addition, any program running concurrently in multitasking,
can subtract processing power to varying degrees.

At the start, all instruments are set to a default value of ipercent = 0.0% (i.e. zero processing time or rather
infinite cpu processing-speed). This setting is OK for deferred-time sessions.

All instances of cpuprc must be defined in the header section, not in the instrument body.

Examples

Here is an example of the cpuprc opcode. It uses the files cpuprc.orc and cpupre.sco.

Example 15-1. Example of the cpuprc opcode.

[* cpuprc.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Limit Instrument #1 to 5% of the CPU processing time.
cpuprc 1, 5

; Instrument #1

instr 1
al oscil 10000, 440, 1
out al

endin

/* cpuprc.orc */

[* cpuprc.sco */

/* Written by Kevin Conder */

; Just generate a nice, ordinary sine wave.
f10 32768 10 1

; Play Instrument #1 for one second.
i101

e

/* cpuprc.sco */

See Also

maxalloc, prealloc

216

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado
Italy

July, 1999

New in Csound version 3.57

Ccross2

cross2 — Cross synthesis using FFT’s.

Description
This is an implementation of cross synthesis using FFT’s.

Syntax

ar cross2 ainl, ain2, isize, ioverlap, iwin, kbias

Initialization

isize -- This is the size of the FFT to be performed. The larger the size the better the frequency response but a
sloppy time response.

ioverlap -- This is the overlap factor of the FFT’s, must be a power of two. The best settings are 2 and 4. A big
overlap takes a long time to compile.

iwin -- This is the ftable that contains the window to be used in the analysis.

Performance
ainl -- The stimulus sound. Must have high frequencies for best results.
ain2 -- The modulating sound. Must have a moving frequency response (like speech) for best results.

kbias -- The amount of cross synthesis. 1 is the normal, 0 is no cross synthesis.

Examples
al oscil 10000, 1, 1
a2 rand 10000
a3 Ccross2 a2, al, 2048, 4, 2, 1
out a3

If ftable one is a speech sound, this will result in speaking white noise.
ftable 2 must be a window function (GENZ20).

217

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Paris Smaragdis
MIT, Cambridge

1997

crunch

crunch — Semi-physical model of a crunch sound.

Description

crunch is a semi-physical model of a crunch sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar crunch iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.
idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 7.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping amount is 0.99806 which means that the default value of idamp is 0.03. The maximum
damping _amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.
Examples
Here is an example of the crunch opcode. It uses the files crunch.orc and crunch.sco.

Example 15-1. Example of the crunch opcode.

/* crunch.orc */

;orchestra ---------------
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

218

instr 01 ;an example of a crunch
al crunch p4, 0.01

out al

endin

/* crunch.orc */

/* crunch.sco */
1SCOI@ =m-=mmmmmmmmmmmeeee

i1 0 1 26000

e
/* crunch.sco */

See Also

cabasa, sandpaper, sekere, stix

Credits

Chapter 15. Orchestra Opcodes and Operators

Author: Perry Cook, part of the PhOLIES (Physically-Oriented Library of Imitated Environmental Sounds)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

ctri14
ctrll4 — Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.
Description

Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.

Syntax
idest ctrl14 ichan, ictlnol, ictlno2, imin, imax [, ifn]
kdest ctrl14 ichan, ictlnol, ictlno2, kmin, kmax [, ifn]

Initialization
idest -- output signal
ichan -- MIDI channel number (1-16)

ictinlo -- most-significant byte controller number (0-127)

219

Chapter 15. Orchestra Opcodes and Operators

ictlno2 -- least-significant byte controller number (0-127)
imin -- user-defined minimum floating-point value of output
imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output
kmax -- user-defined maximum floating-point value of output

ctrl14 (i- and k-rate 14 bit MIDI control) allows a floating-point 14-bit MIDI signal scaled with a minimum
and a maximum range. The minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires two MIDI controllers as input.

ctrl14 differs from midicl4 becase it can be included in score-oriented instruments without Csound crashes.
It needs the additional parameter ichan containing the MIDI channel of the controller. MIDI channel is the
same for all the controllers used in a single ctrl14 opcode.

See Also
ctrl7, ctri21, initc7, initcl4, initc21, midic7, midicl4, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctri21
ctrl21 — Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.
Description

Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.

Syntax
idest ctrl21 ichan, ictlnol, ictlno2, ictlno3, imin, imax [, ifn]

kdest ctrl21 ichan, ictlnol, ictlno2, ictlno3, kmin, kmax [, ifn]

220

Chapter 15. Orchestra Opcodes and Operators

Initialization

idest -- output signal

ichan -- MIDI channel number (1-16)

ictlno -- MIDI controller number (0-127)

ictinlo -- most-significant byte controller number (0-127)
ictlno2 -- mid-significant byte controller number (0-127)
ictlno3 -- least-significant byte controller number (0-127)
imin -- user-defined minimum floating-point value of output
imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output
kmax -- user-defined maximum floating-point value of output

ctrl21 (i- and k-rate 21 bit MIDI control) allows a floating-point 21-bit MIDI signal scaled with a minimum
and a maximum range. Minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires three MIDI controllers as input.

ctri21 differs from midic21 because it can be included in score oriented instruments without Csound crashes.
It needs the additional parameter ichan containing the MIDI channel of the controller. MIDI channel is the
same for all the controllers used in a single ctrl21 opcode.

See Also
ctrl7, ctrl14, initc7, initcl4, initc21, midic7, midicl4, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrl7
ctrl7 — Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.
Description

Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.

221

Chapter 15. Orchestra Opcodes and Operators

Syntax
idest ctrl7 ichan, ictlno, imin, imax [, ifn]

kdest ctrl7 ichan, ictlno, kmin, kmax [, ifn]

Initialization

idest -- output signal

ichan -- MIDI channel (1-16)

ictlno -- MIDI controller number (0-127)

imin -- user-defined minimum floating-point value of output
imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output
kmax -- user-defined maximum floating-point value of output

ctrl7 (i- and k-rate 7 bit MIDI control) allows a floating-point 7-bit MIDI signal scaled with a minimum and a
maximum range. It also allows optional non-interpolated table indexing. Minimum and maximum values
can be varied at k-rate.

ctrl7 differs from midic7 because it can be included in score-oriented instruments without Csound crashes. It
also needs the additional parameter ichan containing the MIDI channel of the controller.

See Also
ctrll4, ctri21, initc7, initcl4, initc21, midic7, midicl4, midic21

Credits

Author: Gabriel Maldonado
Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrlinit

ctrlinit — Sets the initial values for a set of MIDI controllers.

222

Chapter 15. Orchestra Opcodes and Operators

Description

Sets the initial values for a set of MIDI controllers.

Syntax

ctrlinit ichnl, ictlnol, ivall [, ictlno?2] [, ival2] [, ictlno3] [, ival3] [,...ival32]

Initialization
ichnl -- MIDI channel number (1-16)
ictlnol, ictlnol, etc. -- MIDI controller numbers (0-127)

ivall, ival2, etc. -- initial value for corresponding MIDI controller number

Performance

Sets the initial values for a set of MIDI controllers.

See Also

massign

Credits

Author: Barry L. Vercoe - Mike Berry

MIT, Cambridge, Mass.

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

cuserrnd

cuserrnd — Continuous USER-defined-distribution RaNDom generator.

Description

Continuous USER-defined-distribution RaNDom generator.

Syntax
aout cuserrnd kmin, kmax, ktableNum
iout cuserrnd imin, imax, itableNum

kout cuserrnd kmin, kmax, ktableNum

223

Chapter 15. Orchestra Opcodes and Operators

Initialization
imin -- minimum range limit
imax -- maximum range limit

itableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

Performance

ktableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

kmin -- minimum range limit
kmax -- maximum range limit

cuserrnd (continuous user-defined-distribution random generator) generates random values according to a
continuous random distribution created by the user. In this case the shape of the distribution histogram can
be drawn or generated by any GEN routine. The table containing the shape of such histogram must then be
translated to a distribution function by means of GEN40 (see GEN40 for more details). Then such function
must be assigned to the XtableNum argument of cuserrnd. The output range can then be rescaled according
to the Xmin and Xmax arguments. cuserrnd linearly interpolates between table elements, so it is not
recommended for discrete distributions (GEN41 and GEN42).

For a tutorial about random distribution histograms and functions see:

« D. Lorrain. "A panoply of stochastic cannons". In C. Roads, ed. 1989. Music machine. Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

See Also

duserrnd, urd

Credits
Author: Gabriel Maldonado
New in Version 4.16

dam

dam— A dynamic compressor/expander.

Description

This opcode dynamically modifies a gain value applied to the input sound ain by comparing its power level to
a given threshold level. The signal will be compressed/expanded with different factors regarding that it is over
or under the threshold.

224

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar dam asig, kthreshold, icompl, icomp2, irtime, iftime

Initialization

icompl -- compression ratio for upper zone.

icomp2 -- compression ratio for lower zone

irtime -- gain rise time in seconds. Time over which the gain factor is allowed to raise of one unit.

iftime -- gain fall time in seconds. Time over which the gain factor is allowed to decrease of one unit.

Performance
asig -- input signal to be modified
kthreshold -- level of input signal which acts as the threshold. Can be changed at k-time (e.g. for ducking)

Note on the compression factors: A compression ratio of one leaves the sound unchanged. Setting the ratio to
a value smaller than one will compress the signal (reduce its volume) while setting the ratio to a value greater
than one will expand the signal (augment its volume).

Examples

Because the results of the dam opcode can be subtle, I recommend looking at them in a graphical audio
editor program like audacity. audacity is available for Linux, Windows, and the MacOS and may be
downloaded from http://audacity.sourceforge.net.

Here is an example of the dam opcode. It uses the files dam.orc, dam.sco, and beats.wav.

Example 15-1. An example of the dam opcode compressing an audio signal.

/* dam.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1, uncompressed signal.
instr 1
; Use the "beats.wav" audio file.
asig soundin "beats.wav"

out asig
endin

; Instrument #2, compressed signal.
instr 2
; Use the "beats.wav" audio file.
asig soundin "beats.wav"

; Compress the audio signal.
kthreshold init 25000

icompl = 0.5

icomp2 = 0.763

irtime 0.1

iftime 0.1

225

Chapter 15. Orchestra Opcodes and Operators

al dam asig, kthreshold, icompl, icomp2, irtime, iftime

out al
endin
/* dam.orc */

/* dam.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

; Play Instrument #2 for 2 seconds.
i222

e

/* dam.sco */

This example compresses the audio file “beats.wav”. You should hear a drum pattern repeat twice. The
second time, the sound should be quieter (compressed) than the first.

Here is another example of the dam opcode. It uses the files dam_expanded.orc, dam_expanded.sco, and
mary.wav.

Example 15-2. An example of the dam opcode expanding an audio signal.

/* dam_expanded.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls = 1

; Instrument #1, normal audio signal.
instr 1
; Use the "mary.wav" audio file.
asig soundin "mary.wav"

out asig
endin

; Instrument #2, expanded audio signal.
instr 2

; Use the "mary.wav" audio file.

asig soundin "mary.wav"

; Expand the audio signal.
kthreshold init 7500

icompl = 2.25
icomp2 = 2.25
itime = 0.1
ifime = 0.6
al dam asig, kthreshold, icompl, icomp2, irtime, iftime
out al
endin

/* dam_expanded.orc */

/* dam_expanded.sco */

[* Written by Kevin Conder */
; Play Instrument #1.

i 10035

; Play Instrument #2.

i 23535

226

Chapter 15. Orchestra Opcodes and Operators

e
/* dam_expanded.sco */

This example expands the audio file “mary.wav”. You should hear a melody repeat twice. The second time,
the sound should be louder (expanded) than the first.

Credits

Author: Marc Resibois
Belgium

1997

db

db — Returns the amplitude equivalent for a given decibel amount.

Description

Returns the amplitude equivalent for a given decibel amount. This opcode is the same as db.

Syntax
db(x)
This function works at a-rate, i-rate, and k-rate.

Initialization

x -- a value expressed in decibels.

Performance

Returns the amplitude for a given decibel amount.

Examples

Here is an example of the db opcode. It uses the files db.orc and db.sco.

Example 15-1. Example of the db opcode.

/* db.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

227

instr 1

; Calculate the amplitude of 40 decibels.

idecibels = 40
iamp = db(idecibels)
print iamp
endin
/* db.orc */
/* db.sco */
[* Written by Kevin Conder */
; Play Instrument #1 for one second.
i101

e
/* db.sco */

Its output should include lines like:

instr 1. iamp = 100.000

See Also

ampdb, cent, octave, semitone

Credits
Author: Kevin Conder

New in version 4.16

dbamp

dbamp — Returns the decibel equivalent of the raw amplitude x.

Description

Returns the decibel equivalent of the raw amplitude x.

Syntax

dbamp(x) (init-rate or control-rate args only)

Chapter 15. Orchestra Opcodes and Operators

228

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the dbamp opcode. It uses the files dbamp.orc and dbamp.sco.

Example 15-1. Example of the dbamp opcode.

/* dbamp.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

instr 1
iamp = 30000
idb = dbamp(iamp)
print idb

endin

/* dbamp.orc */

[* dbamp.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* dbamp.sco */

Its output should include lines like this:

instr 1: idb = 89.542

See Also
ampdb, ampdbfs, dbfsamp

dbfsamp

dbfsamp — Returns the decibel equivalent of the raw amplitude x, relative to full scale amplitude.

Description

Returns the decibel equivalent of the raw amplitude x, relative to full scale amplitude. Full scale is assumed to

be 16 bit. New is Csound version 4.10.

Syntax

dbfsamp(x) (init-rate or control-rate args only)

229

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the dbfsamp opcode. It uses the files dbfsamp.orc and dbfsamp.sco.

Example 15-1. Example of the dbfsamp opcode.

/* dbfsamp.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
iamp = 30000
idb = dbfsamp(iamp)
print idb

endin

/* dbfsamp.orc */

[* dbfsamp.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

/* dbfsamp.sco */

Its output should include lines like this:

instr 1: idb = -0.767

See Also
ampdb, ampdbfs, dbamp

dcblock

dcblock — A DC blocking filter.

Description
Implements the DC blocking filter

Y[i] = X[i] - X[i-1] + (igain * Y[i=1])

Based on work by Perry Cook.

230

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar dcblock ain [, igain]

Initialization
igain -- the gain of the filter, which defaults to 0.99

Performance

ain -- audio signal input

Examples

Here is an example of the dcblock opcode. It uses the files dcblock.orc, dcblock.sco, and beats.wav.

Example 15-1. Example of the dcblock opcode.

[* dcblock.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 -- normal audio signal.
instr 1

asig soundin "beats.wav"

out asig
endin

; Instrument #2 -- dcblock-ed audio signal.
instr 2
asig soundin "beats.wav"

igain = 0.75
al dcblock asig, igain

out al
endin
/* dcblock.orc */

/* dcblock.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

; Play Instrument #2 for 2 seconds.
i222

e

/* dcblock.sco */

231

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.49

dconv

dconv — A direct convolution opcode.

