
The Alternative Csound Reference Manual

Barry Vercoe
MIT Media Lab

Other Contributors

Edited by
John ffitch

Jean Piché

Peter Nix

Richard Boulanger

Rasmus Ekman

David Boothe

Kevin Conder

The Alternative Csound Reference Manual
by Barry Vercoe, and Other Contributors
Edited by John ffitch

Edited by Jean Piché

Edited by Peter Nix

Edited by Richard Boulanger

Edited by Rasmus Ekman

Edited by David Boothe

Edited by Kevin Conder

4.21-4 Edition
Copyright © 1986, 1992 by Massachusetts Institute of Technology

Table of Contents
Preface...23

Preface to the Csound Manual ..23
Copyright Notice...23
Contributors..24
Why is this called the Alternative Csound Reference Manual? ...24

I. Overview ..27
1. Introduction ..29

Where to Get Public Csound and the Csound Manual...29
How to Install Csound ...29

Linux ..29
Macintosh ...29
MS-DOS and Windows 95/NT...29
Windows 95/98/2000..29
Other Platforms ..29

The Csound Mailing List ...29
Bug Reports ...29

2. The Csound Command ..31
Order of Precedence ..31
Description...31
Command-line Flags ...32
Unified File Format for Orchestras and Scores ...36

Description ...36
Structured Data File Format ..37

Mandatory Elements...37
Options..37
Instruments (Orchestra) ..37
Score ..37

Optional Elements...37
Included Base64 Files...37
Version Blocking ...37
Example...38

Command Line Parameter File ...38
Score File Preprocessing ...38

The Extract Feature...39
Independent Pre-Processing with Scsort ...39

3. Syntax of the Orchestra ..41
Directories and Files..41
Nomenclature ..41
Orchestra Statement Types ...42
Constants and Variables..42
Expressions ..43
Orchestra Header Statements...44
Instrument Block Statements ...44
Variable Initialization ..44

4. Instrument Control...45
Clock Control ...45
Conditional Values ..45
Duration Control Statements ...45
Instrument Invocation ..45
Macros ..45
Program Flow Control ...45
Real-time Performance Control ...45
Reinitialization...45
Sensing and Control ..45
Sub-instrument Control..45
Time Reading ...45

5

5. Function Table Control ..47
Table Queries ...47
Read/Write Operations ...47
Table Selection ...47

6. Mathematical Operations ..49
Amplitude Converters ...49
Arithmetic and Logic Operations ...49
Mathematical Functions...49
Opcode Equivalents of Functions ..49
Random Functions ..49
Trigonometric Functions ..49

7. MIDI Support ..51
Controller Input ...51
Converters ..51
Event Extenders ...51
Generic Input and Output ..51
Note-on/Note-off ..51
MIDI Message Output ...51
Real-time Messages ...51
Slider Banks..51

8. Pitch Converters..53
Functions..53
Tuning Opcodes...53

9. Signal Generators..55
Additive Synthesis/Resynthesis..55
Basic Oscillators...55
Dynamic Spectrum Oscillators...55
FM Synthesis ..55
Granular Synthesis ..55
Linear and Exponential Generators ...55
Linear Predictive Coding (LPC) Resynthesis ...55
Models and Emulations ..55
Phasors ...55
Random (Noise) Generators ...55
Sample Playback..55
Scanned Synthesis ...56
Short-time Fourier Transform (STFT) Resynthesis...57
Table Access ...57
Wave Terrain Synthesis..57
Waveguide Physical Modeling ..57

10. Signal Input and Output...59
File Input and Output..59
Input ...59
Output ..59
Printing and Display..59
Sound File Queries ..59

11. Signal Modifiers ..61
Amplitude Modifiers ...61
Convolution and Morphing ..61
Delay...61
Envelope Modifiers..61
Panning and Spatialization...61
Reverberation...61
Sample Level Operators ..61
Signal Limiters ...61
Special Effects ..61
Specialized Filters ..61
Standard Filters..62

6

Waveguides ..62
12. Spectral Processing...63

Non-standard Spectral Processing...63
Tools for Real-time Spectral Processing...63

13. Zak Patch System ..65
14. The Standard Numeric Score ...67

Preprocessing of Standard Scores ..67
Carry ..67
Tempo..67
Sort...67
N.B. ..68

Next-P and Previous-P Symbols ...68
Ramping ...68
Score Macros..69

Description ...69
Syntax ..70
Initialization..70
Performance..70
Examples ...70
Credits ...71

Multiple File Score...71
Description ...71
Syntax ..71
Performance..72
Credits ...72

Evaluation of Expressions ...72
Example...72
Credits ...73

Score Statements ...73
Sine/Cosine Generators ..73
Line/Exponential Segment Generators ...73
File Access GEN Routines ...73
Numeric Value Access GEN Routines ..74
Window Function GEN Routines ...74
Random Function GEN Routines...74
Waveshaping GEN Routines ...74
Amplitude Scaling GEN Routines...74
Mixing GEN Routines ..74

II. Reference ..75
15. Orchestra Opcodes and Operators ..77

!=..77
#define ..78
#include..81
#undef...82
$NAME..83
%..86
&& ...87
>..89
>=..90
<..91
<=..93
∗ ...94
+..96
- ...98
/ ...100
=...101
== ..103

7

ˆ ...104
||...106
0dbfs ...107
a...109
abetarand ...109
abexprnd ..110
abs...110
acauchy...111
active...111
adsr ...114
adsyn...117
adsynt ...118
aexprand...121
aftouch..121
agauss ...122
agogobel ...123
alinrand ..123
alpass ..123
ampdb ..125
ampdbfs..126
ampmidi ...127
apcauchy ..129
apoisson ...129
apow ...129
areson ...129
aresonk ...131
atone ...132
atonek ...133
atonex ...134
atrirand...135
aunirand ...135
aweibull ..135
babo ..136
balance ...139
bamboo ..141
bbcutm ...142
bbcuts ...146
betarand ...149
bexprnd ..151
biquad...152
biquada...154
birnd ...155
butbp ..157
butbr ...157
buthp ..157
butlp..158
butterbp..158
butterbr ..159
butterhp..161
butterlp...162
button ...164
buzz...165
cabasa ...166
cauchy...168
cent ...169
cggoto ...171
chanctrl...172
checkbox...173

8

cigoto ..174
ckgoto ...176
clear ..177
clfilt ...178
clip ..180
clock..182
clockoff ...182
clockon ...184
cngoto...186
comb...187
control ..189
convle ...191
convolve ...191
cos ...194
cosh...195
cosinv..196
cps2pch ..197
cpsmidi ...200
cpsmidib...201
cpsoct..202
cpspch ..204
cpstmid...206
cpstun ...208
cpstuni..210
cpsxpch...212
cpuprc...215
cross2..217
crunch...218
ctrl14 ...219
ctrl21 ...220
ctrl7 ...221
ctrlinit ...222
cuserrnd ...223
dam ...224
db ..227
dbamp ..228
dbfsamp..229
dcblock ...230
dconv ..232
delay..233
delay1..235
delayr ..235
delayw...236
deltap..237
deltap3..239
deltapi...240
deltapn..242
deltapx ..244
deltapxw ...245
diff ...247
diskin ..249
dispfft..251
display ..252
distort1 ...253
divz..255
downsamp..256
dripwater ..258
dumpk ..259

9

dumpk2 ..260
dumpk3 ..262
dumpk4 ..263
duserrnd ...264
else ..265
elseif..266
endif ..266
endin...267
envlpx ...268
envlpxr..271
event ...272
exp...274
expon ..275
exprand...276
expseg ...278
expsega ...279
expsegr..281
filelen ..283
filenchnls..284
filepeak ...285
filesr ..287
filter2...288
fin ..289
fini ...290
fink ..291
fiopen..292
flanger...293
flashtxt ..295
fmb3..296
fmbell..298
fmmetal ..300
fmpercfl ..302
fmrhode..304
fmvoice ...306
fmwurlie ...307
fof ..309
fof2 ..312
fog ...313
fold ..315
follow ..316
follow2 ..317
foscil..319
foscili...320
fout..322
fouti...324
foutir ...325
foutk..326
frac ..327
ftchnls ...328
ftgen ..330
ftlen...331
ftload...333
ftloadk...334
ftlptim ...335
ftmorf..336
ftsave...338
ftsavek...339
ftsr ...340