Description
A direct convolution opcode.

Syntax

ar dconv asig, isize, ifn

Initialization

isize -- the size of the convolution buffer to use. if the buffer size is smaller than the size of ifn, then only the
first isize values will be used from the table.

ifn -- table number of a stored function containing the impulse response for convolution.

Performance

Rather than the analysis/resynthesis method of the convolve opcode, dconv uses direct convolution to create
the result. For small tables it can do this quite efficiently, however larger table require much more time to run.
dconv does (isize * ksmps) multiplies on every k-cycle. Therefore, reverb and delay effects are best done with
other opcodes (unless the times are short).

dconv was designed to be used with time varying tables to facilitate new realtime filtering capabilities.

Examples

Here is an example of the dconv opcode. It uses the files dconv.orc and dconv.sco.

Example 15-1. Example of the dconv opcode.

/* dconv.orc */
Sr 44100
kr 4410
ksmps 10
nchnls 1

#define RANDI(A) #kout randi 1, kfg, $A*.001+iseed, 1
tablew kout, $A, itable#

instr 1

232

itable init 1

iseed init .6

isize init ftlen(itable)
kfq line 1, p3, 10

$RANDI(0)
$RANDI(1)
$RANDI(2)
$RANDI(3)
$RANDI(4)
$RANDI(5)
$RANDI(6)
$RANDI(7)
$RANDI(8)
$RANDI(9)
$RANDI(10)
$RANDI(11)
$RANDI(12)
$RANDI(13)
$RANDI(14)
$RANDI(15)

asig rand 10000, 5, 1

asig butlp asig, 5000

asig dconv asig, isize, itable

out asig *.5
endin
/* dconv.orc */

/* dconv.sco */
fl 0 16 10 1
i1 0 10

e
/* dconv.sco */

Credits

Author: William “Pete” Moss 2001

New in version 4.12

delay

delay — Delays an input signal by some time interval.

Description

Chapter 15. Orchestra Opcodes and Operators

A signal can be read from or written into a delay path, or it can be automatically delayed by some time

interval.

233

Chapter 15. Orchestra Opcodes and Operators

Syntax
ar delay asig, idlt [, iskip]

Initialization

idlt -- requested delay time in seconds. This can be as large as available memory will permit. The space
required for n seconds of delay is 4n * sr bytes. It is allocated at the time the instrument is first initialized, and
returned to the pool at the end of a score section.

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance
asig -- audio signal

delay is a composite of delayr and delayw, both reading from and writing into its own storage area. It can thus
accomplish signal time-shift, although modified feedback is not possible. There is no minimum delay period.

Examples

Here is an example of the delay opcode. It uses the files delay.orc and delay.sco.

Example 15-1. Example of the delay opcode.

/* delay.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 2

; Instrument #1 -- Delayed beeps.
instr 1

; Make a basic sound.

abeep vco 20000, 440, 1

; Delay the beep by .1 seconds.
idlt = 0.1
adel delay abeep, idlt

; Send the beep to the left speaker and
; the delayed beep to the right speaker.
outs abeep, adel

endin

/* delay.orc */

/* delay.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Keep the score running for 2 seconds.
fo2

; Play Instrument #1.
i 100 0.2
il1050.2

e

234

Chapter 15. Orchestra Opcodes and Operators

/* delay.sco */

See Also
delayl, delayr, delayw

delayl

delayl — Delays an input signal by one sample.

Description

Delays an input signal by one sample.

Syntax
ar delayl1 asig [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance

delayl is a special form of delay that serves to delay the audio signal asig by just one sample. It is thus
functionally equivalent to the delay opcode but is more efficient in both time and space. This unit is
particularly useful in the fabrication of generalized non-recursive filters.

See Also
delay, delayr, delayw

delayr
delayr — Reads from an automatically established digital delay line.
Description

Reads from an automatically established digital delay line.

235

Chapter 15. Orchestra Opcodes and Operators

Syntax
ar delayr idlt [, iskip]

Initialization

idlt -- requested delay time in seconds. This can be as large as available memory will permit. The space
required for n seconds of delay is 4n * sr bytes. It is allocated at the time the instrument is first initialized, and
returned to the pool at the end of a score section.

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance

delayr reads from an automatically established digital delay line, in which the signal retrieved has been
resident for idlt seconds. This unit must be paired with and precede an accompanying delayw unit. Any other
Csound statements can intervene.

Examples

See the example for delayw.

See Also
delay, delayl, delayw

delayw

delayw — Writes the audio signal to a digital delay line.

Description
Writes the audio signal to a digital delay line.

Syntax
delayw asig

Performance

delayw writes asig into the delay area established by the preceding delayr unit. Viewed as a pair, these two
units permit the formation of modified feedback loops, etc. However, there is a lower bound on the value of
idlt, which must be at least 1 control period (or 1/kr).

236

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the delayw opcode. It uses the files delayw.orc and delayw.sco.

Example 15-1. Example of the delayw opcode.

/* delayw.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps =

nchnls

10
2

; Instrument #1 -- Delayed beeps.

instr 1

; Make a basic sound.
abeep vco 20000, 440, 1

; Set up a delay line.
idit = 0.1
adel delayr idlt

; Write the beep to the delay line.
delayw abeep

; Send the beep to the left speaker and
; the delayed beep to the right speaker.
outs abeep, adel

endin

[* delayw.orc */

[* delayw.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

; Keep the score running for 2 seconds.

fo2

; Play Instrument #1.
i 10002
i1050.2

e

/* delayw.sco */

See Also

delay, delayl, delayr

deltap

deltap

— Taps a delay line at variable offset times.

237

Chapter 15. Orchestra Opcodes and Operators

Description

Tap a delay line at variable offset times.

Syntax
ar deltap kdlt

Performance

kdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal.

deltap extracts sound by reading the stored samples directly.

This opcode can tap into a delayr/ delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2
ainputl = ...
ainput2
kdlytl
kdiyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0

238

Chapter 15. Orchestra Opcodes and Operators

adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 -0.7 * adlyl + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbkl

;Feed back signal, associated with second delayr instance:

delayw afdbk2
outs adlyl, adly2

See Also
deltap3, deltapi, deltapn

deltap3
deltap — Taps a delay line at variable offset times, uses cubic interpolation.
Description

Taps a delay line at variable offset times, uses cubic interpolation.

Syntax
ar deltap3 xdlt

Performance

xdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal; the xdlf argument in
deltap3 implies that an audio-varying delay is permitted there.

deltap3 is experimental, and uses cubic interpolation. (New in Csound version 3.50.)

This opcode can tap into a delayr/ delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

239

Chapter 15. Orchestra Opcodes and Operators

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2

ainputl
ainput2
kdlytl

kdlyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0
adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1l 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 -0.7 * adlyl + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbk1l

;Feed back signal, associated with second delayr instance:

delayw afdbk2
outs adlyl, adly2

See Also
deltap, deltapi, deltapn

240

Chapter 15. Orchestra Opcodes and Operators

deltapi

deltapi — Taps a delay line at variable offset times, uses interpolation.

Description
Taps a delay line at variable offset times, uses interpolation.

Syntax
ar deltapi xdlt

Performance

xdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal; the xdlf argument in
deltapi implies that an audio-varying delay is permitted there.

deltapi extracts sound by interpolated readout. By interpolating between adjacent stored samples deltapi
represents a particular delay time with more accuracy, but it will take about twice as long to run.

This opcode can tap into a delayr/delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ;. the listener
out amove * ampfac

241

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. deltap example #2

ainputl
ainput2
kdlytl

kdlyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0
adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbkl 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 -0.7 * adlyl + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbkl

;Feed back signal, associated with second delayr instance:
delayw afdbk2
outs adlyl, adly2

See Also
deltap, deltap3, deltapn

deltapn

deltapn — Taps a delay line at variable offset times.

Description

Tap a delay line at variable offset times.

Syntax

ar deltapn xnumsamps

Performance

xnumsamps -- specifies the tapped delay time in number of samples. Each can range from 1 control period to
the full delay time of the read/write pair; however, since there is no internal check for adherence to this range,
the user is wholly responsible. Each argument can be a constant, a variable, or a time-varying signal.

deltapn is identical to deltapi, except delay time is specified in number of samples, instead of seconds (Hans
Mikelson).

242

Chapter 15. Orchestra Opcodes and Operators

This opcode can tap into a delayr/ delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past
delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2

ainputl
ainput2
kdlytl

kdlyt2 = ...

;Read delayed signal, first delayr instance:
adump delayr 4.0
adlyl deltap kdlytl ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbkl 0.7 * adlyl + 0.7 * adly2 + ainputl
afdbk2 -0.7 * adlyl + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbkl

;Feed back signal, associated with second delayr instance:

delayw afdbk2
outs adlyl, adly2

243

See Also
deltap, deltap3, deltapi

deltapx

Chapter 15. Orchestra Opcodes and Operators

deltapx — Read to or write from a delay line with interpolation.

Description

deltapx is similar to deltapi or deltap3. However, it allows higher quality interpolation. This opcode can read
from and write to a delayr/delayw delay line with interpolation.

Syntax

aout deltapx adel, iwsize

Initialization

iwsize -- interpolation window size in samples. Allowed values are integer multiplies of 4 in the range 4 to
1024. iwsize = 4 uses cubic interpolation. Increasing iwsize improves sound quality at the expense of CPU

usage, and minimum delay time.

Performance
aout -- Qutput signal

adel -- Delay time in seconds.

al delayr idlIr
deltapxw a2, adll, iwsl
a3 deltapx adl2, iws2
deltapxw a4, adl3, iws3
delayw a5

Minimum and maximum delay times:

idlr ~ >= 1/kr

adll >= (iwsl/2)/sr

adll =idlr - (1 + iws1/2)/sr
adl2 = 1/kr + (iws2/2)/sr
adl2 = idlr - (1 + iws2/2)/sr

adl2 >= adll + (iwsl + iws2) / (2*sr)
adl2 >= 1/kr + adI3 + (iws2 + iws3) / (2*sr)

Delay line length

Write before read
(allows shorter delays)

Read time

244

Chapter 15. Orchestra Opcodes and Operators

adl3 >= (iws3/2)/sr Write after read
adl3 <= idIr - (1 + iws3/2)/sr (allows feedback)

Note: Window sizes for opcodes other than deltapx are: deltap, deltapn: 1, deltapi: 2 (linear), deltap3: 4 (cubic)

Examples

al phasor 300.0

al = al - 05

a_ delayr 1.0

adel phasor 4.0

adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2

deltapxw al, adel, 32
adel phasor 2.0

adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2
deltapxw al, adel, 32

adel = 03

a2 deltapx adel, 32

al = 0
delayw al

out a2 * 20000.0

See Also
deltapxw

Credits
Author: Istvan Varga
August 2001

New in version 4.13

deltapxw

deltapxw — Mixes the input signal to a delay line.

245

Chapter 15. Orchestra Opcodes and Operators

Description

deltapxw mixes the input signal to a delay line. This opcode can be mixed with reading units (deltap, deltapn,
deltapi, deltap3, and deltapx) in any order; the actual delay time is the difference of the read and write time.
This opcode can read from and write to a delayr/ delayw delay line with interpolation.

Syntax

deltapxw ain, adel, iwsize

Initialization

iwsize -- interpolation window size in samples. Allowed values are integer multiplies of 4 in the range 4 to
1024. iwsize = 4 uses cubic interpolation. Increasing iwsize improves sound quality at the expense of CPU
usage, and minimum delay time.

Performance
ain -- Input signal

adel -- Delay time in seconds.

al delayr idlr
deltapxw a2, adll, iwsl
a3 deltapx adl2, iws2
deltapxw a4, adl3, iws3
delayw a5

Minimum and maximum delay times:

idir >= 1/kr Delay line length
adll = (iwsl1/2)/sr Write before read
adll = idlr - (1 + iwsl/2)/sr (allows shorter delays)
adl2 >= 1/kr + (iws2/2)/sr Read time

adl2 <= idIr - (1 + iws2/2)/sr
adl2 >= adll + (iwsl + iws2) / (2*sr)
adl2 >= 1/kr + adI3 + (iws2 + iws3) / (2*sr)

adl3 = (iws3/2)/sr Write after read
adl3 <= idIr - (1 + iws3/2)/sr (allows feedback)

Note: Window sizes for opcodes other than deltapx are: deltap, deltapn: 1, deltapi: 2 (linear), deltap3: 4 (cubic)

246

Chapter 15. Orchestra Opcodes and Operators

Examples

al phasor 300.0

al = al - 05

a_ delayr 1.0

adel phasor 4.0

adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2

deltapxw al, adel, 32
adel phasor 2.0

adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2
deltapxw al, adel, 32

adel = 03

a2 deltapx adel, 32

al = 0
delayw al

out a2 * 20000.0

See Also
deltapx

Credits
Author: Istvan Varga
August 2001

New in version 4.13

diff
diff — Modify a signal by differentiation.

Description
Modify a signal by differentiation.

Syntax
ar diff asig [, iskip]
kr diff ksig [, iskip]

Initialization

iskip (optional) -- initial disposition of internal save space (see reson). The default value is 0.

247

Chapter 15. Orchestra Opcodes and Operators

Performance

integ and diff perform integration and differentiation on an input control signal or audio signal. Each is the
converse of the other, and applying both will reconstruct the original signal. Since these units are special
cases of low-pass and high-pass filters, they produce a scaled (and phase shifted) output that is
frequency-dependent. Thus diff of a sine produces a cosine, with amplitude 2 * sin(pi * Hz / sr) that of the
original (for each component partial); integ will inversely affect the magnitudes of its component inputs.
With this understanding, these units can provide useful signal modification.

Examples
Here is an example of the diff opcode. It uses the files diff.orc and diff.sco.

Example 15-1. Example of the diff opcode.

/* diff.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
. Instrument #1 -- a normal instrument.
instr 1
; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

out asrc
endin

. Instrument #2 -- a differentiated instrument.
instr 2
; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

; Emphasize the highs.
al diff asrc

out al
endin
/* diff.orc */

/* diff.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one second.
i101

; Play Instrument #2 for one second.
i211

e

/* diff.sco */

248

Chapter 15. Orchestra Opcodes and Operators

See Also

downsamp, integ, interp, samphold, upsamp

diskin
diskin — Reads audio data from an external device or stream and can alter its pitch.
Description

Reads audio data from an external device or stream and can alter its pitch.

Syntax
arl [,ar2] [, ar3] [, ar4] diskin ifilcod, kpitch [, iskiptim] [, iwraparound] [, iformat]

Initialization

ifilcod -- integer or character-string denoting the source soundfile name. An integer denotes the file
soundin.filcod ; a character-string (in double quotes, spaces permitted) gives the filename itself, optionally a
full pathname. If not a full path, the named file is sought first in the current directory, then in that given by the
environment variable SSDIR (if defined) then by SFDIR. See also GENOI.

iskptim (optional) -- time in seconds of input sound to be skipped. The default value is 0.

iformat (optional) -- specifies the audio data file format:

« 1=8-bit signed char (high-order 8 bits of a 16-bit integer)
2 = 8-bit A-law bytes

« 3 =8-bit U-law bytes

4 = 16-bit short integers

« 5=32-bitlong integers
+ 6=232-bit floats

iwraparound -- 1 = on, 0 = off (wraps around to end of file either direction)

If iformat = 0 it is taken from the soundfile header, and if no header from the Csound -0 command-line flag.
The default value is 0.

Performance

kpitch -- can be any real number. a negative number signifies backwards playback. The given number is a
pitch ratio, where:

« 1=normal pitch

+ 2=1 octave higher
« 3=12th higher, etc.
« .5=1 octave lower

249

Chapter 15. Orchestra Opcodes and Operators

« .25=2 octaves lower, etc.
« -1=normal pitch backwards

« -2=1 octave higher backwards, etc.

diskin is identical to soundin except that it can alter the pitch of the sound that is being read.

Note to Windows users

Windows users typically use back-slashes, “\", when specifying the paths of their files. As an example, a
Windows user might use the path “c:\music\samples\loop001.wav”. This is problematic because back-slashes
are normally used to specify special characters.

To correctly specify this path in Csound, one may alternately:

« Use forward slashes: c:/music/samples/loop001.wav
« Use back-slash special characters, “\\": c:\\music\\samples\\loop001.wav

Examples

Here is an example of the diskin opcode. It uses the files diskin.orc, diskin.sco, beats.wav.

Example 15-1. Example of the diskin opcode.

/* diskin.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 44100

ksmps 1

nchnls 1

; Instrument #1 - play an audio file.
instr 1
; Play the audio file backwards.
asig diskin "beats.wav", -1
out asig
endin
/* diskin.orc */
[* diskin.sco */
/* Written by Kevin Conder */
; Play Instrument #1, the audio file, for three seconds.
il103
e
/* diskin.sco */

See Also

in, inh, ino, inq, ins, soundin

250

Chapter 15. Orchestra Opcodes and Operators

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

Warning to Windows users added by Kevin Conder, April 2002

dispfft

displayfft — Displays the Fourier Transform of an audio or control signal.

Description

These units will print orchestra init-values, or produce graphic display of orchestra control signals and audio
signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ASCII characters.

Syntax
dispfft xsig, iprd, iwsiz [, iwtyp] [, idbout] [, iwtflg]

Initialization
iprd -- the period of display in seconds.

iwsiz -- size of the input window in samples. A window of iwsiz points will produce a Fourier transform of
iwsiz/2 points, spread linearly in frequency from 0 to sr/2. iwsiz must be a power of 2, with a minimum of 16
and a maximum of 4096. The windows are permitted to overlap.

iwtyp (optional, default=0) -- window type. 0 = rectangular, 1 = Hanning. The default value is 0 (rectangular).

idbout (optional, default=0) -- units of output for the Fourier coefficients. 0 = magnitude, 1 = decibels. The
default is 0 (magnitude).

iwtflg (optional, default=0) -- wait flag. If non-zero, each display is held until released by the user. The default
value is 0 (no wait).

Performance

dispfft -- displays the Fourier Transform of an audio or control signal (asig or ksig) every iprd seconds using
the Fast Fourier Transform method.

Examples
Here is an example of the dispfft opcode. It uses the files dispfft.orc, dispfft.sco and beats.wav.

Example 15-1. Example of the dispfft opcode.

[* dispfft.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

251

Chapter 15. Orchestra Opcodes and Operators

10
1

ksmps
nchnls

; Instrument #1.

instr 1
asig soundin "beats.wav"
dispfft asig, 1, 512
out asig

endin

[* dispfft.orc */

[* dispfft.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for three seconds.
il103

e

[* dispfft.sco */

See Also
display, print

Credits

Comments about the inprds parameter contributed by Rasmus Ekman.

display

display — Displays the audio or control signals as an amplitude vs. time graph.

Description

These units will print orchestra init-values, or produce graphic display of orchestra control signals and audio
signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ASCII characters.

Syntax
display xsig, iprd [, inprds] [, iwtflg]

Initialization
iprd -- the period of display in seconds.

inprds (optional, default=1) -- Number of display periods retained in each display graph. A value of 2 or more
will provide a larger perspective of the signal motion. The default value is 1 (each graph completely new).

inprds (optional, default=1) -- a scaling factor for the displayed waveform, controlling how many iprd-sized
frames of samples are drawn in the window (the default and minimum value is 1.0). Higher inprds values are
slower to draw (more points to draw) but will show the waveform scrolling through the window, which is
useful with low iprd values.

252

Chapter 15. Orchestra Opcodes and Operators

iwtflg (optional, default=0) -- wait flag. If non-zero, each display is held until released by the user. The default
value is 0 (no wait).

Performance

display -- displays the audio or control signal xsig every iprd seconds, as an amplitude vs. time graph.

Examples

Here is an example of the display opcode. It uses the files display.orc and display.sco.

Example 15-1. Example of the display opcode.

[* display.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
; Go from 1000 to O linearly, over the period defined by p3.
klin line 1000, p3, 0

; Create a new display each second, wait for the user.
display klin, 1, 1, 1

endin

/* display.orc */

/* display.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 5 seconds.

i105

e

/* display.sco */

See Also
dispfft, print

Credits

Comments about the inprds parameter contributed by Rasmus Ekman.

distortl

distortl — Modified hyperbolic tangent distortion.

253

Chapter 15. Orchestra Opcodes and Operators

Description

Implementation of modified hyperbolic tangent distortion. distortI can be used to generate wave shaping
distortion based on a modification of the tanh function.

exp(asig * (pregain + shapel)) - exp(asig*(pregain+shape2))
AOUL = ~ = m = m oot
exp(asig*pregain) + exp(-asig*pregain)

Syntax
ar distort]1 asig [, ipregain] [, ipostgain] [, ishapel] [, ishape2]

Initialization

ipregain (optional, default=1) -- determines the amount of gain applied to the signal before waveshaping. A
value of 1 gives slight distortion.

ipostgain (optional, default=1) -- determines the amount of gain applied to the signal after waveshaping.

ishapel (optional, default=0) -- determines the shape of the positive part of the curve. A value of 0 gives a flat
clip, small positive values give sloped shaping.

ishape2 (optional, default=0) -- determines the shape of the negative part of the curve.

Performance
asig - is the input signal.

All arguments except asig, were made optional in Csound version 3.52.

Examples
Here is an example of the distort]l opcode. It uses the files distort1.orc and distortl.sco.

Example 15-1. Example of the distortl opcode.

/* distortl.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 2

gadist init 0

instr 1
iamp = p4
ifqc = cpspch(pb)
asig pluck iamp, ifqc, ifgc, 0, 1
gadist = gadist + asig
endin

instr 50
ipre = p4d

254

ipost = p5
ishapl = p6
ishap2 = p7
aout distortl gadist, ipre, ipost, ishapl, ishap2
outs aout, aout
gadist = 0
endin
[* distortl.orc */
[* distortl.sco */
; Sta Dur Amp Pitch
il 0.0 3.0 10000 6.00
il 05 25 10000 7.00
il 1.0 2.0 10000 7.07
il 15 15 10000 8.00
; Sta Dur PreGain PostGain Shapel Shape2
i50 0 3 2 1 0 0

e
/* distortl.sco

Credits

*

~

Author: Hans Mikelson

December 1998 (New in Csound version 3.50)

divz

divz — Safely divides two numbers.

Syntax

ar divz xa, xb,

ksubst

ir divz ia, ib, isubst

kr divz ka, kb,

Description

ksubst

Safely divides two numbers.

Initialization

Chapter 15. Orchestra Opcodes and Operators

Whenever b is not zero, set the result to the value a / b; when b is zero, set it to the value of subst instead.

255

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the divz opcode. It uses the files divz.orc and divz.sco.

Example 15-1. Example of the divz opcode.

/* divz.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
;. Define the numbers to be divided.
ka init 200

; Linearly change the value of kb from 200 to O.

kb line 0, p3, 200

; If a "divide by zero" error occurs, substitute -1.

ksubst init -1

; Safely divide the numbers.
kresults divz ka, kb, ksubst

; Print out the results.

printks "%f / %f = %f\n", 0.1, ka, kb, kresults

endin
/* divz.orc */

/* divz.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* divz.sco */

Its output should include lines like:
200.000000 / 0.000000 = -1.000000

200.000000 / 19.999887 = 10.000056
200.000000 / 40.000027 = 4.999997

See Also

=, init, tival

downsamp

downsamp — Modify a signal by down-sampling.

256

Chapter 15. Orchestra Opcodes and Operators

Description
Modify a signal by down-sampling.

Syntax

kr downsamp asig [, iwlen]

Initialization

iwlen (optional) -- window length in samples over which the audio signal is averaged to determine a
downsampled value. Maximum length is ksmps; 0 and 1 imply no window averaging. The default value is 0.

Performance

downsamp converts an audio signal to a control signal by downsampling. It produces one kval for each audio
control period. The optional window invokes a simple averaging process to suppress foldover.

Examples

Here is an example of the downsamp opcode. It uses the files downsamp.orc and downsamp.sco.

Example 15-1. Example of the downsamp opcode.

/* downsamp.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls 1

; Instrument #1.

instr 1
; Create a noise signal at a-rate.
anoise noise 20000, 0.2

; Downsample the noise signal to k-rate.
knoise downsamp anoise

; Use the noise signal at k-rate.
al oscil 30000, knoise, 1
out anoise

endin

/* downsamp.orc */

/* downsamp.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Play Instrument #1 for one second.
i101

e

/* downsamp.sco */

257

Chapter 15. Orchestra Opcodes and Operators

See Also
diff, integ, interp, samphold, upsamp

dripwater

dripwater — Semi-physical model of a water drop.

Description

dripwater is a semi-physical model of a water drop. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar dripwater kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization
idettack -- period of time over which all sound is stopped
inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 10.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.996 + (idamp * 0.002)

The default damping_amount is 0.996 which means that the default value of idamp is 0. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 2.0.

The recommended range for idamp is usually below 75% of the maximum value. Rasmus Ekman suggests a
range of 1.4-1.75. He also suggests a maximum value of 1.9 instead of the theoretical limit of 2.0.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 450.
ifreq1 (optional) -- the first resonant frequency. The default value is 600.

ifreq2 (optional) -- the second resonant frequency. The default value is 750.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

258

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the dripwater opcode. It uses the files dripwater.orc and dripwater.sco.

Example 15-1. Example of the dripwater opcode.

[* dripwater.orc */
sr = 44100

kr = 4410

ksmps 10
nchnls 1

instr 01 ;example of a water drip
al line 5, p3, 5 ;preset an amplitude boost
a2 dripwater p4, 0.01, 0, .9 ;dripwater needs a little amplitude help at these values
a3 product al, a2 ;increase amplitude
out a3
endin
* dripwater.orc */

~ o~

* dripwater.sco */
i1 0 1 20000

e

[* dripwater.sco */

See Also

bamboo, guiro, sleighbells, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)
Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

dumpk

dumpk — Periodically writes an orchestra control-signal value to an external file.

Description
Periodically writes an orchestra control-signal value to a named external file in a specific format.

259

Chapter 15. Orchestra Opcodes and Operators

Syntax
dumpk ksig, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

1 = 8-bit signed char(high order 8 bits of a 16-bit integer
4 = 16-bit short integers

« 5=32-bit long integers
» 6=32-bit floats, 7=ASCII long integers
8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance
ksig -- a control-rate signal

This opcode allows a generated control signal value to be saved in a named external file. The file contains no
self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk opcodes in an instrument or orchestra but each must write to a
different file.

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk2, dumpk3, dumpk4, readk, readk2, readk3, readk4

260

Chapter 15. Orchestra Opcodes and Operators

dumpk?2

dumpk2 — Periodically writes two orchestra control-signal values to an external file.

Description
Periodically writes two orchestra control-signal values to a named external file in a specific format.

Syntax
dumpk? ksigl, ksig2, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

1 = 8-bit signed char(high order 8 bits of a 16-bit integer

4 = 16-bit short integers

« 5=32-bit long integers

+ 6=32-bit floats, 7=ASCII long integers
8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance
ksigl, ksig2 -- control-rate signals.

This opcode allows two generated control signal values to be saved in a named external file. The file contains

no self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk2 opcodes in an instrument or orchestra but each must write to
a different file.

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

261

Chapter 15. Orchestra Opcodes and Operators

See Also
dumpk, dumpk3, dumpk4, readk, readk2, readk3, readk4

dumpk3

dumpk3 — Periodically writes three orchestra control-signal values to an external file.

Description
Periodically writes three orchestra control-signal values to a named external file in a specific format.

Syntax
dumpk3 ksigl, ksig2, ksig3, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

+ 1=8-bit signed char(high order 8 bits of a 16-bit integer
» 4 =16-bit short integers

« 5=32-bitlong integers

+ 6 =32-bit floats, 7=ASCII long integers

8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance
ksigl, ksig2, ksig3 -- control-rate signals

This opcode allows three generated control signal values to be saved in a named external file. The file
contains no self-defining header information. But it contains a regularly sampled time series, suitable for
later input or analysis. There may be any number of dumpk3 opcodes in an instrument or orchestra but each
must write to a different file.

262

Chapter 15. Orchestra Opcodes and Operators

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpk4, readk, readk2, readk3, readi4

dumpk4

dumpk4 — Periodically writes four orchestra control-signal values to an external file.

Description
Periodically writes four orchestra control-signal values to a named external file in a specific format.

Syntax
dumpk4 ksigl, ksig2, ksig3, ksig4, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

+ 1=8-bit signed char(high order 8 bits of a 16-bit integer
» 4 =16-bit short integers

« 5=32-bitlong integers

» 6=32-bit floats, 7=ASCII long integers

8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the Isat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

263

Chapter 15. Orchestra Opcodes and Operators

Performance
ksigl, ksig2, ksig3, ksig4 -- control-rate signals

This opcode allows four generated control signal values to be saved in a named external file. The file contains
no self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk4 opcodes in an instrument or orchestra but each must write to
a different file.

Examples

knum = knum+1 ; at each k-period

ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo

koct specptrk wsig, 6, .9, 0 ;and the pitch
dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpks3, readk, readk2, readks3, readk4

duserrnd

duserrnd — Discrete USER-defined-distribution RaNDom generator.

Description
Discrete USER-defined-distribution RaNDom generator.

Syntax
aout duserrnd ktableNum
iout duserrnd itableNum

kout duserrnd ktableNum

Initialization

itableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

Performance

ktableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

duserrnd (discrete user-defined-distribution random generator) generates random values according to a
discrete random distribution created by the user. The user can create the discrete distribution histogram by

264

Chapter 15. Orchestra Opcodes and Operators

using GEN41. In order to create that table, the user has to define an arbitrary amount of number pairs, the
first number of each pair representing a value and the second representing its probability (see GEN41 for
more details).