10

gain ...342
gauss ...343
gbuzz...344
gogobel ...346
goto ...347
grain..349
grain2..350
grain3..354
granule..359
guiro..361
harmon ...363
hilbert ...365
hrtfer ...368
hsboscil...370
i..372
ibetarand ..373
ibexprnd ...373
icauchy ...373
ictrl14..373
ictrl21..374
ictrl7 ..374
iexprand..374
if ..374
igauss ..377
igoto ..377
ihold..379
ilinrand ...380
imidic14..381
imidic21..381
imidic7..381
in ...381
in32 ...382
inch ...383
inh ...383
init ...384
initc14 ...384
initc21 ...385
initc7 ...386
ink ...387
ino ...389
inq ...389
ins..390
instimek..391
instimes ..391
instr...391
int ..394
integ ..396
interp ..397
invalue ..399
inx ...399
inz ...400
ioff ...400
ion ...401
iondur ...401
iondur2 ...401
ioutat...401
ioutc ..402
ioutc14 ..402

11

ioutpat ..402
ioutpb ...402
ioutpc..402
ipcauchy ...403
ipoisson ..403
ipow ..403
is16b14..403
is32b14..404
islider16 ..404
islider32 ..404
islider64 ..404
islider8 ..404
itablecopy ...405
itablegpw ..405
itablemix...405
itablew ..405
itrirand..406
iunirand..406
iweibull ...406
jitter...406
jitter2...408
jspline ...409
kbetarand ...410
kbexprnd ..410
kcauchy...411
kdump ..411
kdump2 ..411
kdump3 ..411
kdump4 ..412
kexprand...412
kfilter2...412
kgauss ...412
kgoto ...412
klinrand ..414
kon ..414
koutat..414
koutc ...415
koutc14 ...415
koutpat ...415
koutpb ..415
koutpc...415
kpcauchy ..416
kpoisson ...416
kpow ...416
kr ...416
kread ...417
kread2 ...417
kread3 ...418
kread4 ...418
ksmps..418
ktableseg...419
ktrirand...419
kunirand ...420
kweibull ..420
lfo ..420
limit...422
line ..422
linen ..424

12

linenr ..424
lineto...425
linrand ..426
linseg...428
linsegr ...429
locsend ...431
locsig...433
log..435
log10..436
logbtwo...437
loopseg ...439
lorenz ..440
loscil..443
loscil3..445
lowpass2 ...447
lowres..448
lowresx..450
lpf18 ..451
lpfreson...453
lphasor..454
lpinterp ...455
lposcil..456
lposcil3..456
lpread..457
lpreson..458
lpshold ..459
lpslot ...460
mac ...461
maca ...462
madsr..463
mandol ...464
marimba ...466
massign...467
maxalloc ...468
mclock ..470
mdelay ..470
midic14...471
midic21...472
midic7...473
midichannelaftertouch ...474
midichn ..476
midicontrolchange ..478
midictrl ...480
mididefault...480
midiin ...482
midinoteoff ..483
midinoteoncps...485
midinoteonkey...487
midinoteonoct ...489
midinoteonpch ..491
midion ..493
midion2 ..493
midiout ...494
midipitchbend ...495
midipolyaftertouch..497
midiprogramchange..498
mirror..500
moog...501

13

moogvcf ..502
moscil ...504
mpulse ..505
mrtmsg ...506
multitap ..507
mxadsr ..508
nchnls ...509
nestedap ...510
nlfilt...513
noise..514
noteoff ..516
noteon ..516
noteondur ..517
noteondur2 ..518
notnum...519
nreverb ...520
nrpn ..522
nsamp ...523
ntrpol ..525
octave..525
octcps..527
octmidi ...529
octmidib ...530
octpch...531
oscbnk ..533
oscil ...538
oscil1...539
oscil1i..540
oscil3...540
oscili..542
osciln...544
oscils ...544
oscilx ...546
out ...546
out32 ...547
outc ...547
outch...548
outh...549
outiat...549
outic ..550
outic14 ..551
outipat ..552
outipb ...553
outipc..554
outk ...555
outkat..555
outkc ...556
outkc14 ...557
outkpat ...558
outkpb ..559
outkpc...560
outo...561
outq...561
outq1...562
outq2...563
outq3...564
outq4...564
outs ...565

14

outs1 ...566
outs2 ...566
outvalue..567
outx ...568
outz ...568
p ..569
pan ..570
pareq...571
pcauchy ..574
pchbend ...575
pchmidi ..576
pchmidib ..578
pchoct ...579
peak...580
peakk...582
pgmassign ..582
phaser1 ...585
phaser2 ...587
phasor...590
phasorbnk ..592
pinkish ..593
pitch..595
pitchamdf ...598
planet..600
pluck ...601
poisson ...603
polyaft...605
port ...606
portk ...607
poscil...607
poscil3...609
pow ...610
powoftwo..612
prealloc ...613
print ..615
printk ..616
printk2 ..618
printks...619
product ...622
pset..622
pvadd ..623
pvbufread ...625
pvcross..627
pvinterp ..628
pvoc ..630
pvread ...631
pvsadsyn...632
pvsanal..633
pvscross ..635
pvsfread ..636
pvsftr ...637
pvsftw ...639
pvsinfo ..640
pvsmaska..641
pvsynth ...642
rand...643
randh ..644
randi..646

15

random ...648
randomh...649
randomi ..650
readclock ..652
readk ...654
readk2 ...655
readk3 ...656
readk4 ...657
reinit..659
release...660
repluck..661
reson ...663
resonk ...664
resonr..665
resonx ...668
resony ...669
resonz ...671
reverb..672
reverb2..674
rezzy..675
rigoto...676
rireturn ...676
rms ..677
rnd...678
rnd31...680
rspline...684
rtclock ...685
s16b14...686
s32b14...687
samphold..689
sandpaper...690
scanhammer ..691
scans ...692
scantable ..693
scanu...695
schedkwhen ...697
schedule ...698
schedwhen ...700
seed ...702
sekere..702
semitone...704
sense ...705
sensekey ...706
seqtime ...707
setctrl ..708
sfilist..710
sfinstr ..711
sfinstr3 ..712
sfinstr3m...713
sfinstrm...715
sfload ..716
sfpassign...717
sfplay...718
sfplay3...719
sfplay3m ...720
sfplaym ...721
sfplist ..723
sfpreset ...723

16

shaker ...724
sin..726
sinh ...727
sininv ..728
sleighbells...729
slider16 ...730
slider16f ..732
slider32 ...733
slider32f ..734
slider64 ...735
slider64f ..737
slider8 ...738
slider8f ..739
sndwarp..740
sndwarpst ...743
soundin...745
soundout ..747
space ...748
spat3d ...752
spat3di ..760
spat3dt ..763
spdist ..766
specaddm ...770
specdiff ...771
specdisp..772
specfilt ..773
spechist...773
specptrk ..774
specscal ..776
specsum..777
spectrum ..778
spsend...779
sqrt ..781
sr..782
stix...783
streson ..784
strset ...786
subinstr...787
sum ...788
svfilter ...788
table ..790
table3 ..792
tablecopy ..793
tablegpw ...793
tablei ...794
tableicopy ...795
tableigpw ..796
tableikt..797
tableimix...798
tableiw ..799
tablekt ...801
tablemix..802
tableng..803
tablera...804
tableseg...806
tablew ...807
tablewa ...809
tablewkt ..812

17

tablexkt ...814
tablexseg...815
tambourine ..816
tan ...817
tanh...818
taninv..819
taninv2..820
tbvcf ..822
tempest...824
tempo..826
tempoval...828
tigoto...829
timeinstk...829
timeinsts...831
timek...832
times ...834
timout ...835
tival ...836
tlineto..836
tone ...837
tonek ...838
tonex ...838
transeg ..839
trigger ...840
trigseq ...842
trirand...843
turnoff...844
turnon...845
unirand ...846
upsamp...847
urd...848
valpass ..849
vbap16 ..850
vbap16move...852
vbap4 ..853
vbap4move...855
vbap8 ..857
vbap8move...858
vbaplsinit..860
vbapz...861
vbapzmove ...863
vco...865
vcomb ...867
vdelay..868
vdelay3..869
vdelayx..870
vdelayxq..871
vdelayxs ..872
vdelayxw ...873
vdelayxwq...874
vdelayxws ...875
veloc..876
vibes..877
vibr ..879
vibrato...881
vincr ..883
vlowres..883
voice..885

18

vpvoc...887
waveset ...888
weibull ..890
wgbow...891
wgbowedbar...893
wgbrass...894
wgclar ...896
wgflute ..898
wgpluck ..899
wgpluck2 ..901
wguide1 ..903
wguide2 ..904
wrap ..905
wterrain ..906
xadsr..907
xscanmap ...909
xscans ...909
xscanu...911
xtratim ..913
xyin..914
zacl ..916
zakinit ...917
zamod ...919
zar ...921
zarg..922
zaw ..924
zawm...925
zfilter2...927
zir ..929
ziw...930
ziwm ...932
zkcl ..933
zkmod ...935
zkr ...937
zkw ..939
zkwm...940

16. Score Statements and GEN Routines ..943
Score Statements ...943

a Statement (or Advance Statement) ..943
b Statement ...943
e Statement ...944
f Statement (or Function Table Statement) ..945
i Statement (Instrument or Note Statement) ...946
m Statement (Mark Statement) ...949
n Statement ...950
r Statement (Repeat Statement) ..950
s Statement..951
t Statement (Tempo Statement) ..952
v Statement ...953
x Statement ...954

GEN Routines...955
GEN01..955
GEN02..956
GEN03..956
GEN04..957
GEN05..958
GEN06..959
GEN07..960

19

GEN08..961
GEN09..962
GEN10..963
GEN11..964
GEN12..965
GEN13..966
GEN14..967
GEN15..968
GEN16..969
GEN17..970
GEN18..971
GEN19..972
GEN20..973
GEN21..974
GEN23..976
GEN24..976
GEN25..977
GEN27..978
GEN28..979
GEN30..981
GEN31..981
GEN32..982
GEN33..984
GEN34..985
GEN40..987
GEN41..988
GEN42..988

17. The Utility Programs...991
Directories. ...991
Soundfile Formats. ..991
Credits...991
Analysis File Generation ...992

hetro...992
lpanal ...993
pvanal ..995
cvanal...996

File Queries ..997
sndinfo...998

File Conversion ..998
dnoise ..999
pvlook ..1001
sdif2ad ...1005
srconv ..1006

18. Cscore ..1009
Events, Lists, and Operations ...1009
Writing a Main Program..1010
More Advanced Examples...1015
Compiling a Cscore Program..1017

19. Adding your own Cmodules to Csound ..1019
Function tables ..1021
Additional Space ..1021
File Sharing ..1021
String arguments ...1022

A. Pitch Conversion ..1025
B. Sound Intensity Values...1029
C. Formant Values...1031
D. Window Functions ...1037

20

E. SoundFont2 File Format...1043
F. Quick Reference..1045
Index..1065

21

22

Preface

Preface to the Csound Manual
Barry Vercoe

by Barry L. Vercoe, MIT Media Lab

Realizing music by digital computer involves synthesizing audio signals with discrete points or samples
representative of continuous waveforms. There are many ways to do this, each affording a different manner
of control. Direct synthesis generates waveforms by sampling a stored function representing a single cycle;
additive synthesis generates the many partials of a complex tone, each with its own loudness envelope;
subtractive synthesis begins with a complex tone and filters it. Non-linear synthesis uses frequency
modulation and waveshaping to give simple signals complex characteristics, while sampling and storage of a
natural sound allows it to be used at will.

Since comprehensive moment-by-moment specification of sound can be tedious, control is gained in two
ways: 1) from the instruments in an orchestra, and 2) from the events within a score. An orchestra is really a
computer program that can produce sound, while a score is a body of data which that program can react to.
Whether a rise-time characteristic is a fixed constant in an instrument, or a variable of each note in the score,
depends on how the user wants to control it.

The instruments in a Csound orchestra (see) are defined in a simple syntax that invokes complex audio
processing routines. A score (see) passed to this orchestra contains numerically coded pitch and control
information, in standard numeric score format. Although many users are content with this format, higher
level score processing languages are often convenient.

The programs making up the Csound system have a long history of development, beginning with the Music 4
program written at Bell Telephone Laboratories in the early 1960’s by Max Mathews. That initiated the stored
table concept and much of the terminology that has since enabled computer music researchers to
communicate. Valuable additions were made at Princeton by the late Godfrey Winham in Music 4B; my own
Music 360 (1968) was very indebted to his work. With Music 11 (1973) I took a different tack: the two distinct
networks of control and audio signal processing stemmed from my intensive involvement in the preceding
years in hardware synthesizer concepts and design. This division has been retained in Csound.

Because it is written entirely in C, Csound is easily installed on any machine running Unix or C. At MIT it runs
on VAX/DECstations under Ultrix 4.2, on SUNs under OS 4.1, SGI’s under 5.0, on IBM PC’s under DOS 6.2 and
Windows 3.1, and on the Apple Macintosh under ThinkC 5.0. With this single language for defining the audio
signal processing, and portable audio formats like AIFF and WAV, users can move easily from machine to
machine.

The 1991 version added phase vocoder, FOF, and spectral data types. 1992 saw MIDI converter and control
units, enabling Csound to be run from MIDI score-files and external keyboards. In 1994 the sound analysis
programs (lpc, pvoc) were integrated into the main load module, enabling all Csound processing to be run
from a single executable, and Cscore could pass scores directly to the orchestra for iterative performance. The
1995 release introduced an expanded MIDI set with MIDI-based linseg, butterworth filters, granular
synthesis, and an improved spectral-based pitch tracker. Of special importance was the addition of run-time
event generating tools (Cscore and MIDI) allowing run-time sensing and response setups that enable
interactive composition and experiment. It appeared that real-time software synthesis was now showing
some real promise.

Copyright Notice
Copyright 1986, 1992 by the Massachusetts Institute of Technology. All rights reserved.

Developed by Barry L. Vercoe at the Experimental Music Studio, Media Laboratory, M.I.T., Cambridge,
Massachusetts, with partial support from the System Development Foundation and from National Science
Foundation Grant # IRI-8704665.

Permission to use, copy, or modify these programs and their documentation for educational and research
purposes only and without fee is hereby granted, provided that this copyright and permission notice appear

23

Preface

on all copies and supporting documentation. For any other uses of this software, in original or modified form,
including but not limited to distribution in whole or in part, specific prior permission from M.I.T. must be
obtained. M.I.T. makes no representations about the suitability of this software for any purpose. It is provided
"as is" without express or implied warranty

The original Hypertext Edition of the MIT Csound Manual was prepared for the World Wide Web by Peter J.
Nix of the Department of Music at the University of Leeds and Jean Piché of the Faculté de musique de
l’Université de Montréal. A Print Edition, in Adobe Acrobat format, was then maintained by David M. Boothe.
The editors fully acknowledge the rights of the authors of the original documentation and programs, as set
out above, and further request that this notice appear wherever this material is held.

Contributors
In addition to the core code developed by Barry L. Vercoe at M.I.T., a large part of the Csound code was
modified, developed and extended by an independent group of programmers, composers and scientists.
Copyright to this code is held by the respective authors:

Table 1. Contributors

Mike Berry Richard Karpen

Eli Breder Victor Lazzarini

Michael Casey Allan Lee

Michael Clark David Macintyre

Perry Cook Gabriel Maldonado

Sean Costello Max Mathews

Richard Dobson Hans Mikelson

Mark Dolson Peter Neubäcker

Rasmus Ekman Ville Pulkki

Dan Ellis Marc Resibois

Tom Erbe Paris Smaragdis

John ffitch Rob Shaw

Bill Gardner Greg Sullivan

Matt Ingalls Bill Verplank

Istvan Varga Robin Whittle

Jean Piché Peter Nix

The official manual was compiled from the canonical Csound Manual sources maintained by John ffitch,
Richard Boulanger, Jean Piché, Peter Nix, and David M. Boothe. The Alternative Csound Reference Manual is
maintained by Kevin Conder.

Why is this called the Alternative Csound Reference Manual?
When I originally started my manual project, there was already an Official Csound Reference Manual (last
known address: http://www.lakewoodsound.com/csound/hypertext/manual.htm). The Official manual was
maintained by David M. Boothe. I found its layout confusing and I wanted to change it. But since it was
maintained with commercial word processing programs, I couldn’t. I could neither afford those programs nor
were they available for my main computing platform.

So I created an alternative to the Official Csound Reference Manual. I changed the layout: used actual page
numbers, renamed the index section to "Index" and moved it to the end, add working examples, got rid of the

24

Preface

HTML frames, etc. I distributed my manual using the DocBook/SGML format so that anyone on any platform
could edit it with a text editor. This manual can also be produced with freely available programs.