When used as a function, the rate of generation depends by the rate type of input variable XtableNum. In this
case it can be embedded into any formula. Table number can be varied at k-rate, allowing to change the
distribution histogram during the performance of a single note. duserrnd is designed be used in algorithmic
music generation.

duserrnd can also be used to generate values following a set of ranges of probabilities by using distribution
functions generated by GEN42 (See GEN42 for more details). In this case, in order to simulate continuous
ranges, the length of table XtableNum should be reasonably big, as duserrnd does not interpolate between
table elements.

For a tutorial about random distribution histograms and functions see:

« D. Lorrain. "A panoply of stochastic cannons". In C. Roads, ed. 1989. Music machine. Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

See Also

cuserrnd, urd

Credits
Author: Gabriel Maldonado

New in Version 4.16

else

else — Executes a block of code when an "if...then" condition is false.

Description

Executes a block of code when an "if...then" condition is false.

Syntax

else

Performance

else is used inside of a block of code between the "if...then" and endif opcodes. It defines which statements
are executed when a "if...then" condition is false. Only one else statement may occur and it must be the last
conditional statement before the endif opcode.

265

Chapter 15. Orchestra Opcodes and Operators

See Also
elseif, endif, goto, if, igoto, kgoto, tigoto, timout

Credits

New in version 4.21

elseif
elseif — Defines another "if...then" condition when a "if...then" condition is false.
Description

Defines another "if...then" condition when a "if...then" condition is false.

Syntax
elseif xa R xb then

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, /=) (and = for convenience, see also under Conditional Values).

Performance

elseif is used inside of a block of code between the "if...then" and endif opcodes. When a "if...then" condition
is false, it defines another "if...then" condition to be met. Any number of elseif statements are allowed.

See Also
else, endif, goto, if , igoto, kgoto, tigoto, timout

Credits

New in version 4.21

endif
endif — Closes a block of code that begins with an "if...then" statement.
Description

Closes a block of code that begins with an "if...then" statement.

266

Chapter 15. Orchestra Opcodes and Operators

Syntax

endif

Performance

Any block of code that begins with an "if...then" statement must end with an endif statement.

See Also
elseif, else, goto, if, igoto, kgoto, tigoto, timout

Credits

New in version 4.21

endin

endin — Ends the current instrument block.

Description
Ends the current instrument block.

Syntax

endin

Initialization
Ends the current instrument block.

Instruments can be defined in any order (but they will always be both initialized and performed in ascending
instrument number order). Instrument blocks cannot be nested (i.e. one block cannot contain another).

Note: There may be any number of instrument blocks in an orchestra.

Examples

Here is an example of the endin opcode. It uses the files endin.orc and endin.sco.

Example 15-1. Example of the endin opcode.

/* endin.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr 44100

kr 4410

267

Chapter 15. Orchestra Opcodes and Operators

10
1

ksmps
nchnls

; Instrument #1.

instr 1
iamp = 10000
icps = 440
iphs = 0
al oscils iamp, icps, iphs
out al
endin

/* endin.orc */

/* endin.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

e

/* endin.sco */

See Also

instr

envipx

envlpx — Applies an envelope consisting of 3 segments.

Description
envlpx -- apply an envelope consisting of 3 segments:

1. stored function rise shape
2. modified exponential pseudo steady state

3. exponential decay

Syntax
ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

kr envlpx kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

268

Chapter 15. Orchestra Opcodes and Operators

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.
idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.
ifn -- function table number of stored rise shape with extended guard point.

iatss -- attenuation factor, by which the last value of the envlpx rise is modified during the note’s pseudo
steady state. A factor greater than 1 causes an exponential growth and a factor less than 1 creates an
exponential decay. A factor of 1 will maintain a true steady state at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sensitive to a note’s duration. However, if iatss is negative
(or if steady state < 4 k-periods) a fixed attenuation rate of abs(iatss) per second will be used. 0 is illegal.

iatdec -- attenuation factor by which the closing steady state value is reduced exponentially over the decay
period. This value must be positive and is normally of the order of .01. A large or excessively small value is apt
to produce a cutoff which is audible. A zero or negative value is illegal.

ixmod (optional, between +- .9 or so) -- exponential curve modifier, influencing the steepness of the
exponential trajectory during the steady state. Values less than zero will cause an accelerated growth or decay
towards the target (e.g. subito piano). Values greater than zero will cause a retarded growth or decay. The
default value is zero (unmodified exponential).

Performance
kamp, xamp -- input amplitude signal.

Rise modifications are applied for the first irise seconds, and decay from time idur - idec. If these periods are
separated in time there will be a steady state during which amp will be modified by the first exponential
pattern. If the rise and decay periods overlap then that will cause a truncated decay. If the overall duration
idur is exceeded in performance, the final decay will continue on in the same direction, tending
asymptotically to zero.

Examples

Here is an example of the envlpx opcode. It uses the files envipx.orc and envipx.sco.

Example 15-1. Example of the envlpx opcode.

[* envlpx.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1 - a simple instrument.
instr 1
; Set the amplitude.
kamp init 20000
; Get the frequency from the fourth p-field.
kcps = cpspch(p4)
al vco kamp, kecps, 1
out al
endin

; Instrument #2 - instrument with an amplitude envelope.
instr 2

269

kamp = 20000
irise = 0.05
idur = p3 - .01
idec = 0.5

ifn = 2

jatss = 1
jatdec = 0.01

; Create an amplitude envelope.
kenv envlpx kamp, irise, idur, idec, ifn, iatss, iatdec

; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

al vco kenv, kcps, 1
out al

endin

[* envilpx.orc */

/* envilpx.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Table #2, a rising envelope.
f20129 -7 0 128 1

; Set the tempo to 120 beats per minute.
t 0 120

; Make sure the score plays for 33 seconds.
f 0 33

Play a melody with Instrument #1.
p4 = frequency in pitch-class notation.
8.04

8.04

8.05

8.07

8.07

8.05

8.04

8.02

8.00

8.00

8.02

8.04

8.04

8.02

e

CoO~NOOUOPAWNEO

;
;
i
i
i
i
i
i
i
i
i
i
i
i
i
i

RPRRPRRPRRRRERRRRERRRERRER
NNRPRRRRRRRERRR

; Repeat the melody with Instrument #2.
; p4 = frequency in pitch-class notation.
i 2 16 1 8.04

i 2 17 1 8.04
i 2 18 1 8.05
i 2 19 1 8.07
i 2 20 1 8.07
i 2 21 1 8.05
i 2 22 1 8.04
i 2 23 1 8.02
i 2 24 1 8.00
i 2 25 1 8.00
i 2 26 1 8.02
i 2 27 1 8.04
i 2 28 2 8.04

Chapter 15. Orchestra Opcodes and Operators

270

Chapter 15. Orchestra Opcodes and Operators

i 2 30 2 8.02
e
/* envilpx.sco */

See Also

envlpxr, linen, linenr

Credits
Thanks goes to Luis Jure for pointing out a mistake with iatss.

envipxr

envipxr — The envlpx opcode with a final release segment.

Description

envlpxr is the same as envipx except that the final segment is entered only on sensing a MIDI note release.
The note is then extended by the decay time.

Syntax
ar envlpxr xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

kr envlpxr kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.
idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.
ifn -- function table number of stored rise shape with extended guard point.

iatss -- attenuation factor, by which the last value of the envlpx rise is modified during the note’s pseudo
steady state. A factor greater than 1 causes an exponential growth and a factor less than 1 creates an
exponential decay. A factor of 1 will maintain a true steady state at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sensitive to a note’s duration. However, if iatss is negative
(or if steady state < 4 k-periods) a fixed attenuation rate of abs(iatss) per second will be used. 0 is illegal.

iatdec -- attenuation factor by which the closing steady state value is reduced exponentially over the decay
period. This value must be positive and is normally of the order of .01. A large or excessively small value is apt
to produce a cutoff which is audible. A zero or negative value is illegal.

ixmod (optional, between +- .9 or so) -- exponential curve modifier, influencing the steepness of the
exponential trajectory during the steady state. Values less than zero will cause an accelerated growth or decay
towards the target (e.g. subito piano). Values greater than zero will cause a retarded growth or decay. The
default value is zero (unmodified exponential).

271

Chapter 15. Orchestra Opcodes and Operators

irind (optional) -- independence flag. If left zero, the release time (idec) will influence the extended life of the
current note following a note-off. If non-zero, the idec time is quite independent of the note extension (see
below). The default value is 0.

Performance
kamp, xamp -- input amplitude signal.

envlpxr is an example of the special Csound “r” units that contain a note-off sensor and release time
extender. When each senses a score event termination or a MIDI noteoff, it will immediately extend the
performance time of the current instrument by idec seconds unless it is made independent by irind. Then it
will begin a decay from wherever it was at the time.

These “r” units can also be modified by MIDI noteoff velocities (see veloffs). If the irind flag is on (non-zero),
the overall performance time is unaffected by note-off and veloff data.

“»

Multiple “r” units. When two or more “r” units occur in the same instrument it is usual to have only one of
them influence the overall note duration. This is normally the master amplitude unit. Other units controlling,
say, filter motion can still be sensitive to note-off commands while not affecting the duration by making them
independent (irind non-zero). Depending on their own idec (release time) values, independent “r” units may
or may not reach their final destinations before the instrument terminates. If they do, they will simply hold
their target values until termination. If two or more “r” units are simultaneously master, note extension is by
the greatest idec.

See Also

envlpx, linen, linenr

Credits

Thanks goes to Luis Jure for pointing out a mistake with iatss.

event

event — Generates a score event from an instrument.

Description

Generates a score event from an instrument.

Syntax
event iscorechar, kinsnum, kwhen, kdur, [, kp4] [, kp5] [, ...]

Initialization

iscorechar -- A string (in double-quotes) representing the first p-field in a score statement. This is usually “e”,

“sr

“f’ or “1”.

272

Chapter 15. Orchestra Opcodes and Operators

Performance
kinsnum -- The instrument to use for the event. This corresponds to the first p-field, p1, in a score statement.

kwhen -- When (in seconds) the event will occur. This corresponds to the second p-field, p2, in a score
statement.

kdur -- How long (in seconds) the event will happen. This corresponds to the third p-field, p3, in a score
statement.

kp4, kp5, ... (optional) -- Parameters representing additional p-field in a score statement. It starts with the
fourth p-field, p4.

Examples

Here is an example of the event opcode. It uses the files event.orc and event.sco.

Example 15-1. Example of the event opcode.

[* event.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - an oscillator with a high note.
instr 1
; Create a trigger and set its initial value to 1.
ktrigger init 1

; If the ftrigger is equal to 0, continue playing.
. If not, schedule another event.
if (ktrigger == 0) goto contin

; kscoreop="i", an i-statement.

; kinsnum=2, play Instrument #2.

;. kwhen=1, start at 1 second.

; kdur=0.5, play for a half-second.

event "i", 2, 1, 0.5

; Make sure the event isn't triggered again.

ktrigger = 0
contin:
al oscils 10000, 440, 1
out al
endin

. Instrument #2 - an oscillator with a low note.
instr 2
al oscils 10000, 220, 1
out al
endin
/* event.orc */

[* event.sco */

/* Written by Kevin Conder */

; Make sure the score plays for two seconds.
fo2

; Play Instrument #1 for a half-second.
il1005

273

e
/* event.sco */

Credits
Author: Kevin Conder

New in version 4.17

Thanks goes to Matt Ingalls for helping me fix my example.

exp

exp — Returns e raised to the x-th power.

Description

Returns e raised to the xth power.

Syntax

exp(x) (no rate restriction)

Chapter 15. Orchestra Opcodes and Operators

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the exp opcode. It uses the files exp.orc and exp.sco.

Example 15-1. Example of the exp opcode.

[* exp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1
i1 = exp(8)
print il
endin
[* exp.orc */

[* exp.sco */
/* Written by Kevin Conder */

; Play Instrument #1 for one second.

i101
e

274

Chapter 15. Orchestra Opcodes and Operators

[* exp.sco */

Its output should include a line like this:

instr 1: i1l = 2980.958

See Also
abs, frac, int, log, logl0, i, sqrt

expon

expon — Trace an exponential curve between specified points.

Description
Trace an exponential curve between specified points.

Syntax
ar expon ia, idurl, ib

kr expon ia, idurl, ib

Initialization
ia -- starting value. Zero is illegal for exponentials.
ib, ic, etc. -- value after durl seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Examples

Here is an example of the expon opcode. It uses the files expon.orc and expon.sco.

Example 15-1. Example of the expon opcode.

/* expon.orc */

275

Chapter 15. Orchestra Opcodes and Operators

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
; Define kcps as a frequency value that exponentially declines
; from 880 to 220. It declines over the period set by p3.
kcps expon 880, p3, 220

al oscil 20000, kcps, 1
out al

endin

[* expon.orc */

[* expon.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

; Play Instrument #1 for two seconds.
i102

e

[* expon.sco */

See Also

expseg, expsegr, line, linseg, linsegr

exprand

exprand — Exponential distribution random number generator (positive values only).

Description

Exponential distribution random number generator (positive values only). This is an x-class noise generator.

Syntax
ar exprand krange
ir exprand krange

kr exprand krange

276

Performance

Chapter 15. Orchestra Opcodes and Operators

krange -- the range of the random numbers (0 - krange). Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,

Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the exprand opcode. It uses the files exprand.orc and exprand.sco.

Example 15-1. Example of the exprand opcode.

[* exprand.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls = 1

. Instrument #1.

instr 1
; Generate a random between 0 and 1.
; krange = 1

il exprand 1

print i1
endin
/* exprand.orc */

[* exprand.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for one second.
i101

e

/* exprand.sco */

Its output should include a line like this:

instr 1: i1 = 0.174

See Also

betarand, bexprnd, cauchy, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

277

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

expseg

expseg — Trace a series of exponential segments between specified points.

Description

Trace a series of exponential segments between specified points.

Syntax

ar expseg ia, idurl, ib [, idur2] [, ic] [...]

kr expseg ia, idurl, ib [, idur?] [, ic] [...]

Initialization

ia -- starting value. Zero is illegal for exponentials.

ib, ic, etc. -- value after durl seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Note that the expseg opcode does not operate correctly at audio rate when segments are shorter than a
k-period. Try the expsega opcode instead.

Examples
Here is an example of the expseg opcode. It uses the files expseg.orc and expseg.sco.

Example 15-1. Example of the expseg opcode.