David M. Boothe wasn’t interested in maintaining my DocBook/SGML version of the manual. He was also
concerned that people would confuse his project (the "Official" one) with mine. So out of respect for his
wishes, I named my project the Alternative Csound Reference Manual. I made this decision so that nobody
would confuse my project (the "Alternative" one) with his.

It’s frustrating that members of the tight-knit Csound community have attacked me for merely using the term
"Alternative" . Some have tried to confuse my readers by referring to my manual using my last name, often
misspelling it. One outspoken member of the Csound community has personally attacked me for being
"confrontational" and suggested that I change my manual’s name to be more "neutral". For the record, I
chose my project’s name out of respect to David M. Boothe not malice. Changing it now would only confuse
my regular readers.

Written by Kevin Conder, October 2002.

25

Preface

26

I. Overview

Chapter 1. Introduction

Where to Get Public Csound and the Csound Manual
Public Csound is available for download from :

ftp://ftp.cs.bath.ac.uk/pub/dream/newest/

This Hypertext Edition of the manual, as well as the Print Edition, in Adobe Acrobat format (.pdf) are
available for browser download from:

http://www.kevindumpscore.com/download/

How to Install Csound

Linux

Detailed instructions for installing and configuring Csound on a Linux system may be obtained from:

http://www.csounds.com/secondprinting/cdroms/installing/linux/

Macintosh

Detailed instructions for installing and configuring Csound on Macintosh systems may be obtained from:

http://www.csounds.com/installing/howtomacintosh/index.html

MS-DOS and Windows 95/NT

Detailed instructions for installing and configuring Csound on a MS-DOS or Windows 95/NT system may be
obtained from:

http://hem.passagen.se/rasmuse/PCinstal.htm

Windows 95/98/2000

Detailed instructions for installing and configuring Csound on a Windows 95, Windows 98, or Windows 2000
system may be obtained from:

http://www.csounds.com/installing/howtowindows/index.html

Other Platforms

For information on availability of Csound for other platforms, see The Csound FrontPage:

http://mitpress.mit.edu/e-books/csound/frontpage.html

The Csound Mailing List
A Csound Mailing List exists to discuss Csound. It is run by John ffitch of Bath University, UK.

To have your name put on the mailing list send an empty message to:

csound-subscribe@lists.bath.ac.uk

Posts sent to csound@lists.bath.ac.uk go to all subscribed members of the list.

29

Chapter 1. Introduction

Bug Reports

Suspected bugs in the code may be submitted to the list .

30

Chapter 2. The Csound Command

Csound is a command for passing anorchestra file andscore file to Csound to generate a soundfile. The score
file can be in one of many different formats, according to user preference. Translation, sorting, and
formatting into orchestra-readable numeric text is handled by various preprocessors; all or part of the score is
then sent on to the orchestra. Orchestra performance is influenced by command flags, which set the level of
displays and console reports, specify I/0 filenames and sample formats, and declare the nature of real-time
sensing and control.

Order of Precedence
With some recent additions to Csound, there are now three places (and in some cases four) where options for
Csound performance may be set. They are processed in the following order:

1. Csound’s own defaults

2. .csoundrc file

3. Csound command line

4. <CsOptions> tag in a .csd file

5. Orchestra header (for sr, kr, ksmps, nchnls)

The last assignment of an option will override any earlier ones.

Description
Flags may appear anywhere in the command line, either separately or bundled together. A flag taking a Name
or Number will find it in that argument, or in the immediately subsequent one. The following are thus
equivalent commands:

csound -nm3 orchname -Sxxfilename scorename
csound -n -m 3 orchname -x xfilename -S scorename

All flags and names are optional. The default values are:

csound -s -otest -b1024 -B1024 -m7 -P128 orchname scorename

where orchname is a file containing Csound orchestra code, and scorename is a file of score data in standard
numeric score format, optionally presorted and time-warped. If scorename is omitted, there are two default
options:

1. if real-time input is expected (-L, -M or -F), a dummy score file is substituted consisting of the single
statement ’f 0 3600’ (i.e. listen for RT input for one hour)

2. else CSound uses the previously processed score.srt in the current directory.

Csound reports on the various stages of score and orchestra processing as it goes, doing various syntax and
error checks along the way. Once the actual performance has begun, any error messages will derive from

31

Chapter 2. The Csound Command

either the instrument loader or the unit generators themselves. A CSound command may include any
rational combination of flag arguments.

Command-line Flags
Many flags are generic Csound command-line flags. Various platform implementations may not react the
same way to different flags!

The format of a command is either:

csound [-flags] [orchname] [scorename]

or

csound [-flags] [csdfilename]

where the arguments are of 2 types: flags arguments (beginning with a “-”), and name arguments (such as
filenames). Certain flag arguments take a following name or numeric argument.

Command-line Flags

-@ FILE

Provide an extended command-line in file “FILE”

-3, --format=24bit

Use 24-bit audio samples.

-8, --format=uchar

Use 8-bit unsigned character audio samples.

-A, --aiff

Write an AIFF format soundfile. Use with the -c, -s, -l, or -f flags.

-a, --format=alaw

Use a-law audio samples.

-B NUM, --hardwarebufsamps=NUM

Number of audio sample-frames held in the DAC hardware buffer. This is a threshold on which software
audio I/O (above) will wait before returning. A small number reduces audio I/O delay; but the value is
often hardware limited, and small values will risk data lates. The default is 1024.

-b NUM, --iobufsamps=NUM

Number of audio sample-frames per sound i/o software buffer. Large is efficient, but small will reduce
audio I/O delay. The default is 1024. In real-time performance, Csound waits on audio I/O on NUM
boundaries. It also processes audio (and polls for other input like MIDI) on orchestra ksmps boundaries.
The two can be made synchronous. For convenience, if NUM = -NUM (is negative) the effective value is
ksmps * NUM (audio synchronous with k-period boundaries). With NUM small (e.g. 1) polling is then
frequent and also locked to fixed DAC sample boundaries.

-C, --cscore

Use Cscore processing of the scorefile.

32

Chapter 2. The Csound Command

-c, --format=schar

Use 8-bit signed character audio samples.

-D, --defer-gen1

Defer GEN01 soundfile loads until performance time.

-d, --nodisplays

Suppress all displays.

-E NUM, --graphs=NUM

Mac only. Number of tables in graphics window. (was -G)

-e, --format=rescale

Mac only. Rescale floats as shorts to max amplitude.

-F FILE, --midifile=FILE

Read MIDI events from MIDI file FILE .

-f, --format=float

Use single-precision float audio samples (not playable, but can be read by -i, soundin and GEN01

-G, --postscriptdisplay

Suppress graphics, use PostScript displays instead.

-g, --asciidisplay

Suppress graphics, use ASCII displays instead.

-H#, --heartbeat=NUM

Print a heartbeat after each soundfile buffer write:

• no NUM, a rotating bar.

• NUM = 1, a rotating bar.

• NUM = 2, a dot (.)

• NUM = 3, filesize in seconds.

• NUM = 4, sound a bell.

-h, --noheader

No header on output soundfile. Don’t write a file header, just binary samples.

--help

Display on-line help message.

-I, --i-only

i-time only. Allocate and initialize all instruments as per the score, but skip all p-time processing (no
k-signals or a-signals, and thus no amplitudes and no sound). Provides a fast validity check of the score
pfields and orchestra i-variables.

-i FILE, --input=FILE

Input soundfile name. If not a full pathname, the file will be sought first in the current directory, then in
that given by the environment variable SSDIR (if defined), then by SFDIR. The name stdin will cause

33

Chapter 2. The Csound Command

audio to be read from standard input. If RTAUDIO is enabled, the name devaudio will request sound
from the host audio input device.

-J, --ircam

Write an IRCAM format soundfile.

-j FILE

Currently disabled. Use database FILE for messages to print to console during performance.

-K, --nopeaks

Do not generate any PEAK chunks.

-k NUM, --control-rate=NUM

Override the control rate (KR) supplied by the orchestra.

-L DEVICE, --score-in=DEVICE

Read line-oriented real-time score events from device DEVICE . The name stdin will permit score events
to be typed at your terminal, or piped from another process. Each line-event is terminated by a
carriage-return. Events are coded just like those in a standard numeric score, except that an event with
p2=0 will be performed immediately, and an event with p2=T will be performed T seconds after arrival.
Events can arrive at any time, and in any order. The score carry feature is legal here, as are held notes (p3
negative) and string arguments, but ramps and pp or np references are not.