/* expseg.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

278

Chapter 15. Orchestra Opcodes and Operators

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

instr 1
; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Create an amplitude envelope.
kenv expseg 0.01, p3*0.25, 1, p3*0.75, 0.01
kamp = kenv * 30000

al oscil kamp, kcps, 1
out al

endin

/* expseg.orc */

/* expseg.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

; Play Instrument #1 for a half-second, p4=8.00
i 1005 8.00

; Play Instrument #1 for a half-second, p4=8.01
i11058.01

; Play Instrument #1 for a half-second, p4=8.02
i12058.02

; Play Instrument #1 for a half-second, p4=8.03
i1l3 05 8.03

e

/* expseg.sco */

See Also

expon, expsega, expsegr, line, linseg, linsegr

Credits
Author: Gabriel Maldonado
New in Csound 3.57

expsega

expsega — An exponential segment generator operating at a-rate.

279

Chapter 15. Orchestra Opcodes and Operators

Description

An exponential segment generator operating at a-rate. This unit is almost identical to expseg, but more
precise when defining segments with very short durations (i.e., in a percussive attack phase) at audio rate.

Syntax

ar expsega ia, idurl, ib [, idur?] [, ic] [...]

Initialization
ia -- starting value. Zero is illegal.
ib, ic, etc. -- value after idurl seconds, etc. must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last defined line or curve to be continued
indefinitely in performance. The default is zero.

Performance

These units generate control or audio signals whose values can pass through two or more specified points.
The sum of dur values may or may not equal the instrument’s performance time. A shorter performance will
truncate the specified pattern, while a longer one will cause the last defined segment to continue on in the
same direction.

Examples
Here is an example of the expsega opcode. It uses the files expsega.orc and expsega.sco.

Example 15-1. Example of the expsega opcode.

[* expsega.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls = 1

o Instrument #1.

instr 1
; Define a short percussive amplitude envelope that
; goes from 0.01 to 20,000 and back.
aenv expsega 0.01, 0.1, 20000, 0.1, 0.01

al oscil aenv, 440, 1
out al

endin

/* expsega.orc */

[* expsega.sco */

/* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

280

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for one second.
i101

; Play Instrument #1 for one second.
i111

; Play Instrument #1 for one second.
i121

; Play Instrument #1 for one second.
i131

e

[* expsega.sco */

See Also

expseg, expsegr

Credits
Author: Gabriel Maldonado
New in Csound 3.57

expsegr

expsegr — Trace a series of exponential segments between specified points including a release segment.

Description

Trace a series of exponential segments between specified points including a release segment.

Syntax
ar expsegr ia, idurl, ib [, idur2] [, ic] [...], irel, iz

kr expsegr ia, idurl, ib [, idur2?] [, ic] [...], irel, iz

Initialization
ia -- starting value. Zero is illegal for exponentials.
ib, ic, etc. -- value after durl seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idurl -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

irel, iz -- duration in seconds and final value of a note releasing segment.

281

Chapter 15. Orchestra Opcodes and Operators

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

expsegr is amongst the Csound “r” units that contain a note-off sensor and release time extender. When each
senses an event termination or MIDI noteoff, it immediately extends the performance time of the current
instrument by irel seconds, and sets out to reach the value iz by the end of that period (no matter which

segment the unit is in). “r” units can also be modified by MIDI noteoff velocities. For two or more extenders
in an instrument, extension is by the greatest period.

Examples

Here is an example of the expsegr opcode. It uses the files expsegr.orc and expsegr.sco.

Example 15-1. Example of the expsegr opcode.

[* expsegr.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Use an amplitude envelope with second-long release.
kenv expsegr 0.01, p3/2, 1, p3/2, 0.01, 1, 1
kamp = kenv * 30000

al oscil kamp, kcps, 1
out al

endin

[* expsegr.orc */

/* expsegr.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 16384 10 1

; Make sure the score lasts for four seconds.
fo4

; p4 = frequency (in pitch-class notation).

; Play Instrument #1 for a half-second, p4=8.00
i 1005 8.00

; Play Instrument #1 for a half-second, p4=8.01
il11058.01

; Play Instrument #1 for a half-second, p4=8.02
i1205 8.02

; Play Instrument #1 for a half-second, p4=8.03
i 1305 8.03

e

[* expsegr.sco */

282

Chapter 15. Orchestra Opcodes and Operators

See Also

expon, expseg, expsega, line, linseg, linsegr

Credits
Author: Barry L. Vercoe
New in Csound 3.47

filelen

filelen ~ — Returns the length of a sound file.

Description

Returns the length of a sound file.

Syntax
ir filelen ifilcod

Initialization
ifilcod -- sound file to be queried

Performance

filelen returns the length of the sound file ifilcod in seconds.

Examples

Here is an example of the filelen opcode. It uses the files filelen.orc, filelen.sco, and mary.wav.

Example 15-1. Example of the filelen opcode.

[* filelen.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Print out the length of the audio file
; "mary.wav" in seconds.

283

Chapter 15. Orchestra Opcodes and Operators

ilen filelen "mary.wav"
print ilen

endin

* filelen.orc */

/* filelen.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

e

/* filelen.sco */

The audio file “mary.wav” is 3.5 seconds long. So filelen’s output should include a line like this:

instr 1: ilen = 3.501

See Also
filenchnls, filepeak, filesr

Credits
Author: Matt Ingalls
July, 1999

New in Csound version 3.57

filenchnls

filenchnls — Returns the number of channels in a sound file.

Description

Returns the number of channels in a sound file.

Syntax
ir filenchnls ifilcod

Initialization
ifilcod -- sound file to be queried

284

Chapter 15. Orchestra Opcodes and Operators

Performance

filenchnls returns the number of channels in the sound file ifilcod.

Examples

Here is an example of the filenchnls opcode. It uses the files filenchnlis.orc, filenchnls.sco, and mary.wav.

Example 15-1. Example of the filenchnls opcode.

/* filenchnls.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

. Instrument #1.
instr 1
: Print out the number of channels in the
; audio file "mary.wav".
ichnls filenchnls "mary.wav"
print ichnls
endin
/* filenchnls.orc */

/* filenchnls.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

e

/* filenchnls.sco */

The audio file “mary.wav” is monoaural (1 channel). So filenchnls’s output should include a line like this:

instr 1: ichnls = 1.000

See Also
filelen, filepeak, filesr

Credits
Author: Matt Ingalls
July, 1999

New in Csound version 3.57

285

Chapter 15. Orchestra Opcodes and Operators

filepeak

filepeak — Returns the peak absolute value of a sound file.

Description
Returns the peak absolute value of a sound file.

Syntax
ir filepeak ifilcod [, ichnl]

Initialization
ifilcod -- sound file to be queried
ichnl (optional, default=0) -- channel to be used in calculating the peak value. Default is 0.

« ichnl = 0 returns peak value of all channels

« ichnl > 0 returns peak value of ichnl

Performance

filepeak returns the peak absolute value of the sound file ifilcod. Currently, filepeak supports only AIFF-C
float files.

Examples

Here is an example of the filepeak opcode. It uses the files filepeak.orc, filepeak.sco, and mary.wav.

Example 15-1. Example of the filepeak opcode.

[* filepeak.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.
instr 1
; Print out the peak absolute value of the
; audio file "mary.wav".
ipeak filepeak "mary.wav"
print ipeak
endin
[* filepeak.orc */

[* filepeak.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

e

286

Chapter 15. Orchestra Opcodes and Operators

[* filepeak.sco */

The peak absolute value of the audio file “mary.wav” is 0.306902. So filepeak’s output should include a line
like this:

instr 1: ipeak = 0.307

See Also
filelen, filenchnls, filesr

Credits

Author: Matt Ingalls

July, 1999

New in Csound version 3.57

filesr
filesr — Returns the sample rate of a sound file.
Description

Returns the sample rate of a sound file.

Syntax
ir filesr ifilcod

Initialization
ifilcod -- sound file to be queried

Performance

filesr returns the sample rate of the sound file ifilcod.

Examples
Here is an example of the filesr opcode. It uses the files filesr.orc, filesr.sco, and mary.wav.

Example 15-1. Example of the filesr opcode.

/* filesr.orc */

287

Chapter 15. Orchestra Opcodes and Operators

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.
instr 1
; Print out the sampling rate of the
; audio file "mary.wav".
isr filesr "mary.wav"
print isr
endin
* filesr.orc */

/* filesr.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for 1 second.
i101

e

/* filesr.sco */

The audio file “mary.wav” was sampled at 44.1 KHz. So filesr’s output should include a line like this:

instr 1: isr = 44100.000

See Also
filelen, filenchnls, filepeak

Credits

Author: Matt Ingalls

July, 1999

New in Csound version 3.57

filter2

filter2 ~ — Performs filtering using a transposed form-II digital filter lattice with no time-varying control.

Description

General purpose custom filter with time-varying pole control. The filter coefficients implement the following
difference equation:

(1)*y(n) = b0*x[n] + b1*x[n-1] +...+ bM*x[n-M] - al*y[n-1] -...- aN*y[n-N]

288

Chapter 15. Orchestra Opcodes and Operators

the system function for which is represented by:

B(Z) b0+bl1*Z! +...+ bM*ZM
H(Z) = co- = o
AZ) 1+al*Z!' +...+aN*zZN

Syntax
ar filter2 asig, iM, iN, ib0, ib1, ..., ibM, ial, ia2, ..., iaN
kr filter2 ksig, iM, iN, ib0, ib1, ..., ibM, ial, ia2, ..., iaN

Initialization

At initialization the number of zeros and poles of the filter are specified along with the corresponding zero
and pole coefficients. The coefficients must be obtained by an external filter-design application such as
Matlab and specified directly or loaded into a table via GENO1.

Performance

The filter2 opcodes perform filtering using a transposed form-II digital filter lattice with no time-varying
control.

Since filter2 implements generalized recursive filters, it can be used to specify a large range of general DSP
algorithms. For example, a digital waveguide can be implemented for musical instrument modeling using a
pair of delayr and delayw opcodes in conjunction with the filter2 opcode.

Examples

A first-order linear-phase lowpass linear-phase FIR filter operating on a k-rate signal:

k1l filter2 ksig, 2, 0, 0.5, 0.5 o k-rate FIR filter

See Also
zfilter2

Credits

Author: Michael A. Casey
M.LT.

Cambridge, Mass.

1997

289

Chapter 15. Orchestra Opcodes and Operators

fin
fin — Read signals from a file at a-rate.
Description

Read signals from a file at a-rate.

Syntax

fin ifilename, iskipframes, iformat, ainl1 [, ain2] [, ain3] [,...]

Initialization
ifilename -- input file name (can be a string or a handle number generated by fiopen)
iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

« 0 - 32 bit floating points without header
« 1-16 bitintegers without header

Performance

fin (file input) is the complement of fout: it reads a multichannel file to generate audio rate signals. At the
present time no header is supported for the file format. The user must be sure that the number of channels of
the input file is the same as the number of ainX arguments.

See Also

fini, fink

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

fini

fini — Read signals from a file at i-rate.

290

Chapter 15. Orchestra Opcodes and Operators

Description

Read signals from a file at i-rate.

Syntax

fini ifilename, iskipframes, iformat, inl [, in2] [, in3] |, ...]

Initialization
ifilename -- input file name (can be a string or a handle number generated by fiopen)
iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

« 0 - floating points in text format (loop; see below)
« 1 -floating points in text format (no loop; see below)

2 - 32 bit floating points in binary format (no loop)

Performance

fini is the complement of fouti and foutir. It reads the values each time the corresponding instrument note is
activated. When iformat is set to 0 and the end of file is reached, the file pointer is zeroed. This restarts the
scan from the beginning. When iformat is set to 1 or 2, no looping is enabled and at the end of file the
corresponding variables will be filled with zeroes.

See Also

fin, fink

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

fink
fink — Read signals from a file at k-rate.
Description

Read signals from a file at k-rate.

291

Syntax

fink ifilename, iskipframes, iformat, kin1 [, kin2] [, kin3] [,...]

Initialization

ifilename -- input file name (can be a string or a handle number generated by fiopen)

iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

« 0 - 32 bit floating points without header
« 1-16 bitintegers without header

Performance

fink is the same as fin but operates at k-rate.

See Also

fin, fini

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

fiopen
fiopen — Opens a file in a specific mode.
Description

fiopen can be used to open a file in one of the specified modes.

Syntax
ihandle fiopen ifilename, imode

Chapter 15. Orchestra Opcodes and Operators

292

Initialization

ihandle -- a number which specifies this file.
ifilename -- the output file’s name (in double-quotes).

imode -- choose the mode of opening the file. imode can be a value chosen among the following:

» 0 - open a text file for writing
« 1-open a text file for reading
« 2 - open a binary file for writing

« 3 - open a binary file for reading

Performance

Chapter 15. Orchestra Opcodes and Operators

fiopen opens a file to be used by the fout family of opcodes. It must be defined in the header section, external

to any instruments. It returns a number, ihandle, which unequivocally refers to the opened file.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir, the target file can be only specified by means of a handle-number.

See Also
fout, fouti, foutir, foutk

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

flanger

flanger — A user controlled flanger.

Description

A user controlled flanger.

Syntax
ar flanger asig, adel, kfeedback [, imaxd]

293

Chapter 15. Orchestra Opcodes and Operators

Initialization

imaxd(optional) -- maximum delay in seconds (needed for inital memory allocation)

Performance

asig -- input signal

adel -- delay in seconds

kfeedback -- feedback amount (in normal tasks this should not exceed 1, even if bigger values are allowed)

This unit is useful for generating choruses and flangers. The delay must be varied at a-rate connecting adel to
an oscillator output. Also the feedback can vary at k-rate. This opcode is implemented to allow kr different
than sr (else delay could not be lower than ksmps) enhancing realtime performance. This unit is very similar
to wguidel, the only difference is flanger does not have the lowpass filter.

Examples
Here is an example of the flanger opcode. It uses the files flanger.orc, flanger.sco, and beats.wav.

Example 15-1. Example of the flanger opcode.

[* flanger.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.
instr 1
; Use the "beat.wav" audio file.

asig soundin "beats.wav"

; Vary the delay amount from 0 to 0.01 seconds.
adel line 0, p3, 0.01
kfeedback = 0.7

; Apply flange to the input signal.
aflang flanger asig, adel, kfeedback

; It can get loud, so clip its amplitude to 30,000.
al clip aflang, 1, 30000
out al

endin

[* flanger.orc */

/* flanger.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for two seconds.
il102

e

[* flanger.sco */

294

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado
Italy

New in Csound version 3.49

flashtxt

flashtxt ~ — Allows text to be displayed from instruments like sliders

Description

Allows text to be displayed from instruments like sliders etc. (only on Unix and Windows at present)

Syntax
flashtxt iwhich, String

Initialization
iwhich -- the number of the window.
String -- the string to be displayed.

Performance

A window is created, identified by the iwhich argument, with the text string displayed. If the text is replaced
by a number then the window id deleted. Note that the text windows are globally numbered so different
instruments can change the text, and the window survives the instance of the instrument.

Examples
Here is an example of the flashtxt opcode. It uses the files flashtxt.orc and flashtxt.sco.

Example 15-1. Example of the flashtxt opcode.

/* flashtxt.orc */

; Initialize the global variables.
sr = 44100

kr = 44100

ksmps = 1

nchnls = 1

instr 1
flashtxt 1, "Instr 1 live"
ao oscil 4000, 440, 1
out ao

endin

/* flashtxt.orc */

* flashtxt.sco */
; Table 1: an ordinary sine wave.

295

Chapter 15. Orchestra Opcodes and Operators

f10 32768 10 1

; Play Instrument #1 for three seconds.
i103

e

/* flashtxt.sco */

fmb3

fmb3 — Uses FM synthesis to create a Hammond B3 organ sound.

Description

Uses FM synthesis to create a Hammond B3 organ sound. It comes from a family of FM sounds, all using 4
basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmb3 kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

fmb3 takes 5 tables for initialization. The first 4 are the basic inputs and the last is the low frequency oscillator
(LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
 ifn2-- sine wave
« ifn3-- sine wave

* ifn4 -- sine wave

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

e kcl -- Total mod index
e kc2 -- Crossfade of two modulators
« Algorithm -- 4

kvdepth -- Vibrator depth

296

kvrate -- Vibrator rate

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the fmb3 opcode. It uses the files fimb3.orc and fimb3.sco.

Example 15-1. Example of the fmb3 opcode.

/* fmb3.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
5000

=~
Q
3
©
I
IRy

(6]

kvdepth = 0.005
kvrate 6

ifnl
ifn2
ifn3
ifn4
ivin

RPRrRrRRI

al fmb3 kamp, kfreq, kcl, kc2, kvdepth, kvrate,
ifnl, ifn2, ifn3, ifn4, ivfn
out al
endin
/* fmb3.orc */

/* fmb3.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 32768 10 1

; Play Instrument #1 for two seconds.
i102

e

/* fmb3.sco */

See Also
fmbell, fmmetal, fmpercfl, fmrhode, fmwurlie

\

297

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fmbell
fmbell — Uses FM synthesis to create a tublar bell sound.
Description

Chapter 15. Orchestra Opcodes and Operators

Uses FM synthesis to create a tublar bell sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmbell kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

 ifnl -- sine wave
 ifn2-- sine wave
« ifn3-- sine wave

* ifn4 -- sine wave

Performance
kamp -- Amplitude of note.
kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

» kcl -- Mod index 1
« kc2 -- Crossfade of two outputs
» Algorithm -- 5

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

298

Chapter 15. Orchestra Opcodes and Operators

Examples
Here is an example of the fmbell opcode. It uses the files fmbell.orc and finbell.sco.

Example 15-1. Example of the fmbell opcode.

[* fmbell.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
kamp =
kfreq =
kel = 5
kc2 = 5
kvdepth = 0.005
6

10000
880

=

S

@
[TR TR T
PR RRREll

al fmbell kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn
out al

endin

/* fmbell.orc */

/* fmbell.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 32768 10 1

; Play Instrument #1 for three seconds.
i103

e

/* fmbell.sco */

See Also
fmb3, fmmetal, fmpercfl, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

299

Chapter 15. Orchestra Opcodes and Operators

fmmetal

fmmetal — Uses FM synthesis to create a “Heavy Metal” sound.

Description

Uses FM synthesis to create a “Heavy Metal” sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmmetal kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
 ifn2 -- twopeaks.aiff
« ifn3 -- twopeaks.aiff

 ifn4 -- sine wave

Note: The file “twopeaks.aiff’ is also available at ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

o kcl -- Total mod index
e kc2 -- Crossfade of two modulators
« Algorithm -- 3

kvdepth -- Vibrator depth
kvrate -- Vibrator rate

300

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the fmmetal opcode. It uses the files finmetal.orc, fmmetal.sco, and twopeaks.aiff .

Example 15-1. Example of the fmmetal opcode.

[* fmmetal.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 22050

kr = 2205

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
kamp =
kfreq =
kel = 6
kc2 = 5

kvdepth = 0

kvrate 0

ifnl

ifn2

ifn3

ifn4

ivfn

10000
440

RPERERNNR I

al fmmetal kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivin

out al
endin
/* fmmetal.orc */

/* fmmetal.sco */

[* Written by Kevin Conder */

; Table #1, a normal sine wave.

f 10 32768 10 1

; Table #2, the "twopeaks.aiff' audio file.
f 20 256 1 "twopeaks.aiff' 0 0 0

; Play Instrument #1 for one second.
i101

e

/* fmmetal.sco */

See Also
fmb3, fmbell, fmpercfl, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

301

Chapter 15. Orchestra Opcodes and Operators

fmpercfl

fmpercfl — Uses FM synthesis to create a percussive flute sound.

Description

Uses FM synthesis to create a percussive flute sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmpercfl kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
* ifn2 -- sine wave
» ifn3 -- sine wave

« ifn4 -- sine wave

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

e kcl -- Total mod index
o kc2 -- Crossfade of two modulators
» Algorithm -- 4

kvdepth -- Vibrator depth
kvrate -- Vibrator rate

302

Chapter 15. Orchestra Opcodes and Operators

Examples
Here is an example of the fmpercfl opcode. It uses the files finpercfl.orc and fimpercfl.sco.

Example 15-1. Example of the fmpercfl opcode.

[* fmpercfl.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
kamp =
kfreq =
kel = 5
kc2 = 5

kvdepth = 0.005

kvrate 6

ifnl

ifn2

ifn3

ifn4

ivfn

30000
220

RFRrRrRRIl

al fmpercfl kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivin
out al

endin

[* fmpercfl.orc */

[* fmpercfl.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.
f10 32768 10 1

; Play Instrument #1 for one second.
i101

e

[* fmpercfl.sco */

See Also
fmb3, fmbell, fmmetal, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

303

Chapter 15. Orchestra Opcodes and Operators

fmrhode

fmrhode — Uses FM synthesis to create a Fender Rhodes electric piano sound.

Description

Uses FM synthesis to create a Fender Rhodes electric piano sound. It comes from a family of FM sounds, all
using 4 basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax
ar fmrhode kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
 ifn2-- sine wave
« ifn3-- sine wave
« ifn4 -- fwavblnk.aiff

Note: The file “fwavbink.aiff” is also available at ftp:/ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

+ kcl -- Mod index 1
» kc2 -- Crossfade of two outputs
« Algorithm -- 5

kvdepth -- Vibrator depth
kvrate -- Vibrator rate

304

Examples

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the fmrhode opcode. It uses the files finrhode.orc, fmrhode.sco, and fwavblnk.aiff .

Example 15-1. Example of the fmrhode opcode.

[* fmrhode.orc */

/* Written by Kevin Conder */

; Initialize the global variables.

sr = 22050

kr = 2205

ksmps = 10

nchnls = 1

; Instrument #1.

instr 1
kamp =
kfreq =
kel = 6
kc2 = 0

kvdepth = 0.01

kvrate 3

ifnl

ifn2

ifn3

ifn4

ivfn

30000
220

PNRREI

al fmrhode kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivin

out al
endin
/* fmrhode.orc */

/* fmrhode.sco */

[* Written by Kevin Conder */

; Table #1, a sine wave.

f10 32768 10 1

; Table #2, the "fwavblnk.aiff" audio file.
f 2 0256 1 "fwavbink.aiff* 0 0 O

; Play Instrument #1 for two seconds.
i102

e

/* fmrhode.sco */

See Also
fmb3, fmbell, fmmetal, fmpercfl, fmwurlie

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

305

Chapter 15. Orchestra Opcodes and Operators

fmvoice

fmvoice — FM Singing Voice Synthesis

Description
FM Singing Voice Synthesis

Syntax
ar fmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1, ifn2, ifn3, ifn4, ivibfn

Initialization
ifnl, ifn2, ifn3,ifn3 -- Tables, usually of sinewaves.

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kvowel -- the vowel being sung, in the range 0-64

ktilt -- the spectral tilt of the sound in the range 0 to 99
kvibamt -- Depth of vibrato

kvibrate -- Rate of vibrato

Examples
Here is an example of the fmvoice opcode. It uses the files finvoice.orc and fmvoice.sco.

Example 15-1. Example of the fmvoice opcode.

/* fmvoice.orc */

; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
kamp = 30000
kfreq = 110
; Use the fourth p-field for the vowel.
kvowel = p4
ktit = 0
kvibamt = 0.005
kvibrate = 6
ifnl = 1
ifn2 = 1
ifn3 = 1

306

ifn4 = 1
ivibfn = 1

Chapter 15. Orchestra Opcodes and Operators

al fmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifnl, ifn2, ifn3, ifn4, ivibfn

out al
endin
/* fmvoice.orc */

/* fmvoice.sco */

; Table #1, a sine wave.

f10 16384 10 1

k]
2

e v ol ol v il v il o)
22 W& E 2 o8 |

PP P _FP_-F =

nstrument #1 for

nitrument #1 for
ngtrument #1 for
ngtrument #1 for
ngtrument #1 for

e
/* fmvoice.sco */

Credits

Author: John ffitch (after Perry Cook)

vowel (a value from O to 64)

one second,
one second,
one second,
one second,

one second,

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

fmwurlie

vowel=1.
vowel=2.
vowel=3.
vowel=4.

vowel=5.

fmwurlie — Uses FM synthesis to create a Wurlitzer electric piano sound.

Description

Uses FM synthesis to create a Wurlitzer electric piano sound. It comes from a family of FM sounds, all using 4
basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmwurlie kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn

307

Chapter 15. Orchestra Opcodes and Operators

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

« ifnl -- sine wave
« ifn2 -- sine wave
 ifn3-- sine wave
« ifn4 -- fwavblnk.aiff

Note: The file “fwavblnk.aiff” is also available at ftp:/ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kcl, kc2 -- Controls for the synthesizer:

e kcl -- Mod index 1
« kc2 -- Crossfade of two outputs
» Algorithm --5

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

Examples

Here is an example of the fmwurlie opcode. It uses the files fmwurlie.orc, fmwurlie.sco, and fwavbink.aiff .

Example 15-1. Example of the fmwurlie opcode.

[* fmwurlie.orc */

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050

kr = 2205

ksmps = 10

nchnls = 1

. Instrument #1.

instr 1
kamp =
kfreq =
kcl = 6
kc2 = 1

kvdepth = 0.005

kvrate = 6

ifnl = 1

30000
440

308

Chapter 15. Orchestra Opcodes and Operators

ifn2
ifn3
ifn4
ivin

RPNR e

al fmwurlie kamp, kfreq, kcl, kc2, kvdepth, kvrate, ifnl, ifn2, ifn3, ifn4, ivfn
out al

endin

/* fmwurlie.orc */

/* fmwurlie.sco */

[* Written by Kevin Conder */

; Table #1, a sine wave.

f 10 32768 10 1

; Table #2, the "fwavblnk.aiff" audio file.
f 20 256 1 "fwavbink.aiff* 0 0 O

; Play Instrument #1 for two seconds.
i102

e

/* fmwurlie.sco */

See Also
fmb3, fmbell, fmmetal, fmpercfl, fmrhode

Credits

Author: John ffitch (after Perry Cook)
University of Bath, Codemist Ltd.
Bath, UK

New in Csound version 3.47

fof
fof — Produces sinusoid bursts useful for formant and granular synthesis.
Description

Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral peak at xform. For
xfund above 25 Hz these bursts produce a speech-like formant with spectral characteristics determined by
the k-input parameters. For lower fundamentals this generator provides a special form of granular synthesis.

Syntax
ar fof xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, ifmode] [, iskip]

309

Chapter 15. Orchestra Opcodes and Operators

Initialization

iolaps -- number of preallocated spaces needed to hold overlapping burst data. Overlaps are frequency
dependent, and the space required depends on the maximum value of xfund * kdur. Can be over-estimated
at no computation cost. Uses less than 50 bytes of memory per iolap.

ifna, ifnb -- table numbers of two stored functions. The first is a sine table for sineburst synthesis (size of at
least 4096 recommended). The second is a rise shape, used forwards and backwards to shape the sineburst
rise and decay; this may be linear (GEN07) or perhaps a sigmoid (GEN19).

itotdur -- total time during which this fof will be active. Normally set to p3. No new sineburst is created if it
cannot complete its kdur within the remaining ifotdur.

iphs (optional, default=0) -- initial phase of the fundamental, expressed as a fraction of a cycle (0 to 1). The
default value is 0.

ifmode (optional, default=0) -- formant frequency mode. If zero, each sineburst keeps the xform frequency it
was launched with. If non-zero, each is influenced by xform continuously. The default value is 0.

iskip (optional, default=0) -- If non-zero, skip initialisation (allows legato use).

Performance

xamp -- peak amplitude of each sineburst, observed at the true end of its rise pattern. The rise may exceed
this value given a large bandwidth (say, Q < 10) and/or when the bursts are overlapping.

xfund -- the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

xform -- the formant frequency, i.e. freq of the sinusoid burst induced by each xfund impulse. This frequency
can be fixed for each burst or can vary continuously (see ifimode).

koct -- octaviation index, normally zero. If greater than zero, lowers the effective xfund frequency by
attenuating odd-numbered sinebursts. Whole numbers are full octaves, fractions transitional.

kband -- the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the rate of
exponential decay throughout the sineburst, before the enveloping described below is applied.

kris, kdur, kdec -- rise, overall duration, and decay times (in seconds) of the sinusoid burst. These values
apply an enveloped duration to each burst, in similar fashion to a Csound linen generator but with rise and
decay shapes derived from the ifnb input. kris inversely determines the skirtwidth (at -40 dB) of the induced
formant region. kdur affects the density of sineburst overlaps, and thus the speed of computation. Typical
values for vocal imitation are .003,.02,.007.

Csound’s fof generator is loosely based on Michael Clarke’s C-coding of IRCAM’s CHANT program (Xavier
Rodet et al.). Each fof produces a single formant, and the output of four or more of these can be summed to
produce a rich vocal imitation. fof synthesis is a special form of granular synthesis, and this implementation
aids transformation between vocal imitation and granular textures. Computation speed depends on kdur,
xfund, and the density of any overlaps.

Examples
Here is an example of the fof opcode. It uses the files fof.orc and fof.sco.

Example 15-1. Example of the fof opcode.

/* fof.orc */

/* Adapted from 1401.orc by Michael Clarke */
; Initialize the global variables.

sr = 44100

kr = 4410

ksmps 10

nchnls 1

310

)

; Instrument #1.

instr 1

; Combine five formants together to create
; an alto-"a" sound.