-l, --format=long

Use long integer audio samples.

-M DEVICE, --midi-device=DEVICE

Read MIDI events from device DEVICE .

-m NUM, --messagelevel=NUM

Message level for standard (terminal) output. Takes the sum of 3 print control flags, turned on by the
following values:

• 1 = note amplitude messages

• 2 = samples out of range message

• 4 = warning messages

The default value is m7 (all messages on).

-N, --notify

Notify (ring the bell) when score or MIDI track is done.

-n, --nosound

No sound. Do all processing, but bypass writing of sound to disk. This flag does not change the
execution in any other way.

-O FILE, --logfile=FILE

Log output to file FILE .

34

Chapter 2. The Csound Command

-o FILE, --output=FILE

Output soundfile name. If not a full pathname, the soundfile will be placed in the directory given by the
environment variable SFDIR (if defined), else in the current directory. The name stdout will cause audio
to be written to standard output. If no name is given, the default name will be test . If RTAUDIO is
enabled, the name devaudio will send to the host audio output device.

-P NUM, --pollrate=NUM

Mac only. Poll events every NUM buffer writes.

-p, --play-on-end

Mac only. Play after rendering.

-Q DEVICE, -Q DIRECTORY, --analysis-directory=DIRECTORY

Beos and Linux only. Enables MIDI OUT operations and optionally chooses device id DEVICE (if the
DEVICE argument is present). This flag allows parallel MIDI OUT and DAC performance. Unfortunately
the real-time timing implemented in Csound is completely managed by DAC buffer sample flow. So
MIDI OUT operations can present some time irregularities. These irregularities can be fully eliminated
when suppressing DAC operations themselves (see -Y flag).

Mac only. Define the analysis (SADIR) directory.

-q DIRECTORY, --sample-directory=DIRECTORY

Mac only. Define the sound sample-in (SSDIR) directory.

-R, --rewrite

Continually rewrite the header while writing the soundfile (WAV/AIFF).

-r NUM, --sample-rate=NUM

Override the sampling rate (SR) supplied by the orchestra.

-s, --format=short

Use short integer audio samples.

--sched

Linux only. Use real-time scheduling and lock memory. (Also requires -d and either -o dac or -o
devaudio).

-T, --terminate-on-midi

Terminate the performance when MIDI track is done.

-t0, --keep-sorted-score

Prevents Csound from deleting the sorted score file, score.srt, upon exit.

-t NUM, --tempo=NUM

Use the uninterpreted beats of score.srt for this performance, and set the initial tempo at NUM beats per
minute. When this flag is set, the tempo of score performance is also controllable from within the
orchestra.

-U UTILITY, --utility=UTILITY

Invoke the utility program UTILITY .

35

Chapter 2. The Csound Command

-u, --format=ulaw

Use u-law audio samples.

-V NUM, --screen-buffer=NUM, --volume=NUM

Linux only. Set real-time audio output volume to NUM (1 to 100).

Mac only. Number of chars in the screen buffer for the output window.

-v, --verbose

Verbose translate and run. Prints details of orch translation and performance, enabling errors to be more
clearly located.

-W, --wave

Write a WAV format soundfile.

-w, --save-midi

Mac only. Record and save MIDI input to a file.

-X DIRECTORY, --sound-directory=DIRECTORY

Mac only. Define the sound file (SFDIR) directory.

-x FILE, --extract-score=FILE

Extract a portion of the sorted score, score.srt, using the extract file FILE (see Extract).

-Y NUM, --progress-rate=NUM

Currently disabled. Mac only. Enables progress display at rate NUM in seconds, or for negative NUM, at
-NUM kperiods.

-y NUM, --profile-rate=NUM

Currently disabled. Mac only. Enables profile display at rate NUM in seconds, or for negative NUM, at
-NUM kperiods.

-Z, --dither

Switch on dithering of audio conversion from internal floating point to 32, 16 and 8-bit formats.

-z NUM, --list-opcodesNUM

List opcodes in this version:

• no NUM, just show names

• NUM = 0, just show names

• NUM = 1, show arguments to each opcode using the format <opname><inargs><outargs>

Unified File Format for Orchestras and Scores

Description

The Unified File Format , introduced in Csound version 3.50, enables the orchestra and score files, as well as
command line flags, to be combined in one file. The file has the extension .csd. This format was originally
introduced by Michael Gogins in AXCsound.

36

Chapter 2. The Csound Command

The file is a structured data file which uses markup language, similar to any SGML such as HTML. Start tags
(<tag>) and end tags (</tag>) are used to delimit the various elements. The file is saved as a text file.

Structured Data File Format

Mandatory Elements

The Csound Element is used to alert the csound compiler to the .csd format. The file must begin with the start
tag <CsoundSynthesizer>. The last line of the file must be the end tag </CsoundSynthesizer>. The remaining
elements are defined below.

Options

Csound command line flags are put in the Options Element. This section is delimited by the start tag
<CsOptions> and the end tag </CsOptions> Lines beginning with # or ; are treated as comments.

Instruments (Orchestra)

The instrument definitions (orchestra) are put into the Instruments Element. The statements and syntax in
this section are identical to the Csound orchestra file, and have the same requirements, including the header
statements (sr , kr , etc.) This Instruments Element is delimited with the start tag <CsInstruments> and the
end tag </CsInstruments>.

Score

Csound score statements are put in the Score Element. The statements and syntax in this section are identical
to the Csound score file, and have the same requirements. The Score Element is delimited by the start tag
<CsScore> and the end tag </CsScore>.

Optional Elements

Included Base64 Files

Base64 encoded MIDI files may be included with the tag <CsMidifileB filename=filename>, where filename
is the name of the file containing the MIDI information. There is no matching end tag. New in Csound
version 4.07.

Base64 encoded sample files may be included with the tag <CsSampleB filename=filename>, where filename
is the name of the file containing the sample. There is no matching end tag. New in Csound version 4.07.

Version Blocking

Versions of Csound may blocked by placing one of the following statements between the start tag
<CsVersion> and the end tag </CsVersion>:

Before #.#

or

After #.#

37

Chapter 2. The Csound Command

where #.# is the requested Csound version number. The second statement may be written simply as:

#.#

See example below. New in Csound version 4.09.

Example

Below is a sample file, test.csd, which renders a .wav file at 44.1 kHz sample rate containing one second of a 1
kHz sine wave. Displays are suppressed. test.csd was created from two files, tone.orc and tone.sco, with the
addition of command line flags.

<CsoundSynthesizer >;
; test.csd - a Csound structured data file

<CsOptions >
-W -d -o tone.wav

</CsOptions >

<CsVersion > ;optional section
Before 4.10 ;these two statements check for
After 4.08 ; Csound version 4.09

</CsVersion >

<CsInstruments >
; originally tone.orc
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1
instr 1

a1 oscil p4, p5, 1 ; simple oscillator
out a1

endin
</CsInstruments >

<CsScore >
; originally tone.sco
f1 0 8192 10 1
i1 0 1 20000 1000 ;play one second of one kHz tone
e

</CsScore >

</CsoundSynthesizer >

Command Line Parameter File

If the file .csoundrc exists, it will be used to set the command line parameters. These can be overridden. It
uses the same form as a .csd file. Lines beginning with # or ; are treated as comments.

38

Chapter 2. The Csound Command

Score File Preprocessing

The Extract Feature

This feature will extract a segment of a sorted numeric score file according to instructions taken from a
control file. The control file contains an instrument list and two time points, from and to, in the form:

instruments 1 2 from 1:27.5 to 2:2

The component labels may be abbreviated as i, f and t. The time points denote the beginning and end of the
extract in terms of:

[section no.] : [beat no.].

each of the three parts is also optional. The default values for missing i, f or t are:

all instruments, beginning of score, end of score.

Independent Pre-Processing with Scsort

Although the result of all score preprocessing is retained in the file score.srt after orchestra performance (it
exists as soon as score preprocessing has completed), the user may sometimes want to run these phases
independently. The command

scot filename

will process the Scot formatted filename, and leave a standard numeric score result in a file named score for
perusal or later processing.

The command

scscort < infile > outfile

will put a numeric score infile through Carry, Tempo, and Sort preprocessing, leaving the result in outfile.