; Values common to all of the formants.
kfund init 261.659

koct init O

kris init 0.003
kdur init 0.02
kdec init 0.007
iolaps = 14850
ifna = 1

ifnb = 2
itotdur = p3

. First formant.
klamp = ampdb(0)
klform init 800
klband init 80

; Second formant.
k2amp = ampdb(-4)
k2form init 1150
k2band init 90

; Third formant.
k3amp = ampdb(-20)
k3form init 2800
k3band init 120

; Fourth formant.
kdamp = ampdb(-36)
k4form init 3500
kdband init 130

. Fifth formant.
kS5amp = ampdb(-60)
k5form init 4950
k5band init 140

al fof klamp, kfund, klform, koct, klband, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

a2 fof k2amp, kfund, k2form, koct, k2band, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

a3 fof k3amp, kfund, k3form, koct, k3band, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

a4 fof k4amp, kfund, k4form, koct, k4band, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

ab fof kbamp, kfund, k5form, koct, k5Sband, kris,
kdur, kdec, iolaps, ifna, ifnb, itotdur

; Combine all of the formants together.
out (al+a2+a3+ad+a5) * 16384

endin
/* fof.orc */

[* fof.sco */
/* Adapted from 1401.sco by Michael Clarke */

f

f

Table #1, a sine wave.
1 0 4096 10 1

; Table #2.

2 0 1024 19 0.5 0.5 270 0.5

Chapter 15. Orchestra Opcodes and Operators

311

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for three seconds.
il103

e

/* fof.sco */

The formant values for the alto-"a" sound were taken from the Formant Values Appendix.

See Also
fof2, Formant Values Appendix

fof2
fof2 — Produces sinusoid bursts including k-rate incremental indexing with each successive burst.
Description

Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral peak at xform. For
xfund above 25 Hz these bursts produce a speech-like formant with spectral characteristics determined by
the k-input parameters. For lower fundamentals this generator provides a special form of granular synthesis.

fof2 implements k-rate incremental indexing into ifna function with each successive burst.

Syntax
ar fof2 xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur, kphs, kgliss [, iskip]

Initialization

iolaps -- number of preallocated spaces needed to hold overlapping burst data. Overlaps are frequency
dependent, and the space required depends on the maximum value of xfund * kdur. Can be over-estimated
at no computation cost. Uses less than 50 bytes of memory per iolap.

ifna, ifnb -- table numbers of two stored functions. The first is a sine table for sineburst synthesis (size of at
least 4096 recommended). The second is a rise shape, used forwards and backwards to shape the sineburst
rise and decay; this may be linear (GEN07) or perhaps a sigmoid (GEN19).

itotdur -- total time during which this fof will be active. Normally set to p3. No new sineburst is created if it
cannot complete its kdur within the remaining itotdur.

iskip (optional, default=0) -- If non-zero, skip initialization (allows legato use).

Performance

xamp -- peak amplitude of each sineburst, observed at the true end of its rise pattern. The rise may exceed
this value given a large bandwidth (say, Q < 10) and/or when the bursts are overlapping.

xfund -- the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

xform -- the formant frequency, i.e. freq of the sinusoid burst induced by each xfund impulse. This frequency
can be fixed for each burst or can vary continuously (see ifimode).

koct -- octaviation index, normally zero. If greater than zero, lowers the effective xfund frequency by
attenuating odd-numbered sinebursts. Whole numbers are full octaves, fractions transitional.

312

Chapter 15. Orchestra Opcodes and Operators

kband -- the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the rate of
exponential decay throughout the sineburst, before the enveloping described below is applied.

kris, kdur, kdec -- rise, overall duration, and decay times (in seconds) of the sinusoid burst. These values
apply an enveloped duration to each burst, in similar fashion to a Csound linen generator but with rise and
decay shapes derived from the ifnb input. kris inversely determines the skirtwidth (at -40 dB) of the induced
formant region. kdur affects the density of sineburst overlaps, and thus the speed of computation. Typical
values for vocal imitation are .003,.02,.007.

kphs -- allows k-rate indexing of function table ifna with each successive burst, making it suitable for
time-warping applications. Values of for kphs are normalized from 0 to 1, 1 being the end of the function
table ifna.

kgliss -- sets the end pitch of each grain relative to the initial pitch, in octaves. Thus kgliss = 2 means that the
grain ends two octaves above its initial pitch, while kgliss = -5/3 has the grain ending a perfect major sixth
below. Note: There are no optional parameters in fof2

Csound’s fof generator is loosely based on Michael Clarke’s C-coding of IRCAM’s CHANT program (Xavier
Rodet et al.). Each fof produces a single formant, and the output of four or more of these can be summed to
produce a rich vocal imitation. fof synthesis is a special form of granular synthesis, and this implementation
aids transformation between vocal imitation and granular textures. Computation speed depends on kdur,
xfund, and the density of any overlaps.

See Also

fof

Credits

Author: Rasmus Ekman

fof2 is a modification of fof by Rasmus Ekman
New in Csound3.45

fog

fog — Audio output is a succession of grains derived from data in a stored function table

Description

Audio output is a succession of grains derived from data in a stored function table ifna. The local envelope of
these grains and their timing is based on the model of fof synthesis and permits detailed control of the
granular synthesis.

Syntax

ar fog xamp, xdens, xtrans, aspd, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, itmode] [,
iskip]

313

Chapter 15. Orchestra Opcodes and Operators

Initialization

iolaps -- number of pre-located spaces needed to hold overlapping grain data. Overlaps are density
dependent, and the space required depends on the maximum value of xdens * kdur. Can be over-estimated at
no computation cost. Uses less than 50 bytes of memory per iolaps.

ifna, ifnb -- table numbers of two stored functions. The first is the data used for granulation, usually from a
soundfile (GENOI). The second is a rise shape, used forwards and backwards to shape the grain rise and
decay; this is normally a sigmoid (GEN19) but may be linear (GEN05).

itotdur -- total time during which this fog will be active. Normally set to p3. No new grain is created if it
cannot complete its kdur within the remaining ifotdur.

iphs (optional) -- initial phase of the fundamental, expressed as a fraction of a cycle (0 to 1). The default value
is 0.

itmode (optional) -- transposition mode. If zero, each grain keeps the xtrans value it was launched with. if
non-zero, each is influenced by xtrans continuously. The default value is 0.

iskip (optional, default=0) -- If non-zero, skip initialization (allows legato use).

Performance

xamp -- amplitude factor. Amplitude is also dependent on the number of overlapping grains, the interaction
of the rise shape (ifnb) and the exponential decay (kband), and the scaling of the grain waveform (ifna). The
actual amplitude may therefore exceed xamp.

xdens -- density. The frequency of grains per second.

xtrans -- transposition factor. The rate at which data from the stored function table ifna is read within each
grain. This has the effect of transposing the original material. A value of 1 produces the original pitch. Higher
values transpose upwards, lower values downwards. Negative values result in the function table being read
backwards.

aspd -- speed. The rate at which successive grains advance through the stored function table ifna. aspd is in
the form of an index (0 to 1) to ifna. This determines the movement of a pointer used as the starting point for
reading data within each grain. (xtrans determines the rate at which data is read starting from this pointer.)

koct -- octaviation index. The operation of this parameter is identical to that in fof.

kband, kris, kdur, kdec -- grain envelope shape. These parameters determine the exponential decay (kband),
and the rise (kris), overall duration (kdur,) and decay (kdec) times of the grain envelope. Their operation is
identical to that of the local envelope parameters in fof.

The Csound fog generator is by Michael Clarke, extending his earlier work based on IRCAM’s fof algorithm.

Examples

;p4 = transposition factor

;p5 = speed factor

;p6 = function table for grain data

il = sr/ftlen(p6) ;scaling to reflect sample rate and table length

al phasor i1*p5 ;index for speed
a2 fog 5000, 100, p4, al, O, O, , .01, .02, .01, 2, p6, 1, p3, O, 1

314

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Michael Clark

Huddersfield

May 1997

The Csound fog generator is by Michael Clarke, extending his earlier work based on IRCAM’s fof algorithm.
Added notes by Rasmus Ekman on September 2002.

New in version 3.46

fold
fold — Adds artificial foldover to an audio signal.
Description

Adds artificial foldover to an audio signal.

Syntax

ar fold asig, kincr

Performance
asig -- input signal
kincr -- amount of foldover expressed in multiple of sampling rate. Must be >=1

fold is an opcode which creates artificial foldover. For example, when kincr is equal to 1 with sr=44100, no
foldover is added. When kincr is set to 2, the foldover is equivalent to a downsampling to 22050, when it is set
to 4, to 11025 etc. Fractional values of kincr are possible, allowing a continuous variation of foldover amount.
This can be used for a wide range of special effects.

Examples
Here is an example of the fold opcode. It uses the files fold.orc and fold.sco.

Example 15-1. Example of the fold opcode.

/* fold.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Use an ordinary sine wave.
asig oscils 30000, 100, 1

; Vary the fold-over amount from 1 to 200.
kincr line 1, p3, 200

315

Chapter 15. Orchestra Opcodes and Operators

al fold asig, kincr

out al
endin
/* fold.orc */

/* fold.sco */

; Play Instrument #1 for four seconds.
i104

e

/* fold.sco */

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

follow
follow — Envelope follower unit generator.
Description

Envelope follower unit generator.

Syntax
ar follow asig, idt

Initialization

idt -- This is the period, in seconds, that the average amplitude of asig is reported. If the frequency of asig is
low then idt must be large (more than half the period of asig)

Performance

asig -- This is the signal from which to extract the envelope.

316

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the follow opcode. It uses the files follow.orc, follow.sco, and beats.wav.

Example 15-1. Example of the follow opcode.

[* follow.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - play a WAV file.
instr 1

al soundin "beats.wav"

out al
endin

; Instrument #2 - have another waveform follow the WAV file.
instr 2

;. Follow the WAV file.
as soundin "beats.wav"

af follow as, 0.01

; Use a sine waveform.

as oscil 4000, 440, 1

; Have it use the amplitude of the followed WAV file.
al balance as, af

out al
endin
/* follow.orc */

[* follow.sco */

/* Written by Kevin Conder */

; Just generate a nice, ordinary sine wave.
f 10 32768 10 1

; Play Instrument #1 for two seconds.

i102
; Play Instrument #2 for two seconds.

i222
e
/* follow.sco */

To avoid zipper noise, by discontinuities produced from complex envelope tracking, a lowpass filter could be
used, to smooth the estimated envelope.

Credits

Author: Paris Smaragdis
MIT, Cambridge

1995

317

Chapter 15. Orchestra Opcodes and Operators

follow?2

follow2 — Another controllable envelope extractor.

Description
A controllable envelope extractor using the algorithm attributed to Jean-Marc Jot.

Syntax
ar follow2 asig, katt, krel

Performance

asig -- the input signal whose envelope is followed
katt -- the attack rate (60dB attack time in seconds)
krel -- the decay rate (60dB decay time in seconds)

The output tracks the amplitude envelope of the input signal. The rate at which the output grows to follow
the signal is controlled by the katt, and the rate at which it decreases in response to a lower amplitude, is
controlled by the krel. This gives a smoother envelope than follow.

Examples

Here is an example of the follow2 opcode. It uses the files follow2.orc, follow2.sco, and beats.wav.

Example 15-1. Example of the follow2 opcode.

[* follow2.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1 - play a WAV file.
instr 1

al soundin "beats.wav"

out al
endin

. Instrument #2 - have another waveform follow the WAV file.
instr 2

;. Follow the WAV file.

as soundin "beats.wav"

af follow2 as, 0.01, 0.1

; Use a noise waveform.

ar rand 44100

; Have it use the amplitude of the followed WAV file.
al balance ar, af

out al

endin
/* follow2.orc */

318

Chapter 15. Orchestra Opcodes and Operators

/* follow2.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for two seconds.
i102

; Play Instrument #2 for two seconds.
i222

e

/* follow2.sco */

Credits

Author: John ffitch

The algorithm for the follow? is attributed to Jean-Marc Jot.
University of Bath, Codemist Ltd.

Bath, UK

February, 2000

Added notes by Rasmus Ekman on September 2002.

New in Csound version 4.03

foscil
foscil — A basic frequency modulated oscillator.
Description

A basic frequency modulated oscillator.

Syntax

ar foscil xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

Initialization
ifn -- function table number. Requires a wrap-around guard point.

iphs (optional, default=0) -- initial phase of waveform in table ifn, expressed as a fraction of a cycle (0 to 1). A
negative value will cause phase initialization to be skipped. The default value is 0.

Performance

xamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal measured in cycles per second.
xcar -- the carrier frequency.

xmod -- the modulating frequency.

319

Chapter 15. Orchestra Opcodes and Operators

kndx -- the modulation index.

foscil is a composite unit that effectively banks two oscil opcodes in the familiar Chowning FM setup, wherein
the audio-rate output of one generator is used to modulate the frequency input of another (the “carrier”).
Effective carrier frequency = kcps * xcar, and modulating frequency = kcps * xmod. For integral values of xcar
and xmod, the perceived fundamental will be the minimum positive value of kcps * (xcar -- n * xmod), n =
1,1,2,... The input kndx is the index of modulation (usually time-varying and ranging 0 to 4 or so) which
determines the spread of acoustic energy over the partial positions given by n =0,1,2,.., etc. ifn should point
to a stored sine wave. Previous to version 3.50, xcar and xmod could be k-rate only.

Examples
Here is an example of the foscil opcode. It uses the files foscil.orc and foscil.sco.

Example 15-1. Example of the foscil opcode.

/* foscil.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1 - a basic FM waveform.

instr 1
kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn =1
al foscil kamp, kcps, kcar, kmod, kndx, ifn
out al
endin

/* foscil.orc */

/* foscil.sco */

[* Written by Kevin Conder */
; Table #1, a sine wave.

f 10 16384 10 1

; Play Instrument #1 for 2 seconds.
i102

e

/* foscil.sco */

foscili

foscili — Basic frequency modulated oscillator with linear interpolation.

320

Chapter 15. Orchestra Opcodes and Operators

Description

Basic frequency modulated oscillator with linear interpolation.

Syntax

ar foscili xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

Initialization
ifn -- function table number. Requires a wrap-around guard point.

iphs (optional, default=0) -- initial phase of waveform in table ifn, expressed as a fraction of a cycle (0 to 1). A
negative value will cause phase initialization to be skipped. The default value is 0.

Performance

xamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal measured in cycles per second.
xcar -- the carrier frequency.

xmod -- the modulating frequency.

kndx -- the modulation index.

foscili differs from foscil in that the standard procedure of using a truncated phase as a sampling index is here
replaced by a process that interpolates between two successive lookups. Interpolating generators will
produce a noticeably cleaner output signal, but they may take as much as twice as long to run. Adequate
accuracy can also be gained without the time cost of interpolation by using large stored function tables of 2K,
4K or 8K points if the space is available.

Examples
Here is an example of the foscili opcode. It uses the files foscili.orc and foscili.sco.

Example 15-1. Example of the foscili opcode.