Likewise extract , also normally invoked as part of the Csound command, can be invoked as a standalone
program:

extract xfile < score.sort > score.extract

This command expects an already sorted score. An unsorted score should first be sent through Scsort then
piped to the extract program:

39

Chapter 2. The Csound Command

scsort < scorefile | extract xfile > score.extract

40

Chapter 3. Syntax of the Orchestra

An orchestra statement in Csound has the format:

label: result opcode argument1 , argument2 , ... ;comments

The label is optional and identifies the basic statement that follows as the potential target of a go-to operation
(see Program Flow Control). A label has no effect on the statement per se.

Comments are optional and are for the purpose of letting the user document his orchestra code. Comments
always begin with a semicolon (;) and extend to the end of the line.

The remainder (result, opcode, and arguments) form the basic statement. This also is optional, i.e. a line may
have only a label or comment or be entirely blank. If present, the basic statement must be complete on one
line, and is terminated by a carriage return and line feed.

The opcode determines the operation to be performed; it usually takes some number of input values (or
arguments, with a maximum value of about 800); and it usually has a result field variable to which it sends
output values at some fixed rate. There are four possible rates:

1. once only, at orchestra setup time (effectively a permanent assignment)

2. once at the beginning of each note (at initialization (init) time: i-rate)

3. once every performance-time control loop (perf-time control rate, or k-rate)

4. once each sound sample of every control loop (perf-time audio rate, or a-rate)

Directories and Files
Many generators and the Csound command itself specify filenames to be read from or written to. These are
optionally full pathnames, whose target directory is fully specified. When not a full path, filenames are sought
in several directories in order, depending on their type and on the setting of certain environment variables.
The latter are optional, but they can serve to partition and organize the directories so that source files can be
shared rather than duplicated in several user directories. The environment variables can define directories
for soundfiles SFDIR, sound samples SSDIR, sound analysis SADIR, and include files for orchestra and score
files INCDIR.

The search order is:

1. Soundfiles being written are placed in SFDIR (if it exists), else the current directory.

2. Soundfiles for reading are sought in the current directory, then SSDIR, then SFDIR.

3. Analysis control files for reading are sought in the current directory, then SADIR.

4. Files of code to be included in orchestra and score files (with #include) are sought first in the current
directory, then in the same directory as the orchestra or score file (as appropriate), then finally INCDIR.

Beginning with Csound version 3.54, the file “csound.txt” contains the messages (in binary format) that
Csound uses to provide information to the user during performance. This allows for the messages to be in
any language, although the default is English. This file must be placed in the same directory as the Csound
executable. Alternatively, this file may be stored in SFDIR, SSDIR, or SADIR. Unix users may also keep this file
in “/usr/local/lib/”. The environment variable CSSTRNGS may be used to define the directory in which the
database resides. This can be overridden with the -j command line option. (New in version 3.55)

41

Chapter 3. Syntax of the Orchestra

Nomenclature
Throughout this document, opcodes are indicated in boldface and their argument and result mnemonics,
when mentioned in the text, are given in italics. Argument names are generally mnemonic (amp, phs), and
the result is usually denoted by the letter r . Both are preceded by a type qualifier i, k, a, or x (e.g. kamp, iphs,
ar). The prefix i denotes scalar values valid at note init time; prefixes k or a denote control (scalar) and audio
(vector) values, modified and referenced continuously throughout performance (i.e. at every control period
while the instrument is active). Arguments are used at the prefix-listed times; results are created at their listed
times, then remain available for use as inputs elsewhere. With few exceptions, argument rates may not
exceed the rate of the result. The validity of inputs is defined by the following:

• arguments with prefix i must be valid at init time;

• arguments with prefix k can be either control or init values (which remain valid);

• arguments with prefix a must be vector inputs;

• arguments with prefix x may be either vector or scalar (the compiler will distinguish).

All arguments, unless otherwise stated, can be expressions whose results conform to the above. Most opcodes
(such as linen and oscil) can be used in more than one mode, which one being determined by the prefix of the
result symbol.

Thoughout this manual, the term "opcode" is used to indicate a command that usually produces an a-, k-, or
i-rate output, and always forms the basis of a complete Csound orchestra statement. Items such as "+" or
"sin(x)" or, "(a >= b ? c : d)" are called "operators."

Orchestra Statement Types
An orchestra program in Csound is comprised of orchestra header statements which set various global
parameters, followed by a number of instrument blocks representing different instrument types. An
instrument block, in turn, is comprised of ordinary statements that set values, control the logical flow, or
invoke the various signal processing subroutines that lead to audio output.

An orchestra header statement operates once only, at orchestra setup time. It is most commonly an
assignment of some value to a global reserved symbol , e.g. sr = 20000. All orchestra header statements belong
to a pseudo instrument 0, an init pass of which is run prior to all other instruments at score time 0. Any
ordinary statement can serve as an orchestra header statement, eg. gifreq = cpspch(8.09) provided it is an
init-time only operation.

An ordinary statement runs at either init time or performance time or both. Operations which produce a
result formally run at the rate of that result (that is, at init time for i-rate results; at performance time for k-
and a-rate results), with the sole exception of the init opcode. Most generators and modifiers, however,
produce signals that depend not only on the instantaneous value of their arguments but also on some
preserved internal state. These performance-time units therefore have an implicit init-time component to set
up that state. The run time of an operation which produces no result is apparent in the opcode.

Arguments are values that are sent to an operation. Most arguments will accept arithmetic expressions
composed of constants, variables, reserved symbols, value converters, arithmetic operations, and conditional
values.

Constants and Variables
constants are floating point numbers, such as 1, 3.14159, or -73.45. They are available continuously and do
not change in value.

variables are named cells containing numbers. They are available continuously and may be updated at one of
the four update rates (setup only, i-rate, k-rate, or a-rate). i- and k-rate variables are scalars (i.e. they take on
only one value at any given time) and are primarily used to store and recall controlling data, that is, data that

42

Chapter 3. Syntax of the Orchestra

changes at the note rate (for i-rate variables) or at the control rate (for k-rate variables). i- and k-variables are
therefore useful for storing note parameter values, pitches, durations, slow-moving frequencies, vibratos, etc.
a-rate variables, on the other hand, are arrays or vectors of information. Though renewed on the same
perf-time control pass as k-rate variables, these array cells represent a finer resolution of time by dividing the
control period into sample periods (see ksmps). a-rate variables are used to store and recall data changing at
the audio sampling rate (e.g. output signals of oscillators, filters, etc.).

A further distinction is that between local and global variables. local variables are private to a particular
instrument, and cannot be read from or written into by any other instrument. Their values are preserved, and
they may carry information from pass to pass (e.g. from initialization time to performance time) within a
single instrument. Local variable names begin with the letter p, i, k, or a. The same local variable name may
appear in two or more different instrument blocks without conflict.

global variables are cells that are accessible by all instruments. The names are either like local names
preceded by the letter g , or are special reserved symbols. Global variables are used for broadcasting general
values, for communicating between instruments (semaphores), or for sending sound from one instrument to
another (e.g. mixing prior to reverberation).

given these distinctions, there are eight forms of local and global variables:

Table 3-1. Types of Variables

Type When Renewable Local Global

reserved symbols permanent -- r symbol

score pfields i-time p number --

v-set symbols i-time v number gv number

init variables i-time i name gi name

MIDI controllers any time c number --

control signals p-time, k-rate k name gk

audio signals p-time, k-rate a name ga name

spectral data types k-rate w name --

where rsymbol is a special reserved symbol (e.g. sr, kr), number is a positive integer referring to a score pfield
or sequence number, and name is a string of letters and/or digits with local or global meaning. As might be
apparent, score parameters are local i-rate variables whose values are copied from the invoking score
statement just prior to the init pass through an instrument, while MIDI controllers are variables which can be
updated asynchronously from a MIDI file or MIDI device.

Expressions
Expressions may be composed to any depth. Each part of an expression is evaluated at its own proper rate.
For instance, if the terms within a sub-expression all change at the control rate or slower, the sub-expression
will be evaluated only at the control rate; that result might then be used in an audio-rate evaluation. For
example, in

k1 + abs (int (p5) + frac (p5) * 100/12 + sqrt (k1))

the 100/12 would be evaluated at orch init, the p5 expressions evaluated at note i-time, and the remainder of
the expression evaluated every k-period. The whole might occur in a unit generator argument position, or be

43

Chapter 3. Syntax of the Orchestra

part of an assignment statement.

Orchestra Header Statements
Statements that are normally placed in an orchestra header are ctrlinit , ftgen, kr , ksmps, massign, nchnls,
pgmassign, pset , seed, sr , and strset .

Instrument Block Statements
Statements that define an instrument block are endin and instr .

Variable Initialization
Opcodes that let one initialize variables are assign, divz, init , and tival.

44

Chapter 4. Instrument Control

Clock Control
The opcodes to start and stop internal clocks are clockoff and clockon.

Conditional Values
The opcodes for conditional values are ==, >=, >, <, <=, and !=.

Duration Control Statements
The opcodes one can use to manipulate a note’s duration are ihold, turnoff , and turnon.

Instrument Invocation
The opcodes one can use to create score events from within a orchestra are event , schedule, schedwhen, and
schedkwhen.

Macros
The opcodes one can use to create, call, or undefine macros are #define, $NAME , #include, and #undef .

Program Flow Control
The opcodes to manipulate which orchestra statements are executed are cggoto, cigoto, ckgoto, cngoto, elseif ,
else, endif , goto, if , igoto, kgoto, tigoto, and timout .

Real-time Performance Control
Opcodes that monitor and control real-time performance are active, cpuprc, maxalloc, and prealloc.

Reinitialization
The opcodes that can generate another initialization phase are reinit , rigoto, and rireturn.

Sensing and Control
Opcodes that read from signals or on-screen controls are button, checkbox, control, follow, follow2, peak,
pitch, pitchamdf , sense, sensekey, setctrl, tempest , tempo, tempoval, setime, trigger , trigseq, and xyin.

Sub-instrument Control
These opcodes let one define and use a sub-instrument: ink, outk, and subinstr .

45

Chapter 4. Instrument Control

Time Reading
Opcodes one can use to read time values are readclock, rtclock, timeinstk, timeinsts, timek, and times.

46

Chapter 5. Function Table Control

Table Queries
Opcodes the query tables for information are ftchnls, ftlen, ftlptim, ftsr , nsamp, and tableng .

Read/Write Operations
Opcodes that read and write to a table are ftloadk, ftload, ftsavek, ftsave, tablecopy, tablegpw, tableicopy,
tableigpw, tableimix, tableiw, tablemix, tablera, tablew, tablewa, and tablewkt .

Table Selection
Opcodes that let one dynamically select tables are tableikt , tablekt , and tablexkt .

47

Chapter 5. Function Table Control

48

Chapter 6. Mathematical Operations

Amplitude Converters
Opcodes to convert between different amplitude measurements are ampdb, ampdbfs, dbamp, and dbfsamp.

Arithmetic and Logic Operations
Opcodes that perform arithmetic and logic operations are -, +, &&, ||, ∗, / , ˆ , and %.

Mathematical Functions
Opcodes that perform mathematical functions are abs, exp, frac, int , log , log10, logbtwo, powoftwo, and sqrt .

Opcode Equivalents of Functions
Opcodes that perform the equivalent of mathematical functions are mac, maca, pow, product , and sum.

Random Functions
Opcodes that perform random functions are birnd and rnd.

Trigonometric Functions
Opcodes that perform trigonometric functions are cos, cosh, cosinv, sin, sinh, sininv, tan, tanh, taninv, and
taninv2.

49

Chapter 6. Mathematical Operations

50

Chapter 7. MIDI Support

Controller Input
Opocodes that accept MIDI input are aftouch, chanctrl, ctrl7 , ctrl14, ctrl21, initc7 , initc14, initc21, midic7 ,
midic14, midic21, midichannelaftertouch, midichn, midicontrolchange, mididefault , midinoteoff ,
midinoteoncps, midinoteonkey, midinoteonoct , midinoteonpch, midipitchbend, midipolyaftertouch,
midiprogramchange, and polyaft .

Converters
Opcodes that convert MIDI values are ampmidi, cpsmidi, cpsmidib, cpstmid, midictrl, notnum, octmidi,
octmidib, pchbend, pchmidi, pchmidib, and veloc.

Event Extenders
Opcodes that let one extend the duration of an event are release and xtratim.

Generic Input and Output
Opcodes for generic MIDI input and output are midiin and midiout .

Note-on/Note-off
Opcodes to turn MIDI notes on or off are midion, midion2, moscil, noteoff , noteon, noteondur , and
noteondur2.

MIDI Message Output
Opcodes that send MIDI output are mdelay, nrpn, outiat , outic, outic14, outipat , outipb, outipc, outkat ,
outkc, outkc14, outkpat , outkpb, and outkpc.

Real-time Messages
Opcodes for real-time MIDI messages are mclock and mrtmsg .

Slider Banks
Opcodes for slider banks of MIDI controls are s16b14, s32b14, slider16, slider16f , slider32, slider32f , slider64,
slider64f , slider8, and slider8f .

51

Chapter 7. MIDI Support

52

Chapter 8. Pitch Converters

Functions
Opcodes that provide common pitch functions are cent , cpsoct , cpspch, db, octave, octcps, octpch, pchoct ,
and semitone.

Tuning Opcodes
Opcodes that provide tuning functions are cps2pch, cpsxpch, cpstun, and cpstuni.

53

Chapter 8. Pitch Converters

54

Chapter 9. Signal Generators

Additive Synthesis/Resynthesis
The opcodes for additive synthesis and resynthesis are adsyn, adsynt , and hsboscil.

Basic Oscillators
The basic oscillator opcodes are lfo, oscbnk, oscil, oscil3, oscili, oscils, poscil, and poscil3.

Dynamic Spectrum Oscillators
The opcodes that generate dynamic spectra are buzz, gbuzz, mpulse, and vco.

FM Synthesis
The FM synthesis opcodes are fmb3, fmbell, fmmetal, fmpercfl, fmrhode, fmvoice, fmwurlie, foscil, and foscili,

Granular Synthesis
The granular synthesis opcodes are fof , fof2, fog , grain, grain2, grain3, granule, sndwarp, and sndwarpst .

Linear and Exponential Generators
The opcodes that generate linear or exponential curves or segments are adsr , expon, expseg , expsega, expsegr ,
jspline, line, linseg , linsegr , loopseg , lpshold, madsr , mxadsr , rspline, transeg , and xadsr .

Linear Predictive Coding (LPC) Resynthesis
The linear predictive coding resynthesis opcodes are lpfreson, lpinterp, lpread, lpreson, and lpslot .

Models and Emulations
The opcodes that model or emulate the sounds of other instruments are bamboo, cabasa, crunch, dripwater ,
gogobel, guiro, lorenz, mandol, marimba, moog , planet , sandpaper , sekere, shaker , sleighbells, stix,
tambourine, vibes, and voice.

Phasors
The opcodes that generate a moving phase value phasor and phasorbnk.

Random (Noise) Generators
Opcodes that generate random numbers are betarnd, bexprnd, cauchy, cuserrnd, duserrnd, exprand, gauss,
linrand, noise, pcauchy, pinkish, poisson, rand, randh, randi, rnd31, rand, randomh, randomi, trirand,
unirand, urd, and weibull.

55

Chapter 9. Signal Generators

Sample Playback
Opcodes that implement sample playback are bbcutm, bbcuts, loscil, loscil3, lphasor , lposcil, lposcil3, sfilist ,
sfinstr , sfinstr3, sfinstr3m, sfinstrm, sfload, sfpassign, sfplay, sfplay3, sfplay3m, sfplaym, sfplist , sfpreset , and
waveset .

Scanned Synthesis
Scanned synthesis is a variant of physical modeling, where a network of masses connected by springs is used
to generate a dynamic waveform. The opcode scanu defines the mass/spring network and sets it in motion.
The opcode scans follows a predefined path (trajectory) around the network and outputs the detected
waveform. Several scans instances may follow different paths around the same network.

These are highly efficient mechanical modelling algorithms for both synthesis and sonic animation via
algorithmic processing. They should run in real-time. Thus, the output is useful either directly as audio, or as
controller values for other parameters.

The Csound implementation adds support for a scanning path or matrix. Essentially, this offers the
possibility of reconnecting the masses in different orders, causing the signal to propagate quite differently.
They do not necessarily need to be connected to their direct neighbors. Essentially, the matrix has the effect
of “molding” this surface into a radically different shape.