/* foscili.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Instrument #1 - a basic FM waveform.

instr 1
kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn =1
al foscil kamp, kcps, kcar, kmod, kndx, ifn
out al
endin

321

Chapter 15. Orchestra Opcodes and Operators

; Instrument #2 - the basic FM waveform with extra interpolation.

instr 2
kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn = 1
al foscili kamp, kcps, kcar, kmod, kndx, ifn
out al
endin

/* foscili.orc */

/* foscili.sco */

/* Written by Kevin Conder */

; Table #1, a sine wave table with a small amount of data.
f 10 409 10 1

; Play Instrument #1, the basic FM instrument, for
; two seconds. This should sound relatively rough.
il102

; Play Instrument #2, the interpolated FM instrument, for
; two seconds. This should sound relatively smooth.
i222

e

/* foscili.sco */

fout
fout — Outputs a-rate signals to an arbitrary number of channels.
Description

fout outputs N a-rate signals to a specified file of N channels.

Syntax
fout ifilename, iformat, aoutl [, aout2, aout3,...,aoutN]

Initialization
ifilename -- the output file’s name (in double-quotes).

iformat -- a flag to choose output file format:

« 0 - 32-bit floating point samples without header (binary PCM multichannel file)
+ 1-16-bit integers without header (binary PCM multichannel file)

322

Chapter 15. Orchestra Opcodes and Operators

« 2 -16-bit integers with a header. The header type depends on the render format. The default header type is
the IRCAM format. If the user chooses the AIFF format (using the -A flag), the header format will be a AIFF
type. If the user chooses the WAV format (using the -W flag), the header format will be a WAV type.

Performance
aoutl,... aoutN -- signals to be written to the file

fout (file output) writes samples of audio signals to a file with any number of channels. Channel number
depends by the number of aoutN variables (i.e. a mono signal with only an a-rate argument, a stereo signal
with two a-rate arguments etc.) Maximum number of channels is fixed to 64. Multiple fout opcodes can be
present in the same instrument, referring to different files.

Notice that, unlike out, outs and outq, fout does not zero the audio variable so you must zero it after calling it.
If polyphony is to be used, you can use vincr and clear opcodes for this task.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir, the target file can be only specified by means of a handle-number.

Examples

Here is an example of the fout opcode. It uses the files fout.orc and fout.sco.

Example 15-1. Example of the fout opcode.

/* fout.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

instr 1
iamp = 10000
icps = 440
iphs = 0

; Create an audio signal.
asig oscils iamp, icps, iphs

; Write the audio signal to a headerless audio file
; called "fout.raw".
fout "fout.raw", 1, asig

endin

[* fout.orc */

/* fout.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

e

/* fout.sco */

323

Chapter 15. Orchestra Opcodes and Operators

See Also
fiopen, fouti, foutir, foutk

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

October 2002. Added a note from Richard Dobson.

fouti
fouti — Outputs i-rate signals of an arbitrary number of channels to a specified file.
Description

fouti output N i-rate signals to a specified file of N channels.

Syntax
fouti ihandle, iformat, iflag, ioutl [, iout2, iout3,....,ioutN]

Initialization
ihandle -- a number which specifies this file.

iformat -- a flag to choose output file format:

+ 0 - floating point in text format
 1-32-bit floating point in binary format

iflag -- choose the mode of writing to the ASCII file (valid only in ASCII mode; in binary mode iflag has no
meaning, but it must be present anyway). iflag can be a value chosen among the following:

« 0 - line of text without instrument prefix
« 1 - line of text with instrument prefix (see below)

« 2 -reset the time of instrument prefixes to zero (to be used only in some particular cases. See below)

iout,..., ioutN -- values to be written to the file

324

Chapter 15. Orchestra Opcodes and Operators

Performance

fouti and foutir write i-rate values to a file. The main use of these opcodes is to generate a score file during a
realtime session. For this purpose, the user should set iformat to 0 (text file output) and iflag to 1, which
enable the output of a prefix consisting of the strings inum, actiontime, and duration, before the values of
ioutl...ioutN arguments. The arguments in the prefix refer to instrument number, action time and duration
of current note.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir, the target file can be only specified by means of a handle-number.

See Also
fiopen, fout, foutir, foutk

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

foutir
foutir ~— Outputs i-rate signals from an arbitrary number of channels to a specified file.
Description

foutir output N i-rate signals to a specified file of N channels.

Syntax
foutir ihandle, iformat, iflag, iout1 [, iout2, iout3,....,joutN]

Initialization
ihandle -- a number which specifies this file.

iformat -- a flag to choose output file format:

+ 0 - floating point in text format
+ 1-32-bit floating point in binary format

iflag -- choose the mode of writing to the ASCII file (valid only in ASCII mode; in binary mode iflag has no
meaning, but it must be present anyway). iflag can be a value chosen among the following:

« 0 - line of text without instrument prefix

+ 1 - line of text with instrument prefix (see below)

325

Chapter 15. Orchestra Opcodes and Operators

« 2 -reset the time of instrument prefixes to zero (to be used only in some particular cases. See below)

iout,..., ioutN -- values to be written to the file

Performance

fouti and foutir write i-rate values to a file. The main use of these opcodes is to generate a score file during a
realtime session. For this purpose, the user should set iformat to 0 (text file output) and iflag to 1, which
enable the output of a prefix consisting of the strings inum, actiontime, and duration, before the values of
ioutl...ioutN arguments. The arguments in the prefix refer to instrument number, action time and duration
of current note.

The difference between fouti and foutir is that, in the case of fouti, when iflag is set to 1, the duration of the
first opcode is undefined (so it is replaced by a dot). Whereas, foutir is defined at the end of note, so the
corresponding text line is written only at the end of the current note (in order to recognize its duration). The
corresponding file is linked by the ihandle value generated by the fiopen opcode. So fouti and foutir can be
used to generate a Csound score while playing a realtime session.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir, the target file can be only specified by means of a handle-number.

See Also
fiopen, fout, fouti, foutk

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

foutk
foutk — Outputs k-rate signals of an arbitrary number of channels to a specified file.
Description

foutk outputs N a-rate signals to a specified file of N channels.

Syntax
foutk ifilename, iformat, koutl [, kout2, kout3,...., koutN]

326

Chapter 15. Orchestra Opcodes and Operators

Initialization
ifilename -- the output file’s name (in double-quotes).

iformat -- a flag to choose output file format:

« 0 - 32-bit floating point samples without header (binary PCM multichannel file)
+ 1-16-bit integers without header (binary PCM multichannel file)
« 2 -16-bit integers with .wav type header (Microsoft WAV mono or stereo file)

Performance
koutl,...koutN -- control-rate signals to be written to the file
foutk operates in the same way as fout, but with k-rate signals. iformat can be set only to 0 or 1.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir, the target file can be only specified by means of a handle-number.

See Also
fiopen, fout, fouti, foutir

Credits

Author: Gabriel Maldonado
Italy

1999

New in Csound version 3.56

frac
frac — Returns the fractional part of a decimal number.
Description

Returns the fractional part of x.

Syntax
frac(x) (init-rate or control-rate args only)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

327

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the frac opcode. It uses the files frac.orc and frac.sco.

Example 15-1. Example of the frac opcode.

[* frac.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
i1
i2

16 / 5
frac(il)

print i2
endin
/* frac.orc */

[* frac.sco */

[* Written by Kevin Conder */

; Play Instrument #1 for one second.
il101

e

[* frac.sco */

Its output should include a line like this:

instr 1: i2 = 0.200

See Also
abs, exp, int, log, loglo, i, sqrt

ftchnls

ftchnls — Returns the number of channels in a stored function table.

Description

Returns the number of channels in a stored function table.

Syntax
ftchnls(x) (init-rate args only)

328

Chapter 15. Orchestra Opcodes and Operators

Performance

Returns the number of channels of a GENOI table, determined from the header of the original file. If the
original file has no header or the table was not created by these GENO1, fichnls returns -1.

Examples

Here is an example of the ftchnls opcode. It uses the files ftchnls.orc, ftchnls.sco, and mary.wav.

Example 15-1. Example of the ftchnls opcode.

/* ftchnls.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.

instr 1
; Print out the number of channels in Table #1.
ichnls = ftchnls(1)
print ichnls

endin

/* ftchnls.orc */

/* ftchnls.sco */

[* Written by Kevin Conder */

; Table #1: Use an audio file, Csound will determine its size.
f1 001 "marywav* 0 0 O

; Play Instrument #1 for 1 second.
i101

e

/* ftchnls.sco */

Since the audio file “mary.wav” is monophonic (1 channel), its output should include a line like this:

instr 1: ichnls = 1.000

See Also
ftlen, ftlptim, ftsr, nsamp

Credits

Authors: Barry L. Vercoe

MIT

Cambridge, Massachussetts
1997

Gabriel Maldonado (ftsr, nsamp)

329

Chapter 15. Orchestra Opcodes and Operators

Italy

October, 1998

Chris McCormick (ftchnls)
Perth, Australia
December 2001

ftgen

ftgen — Generate a score function table from within the orchestra.

Description
Generate a score function table from within the orchestra.

Syntax

gir ftgen ifn, itime, isize, igen, iarga [, iargb] [...]

Initialization
gir -- either a requested or automatically assigned table number above 100.

ifn -- requested table number If ifn is zero, the number is assigned automatically and the value placed in gir.
Any other value is used as the table number

itime -- is ignored, but otherwise corresponds to p2 in the score fstatement.
isize -- table size. Corresponds to p3 of the score fstatement.
igen -- function table GEN routine. Corresponds to p4 of the score fstatement.

iarga, iargb, ... -- function table arguments. Correspond to p5 through pn of the score fstatement.

Performance

This is equivalent to table generation in the score with the fstatement.

Warning

Although Csound will not protest if ftgen is used inside instr-endin statements, this is not the intended or
supported use, and must be handled with care as it has global effects. (In particular, a different size usually
leads to relocation of the table, which may cause a crash or otherwise erratic behaviour.

Examples

Here is an example of the ftgen opcode. It uses the files ftgen.orc and figen.sco.

Example 15-1. Example of the ftgen opcode.

[* ftgen.orc */

330

Chapter 15. Orchestra Opcodes and Operators

[* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps = 10

nchnls = 1

; Table #1, a sine wave using the GEN1O0 routine.
gitemp ftgen 1, 0, 16384, 10, 1

. Instrument #1 - a basic oscillator.

instr 1
kamp = 10000
kcps = 440
; Use Table #1.
ifn = 1
al oscil kamp, kcps, ifn
out al
endin

[* ftgen.orc */

[* ftgen.sco */

/* Written by Kevin Conder */

; Play Instrument #1 for 2 seconds.
i102

e

[* ftgen.sco */

Credits

Author: Barry L. Vercoe

M.I.T., Cambridge, Mass

1997

Added warning April 2002 by Rasmus Ekman

ftlen
ftlen — Returns the size of a stored function table.
Description

Returns the size of a stored function table.

Syntax

ftlen(x) (init-rate args only)

331

Chapter 15. Orchestra Opcodes and Operators

Performance

Returns the size (number of points, excluding guard point) of stored function table, number x. While most
units referencing a stored table will automatically take its size into account (so tables can be of arbitrary
length), this function reports the actual size if that is needed. Note that ftlen will always return a power-of-2
value, i.e. the function table guard point (see f Statement) is not included.As of Csound version 3.53, ftlen
works with deferred function tables (see GENOI).

Examples

Here is an example of the ftlen opcode. It uses the files ftlen.orc, ftlen.sco, and mary.wav.

Example 15-1. Example of the ftlen opcode.

/* ftlen.orc */

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

kr = 4410

ksmps 10

nchnls 1

; Instrument #1.
instr 1
;. Print out the size of Table #1.
; The size will be the number of points excluding the guard point.

ilen = ftlen(1)
print ilen
endin

/* ftlen.orc */

/* ftlen.sco */

/* Written by Kevin Conder */

; Table #1: Use an audio file, Csound will determine its size.
f1 001 "marywav' 0 0 O

; Play Instrument #1 for 1 second.
i101

e

[* ftlen.sco */

The audio file “mary.wav” is 154390 samples long. The ftlen opcode reports it as 154389 samples long because
it reserves 1 point for the guard point. Its output should include a line like this:

instr 1: ilen = 154389.000

See Also
ftchnls, ftlptim, ftsr, nsamp

332

Chapter 15. Orchestra Opcodes and Operators

Credits

Authors: Barry L. Vercoe
MIT

Cambridge, Massachussetts
1997

Gabriel Maldonado (ftsr, nsamp)
Italy

October, 1998

Chris McCormick (ftchnls)
Perth, Australia

December 2001

ftload

ftload — Load a set of previously-allocated tables from a file.

Description

Load a set of previously-allocated tables from a file.

Syntax
ftload "filename", iflag, ifn1 [, ifn2] [...]

Initialization

"filename" -- A quoted string containing the name of the file to load.
iflag -- Type of the file to load/save. (0 = binary file, Non-zero = text file)
ifnl, ifn2, ... -- Numbers of tables to load.

Performance

ftload loads a list of tables from a file. (The tables have to be already allocated though.) The file’s format can

be binary or text.

Warning

The file’s format is not compatible with a WAV-file and is not endian-safe.

Examples

See the example for ftsave.

333

Chapter 15. Orchestra Opcodes and Operators

See Also
ftloadk, ftsavek, ftsave

Credits
Author: Gabriel Maldonado

New in version 4.21

ftloadk

ftloadk — Load a set of previously-allocated tables from a file.

Description
Load a set of previously-allocated tables from a file.

Syntax
ftloadk "filename", ktrig, iflag, ifn1 [, ifn2] [...]

Initialization

"filename" -- A quoted string containing the name of the file to load.
iflag -- Type of the file to load/save. (0 = binary file, Non-zero = text file)
ifnl, ifn2, ... -- Numbers of tables to load.

Performance
ktrig -- The trigger signal. Load the file each time it is non-zero.

ftloadk loads a list of tables from a file. (The tables have to be already allocated though.) The file’s format can
be binary or text. Unlike ftload, the loading operation can be repeated numerous times within the same note
by using a trigger signal.

Warning
The file’s format is not compatible with a WAV-file and is not endian-safe.

See Also
ftload, ftsavek, ftsave

334

Chapter 15. Orchestra Opcodes and Operators

Credits
Author: Gabriel Maldonado

New in version 4.21

ftiptim

ftiptim — Returns the loop segment start-time of a stored function table number.

Description

Returns the loop segment start-time of a stored function table number.

Syntax
ftlptim(x) (init-rate args only)

Performance

Returns the loop segment start-time (in seconds) of stored function table number x. This reports the duration
of the direct recorded attack and decay parts of a sound sample, prior to its looped segment. Returns zero
(and a warning message) if the sample does not contain loop points.

Examples

Here is an example of the ftlptim opcode. It uses the files ftiptim.orc, ftlptim.sco, and mary.wav.

Example 15-1. Example of the ftlptim opcode.

[* ftlptim.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
; Instrument #1.
instr 1
; Print out the loop-segment start time in Table #1.
itim = ftlptim(1)
print itim
endin
[* ftlptim.orc */

[* ftlptim.sco */

[* Written by Kevin Conder */

; Table #1: Use an audio file, Csound will determine its size.
f100 1 "marywav' 0 0 O

; Play Instrument #1 for 1 second.

i101
e