To produce the matrices, the table format is straightforward. For example, for 4 masses we have the following
grid describing the possible connections:

1 2 3 4

1

2

3

4

Whenever two masses are connected, the point they define is 1. If two masses are not connected, then the
point they define is 0. For example, a unidirectional string has the following connections: (1,2), (2,3), (3,4). If it
is bidirectional, it also has (2,1), (3,2), (4,3)). For the unidirectional string, the matrix appears:

1 2 3 4

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1

4 0 0 0 0

The above table format of the connection matrix is for conceptual convenience only. The actual values shown
in te table are obtained by scans from an ASCII file using GEN23. The actual ASCII file is created from the
table model row by row. Therefore the ASCII file for the example table shown above becomes:

0100001000010000

This matrix example is very small and simple. In practice, most scanned synthesis instruments will use many
more masses than four, so their matrices will be much larger and more complex. See the example in the scans
documentation.

56

Chapter 9. Signal Generators

Please note that the generated dynamic wavetables are very unstable. Certain values for masses, centering,
and damping can cause the system to “blow up” and the most interesting sounds to emerge from your
loudspeakers!

The supplement to this manual contains a tutorial on scanned synthesis. The tutorial, examples, and other
information on scanned synthesis is available from the Scanned Synthesis page at cSounds.com.

Scanned synthesis developed by Bill Verplank, Max Mathews and Rob Shaw at Interval Research between
1998 and 2000.

Opcodes that implement scanned synthesis are scanhammer , scans, scantable, scanu, xscanmap, xscans, and
xscanu.

Short-time Fourier Transform (STFT) Resynthesis

Use of PVOC-EX files with the old Csound pvoc opcodes: All the original pvoc opcodes can now read a PVOC-EX
file, as well as the native non-portable file format. As the PVOC-EX file uses a double-size analysis window, users may
find that this gives a useful improvement in quality, for some sounds and processes, despite the fact that the
resynthesis does not use the same window size.

Apart from the window size parameter, the main difference between the original .pv format and PVOC-EX is in the
amplitude range of analysis frames. While rescaling is applied, so that no significant difference in output level is
experienced, whichever file format is used, some slight loss of amplitude can still arise, as the double window usage
itself modifies frame amplitudes, of which the resynthesis code is unaware. Note that all the original pvoc opcodes
expect a mono analysis file, and multi-channel PVOC-EX files will accordingly be rejected.

Opcodes the implement STFT resynthesis are ktableseg , pvadd, pvbufread, pvcross, pvinterp, pvoc, pvread,
tableseg , tablexseg , and vpvoc.

Table Access
The opcodes that access tables are oscil1, oscil1i, osciln, oscilx, table, table3, and tablei.

Wave Terrain Synthesis
The opcode that uses wave terrain synthesis is wterrain.

Waveguide Physical Modeling
The opcodes that implement waveguide physical modeling are pluck, repluck, wgbow, wgbowedbar , wgbrass,
wgclar , wgflute, wgpluck, and wgpluck2.

57

Chapter 9. Signal Generators

58

Chapter 10. Signal Input and Output

File Input and Output
The opcodes for file input and output are clear , dumpk, dumpk2, dumpk3, dumpk4, fiopen, fin, fini, fink,
fout , fouti, foutir , foutk, readk, readk2, readk3, readk4, and vincr .

Input
The opcodes that receive audio signals are: diskin, in, in32, inch, inh, ino, inq, ins, invalue, inx, inz, and
soundin.

Output
The opcodes that write audio signals are: out , out32, outc, outch, outh, outo, outq, outq1, outq2, outq3, outq4,
outs, outs1, outs2, outvalue, outx, outz, and soundout .

Printing and Display
Opcodes for printing and displaying values are dispfft , display, flashtxt , print , printk, printk2, and printks.

Sound File Queries
The opcodes that query information about files are filelen, filenchnls, filepeak, and filesr .

59

Chapter 10. Signal Input and Output

60

Chapter 11. Signal Modifiers

Amplitude Modifiers
The opcodes that modify amplitude are balance, clip, dam, gain, and rms.

Convolution and Morphing
The opcodes that convolve and morph signals are convle, convolve, cross2, dconv, and ftmorf .

Delay
The opcodes that implement delay are delay, delay1, delayr , delayw, deltap, deltap3, deltapi, deltapn,
deltapx, deltapw, multitap, vdelay, vdelay3, vdelayx, vdelayxs, vdelayxq, vdelayxw, vdelayxwq, and
vdelayxws.

Envelope Modifiers
The opcodes that modify envelopes are envlpx, envlpxr , linen, and linenr .

Panning and Spatialization
The opcodes that one can use for panning and spatialization are hrtfer , locsend, locsig , pan, space, spat3d,
spat3di, spat3dt , spdist , spsend, vbap16, vbap16move, vbap4, vbap4move, vbap8, vbap8move, vbaplsinit ,
vbapz, and vbapzmove.

Reverberation
The opcodes one can use for reverberation are alpass, babo, comb, nestedap, nreverb, reverb2, reverb, valpass,
and vcomb

Sample Level Operators
The opcodes one may use to modify signals are a, diff , downsamp, fold, i, integ , interp, ntrpol, samphold,
and upsamp.

Signal Limiters
Opcodes that one can use to limit signals are limit , mirror, and wrap.

Special Effects
Opcodes that generate special effects are distort1, flanger , harmon, jitter , jitter2, phaser1, phaser2, vibr , and
vibrato.

61

Chapter 11. Signal Modifiers

Specialized Filters
The opcodes that recreate specialized filters are dcblock, nlfilt , and pareq.

Standard Filters
The opcodes for standard filters are areson, aresonk, atone, atonek, atonex, biquad, biquada, butbp, butbr ,
buthp, butlp, butterbp, butterbr , butterhp, butterlp, clfilt , filter2, hilbert , lineto, lowpass2, lowres, lowresx,
lpf18, moogvcf , port , portk, reson, resonk, resonr , resonx, resony, resonz, rezzy, svfilter , tbvcf , tlineto, tone,
tonek, tonex, vlowres, and zfilter .

Waveguides
The opcodes that use waveguides to modify a signal are streson, wguide1, and wguide2.

62

Chapter 12. Spectral Processing

Non-standard Spectral Processing
These units generate and process non-standard signal data types, such as down-sampled time-domain
control signals and audio signals, and their frequency-domain (spectral) representations. The data types (d-,
w-) are self-defining, and the contents are not processable by any other Csound units. These unit generators
are experimental, and subject to change between releases, they will also be joined by others later.

The opcodes for non-standard spectral processing are specaddm, specdiff , specdisp, specfilt , spechist ,
specptrk, specscal, specsum, and spectrum.

Tools for Real-time Spectral Processing
With these opcodes, two new core facilities are added to Csound. They offer improved audio quality, and fast
performance, enabling high-quality analysis and resynthesis (together with transformations) to be applied in
real-time to live signals. The original Csound phase vocoder remains unaltered; the new opcodes use an
entirely separate set of functions based on “pvoc.c” in the CARL distribution, written by Mark Dolson.

The Csound dnoise and srconv utilities (also by Dolson, from CARL) also use this pvoc engine. CARL pvoc is
also the basis for the phase vocoder included in the Composer’s Desktop Project. A few small but important
modifications have been made to the original CARL code to support real-time streaming.

1. Support for the new PVOC-EX analysis file format. This is a fully portable (cross-platform) open file
format, supporting three analysis formats, and multi-channel signals. Currently only the standard
amplitude+frequency format has been implemented in the opcodes, but the file format itself supports
amplitude+phase and complex (real-imaginary) formats. In addition to the new opcodes, the original
Csound pvoc opcodes have been extended (and thereby with enhanced audio quality in some cases) to
read PVOC-EX files as well as the original (non-portable) format.

Full details of the structure of a PVOC-EX file are available via the website:
http://www.bath.ac.uk/~masjpf/NCD/researchdev/pvocex/pvocex.html. This site also gives details of the
freely available console programs pvocex and pvocex2 which can be used to create PVOC-EX files in all
supported formats.

2. A new frequency-domain signal type, fully streamable, with f as the leading character. In this document
it is conveniently referred to as an fsig . Primary support for fsigs is provided by the opcodes pvsanal and
pvsynth, which perform conventional phase vocoder overlap-add analysis and resynthesis,
independently of the orchestra control-rate. The only requirement is that the control-rate kr be higher
than or equal to the analysis rate, whch can be expressed by the requirement that ksmps <= overlap,
where overlap is the distance in samples between analysis frames, as specified for pvsanal. As overlap is
typically at least 128, and more usually 256, this is not an onerous restriction in practice. The opcode
pvsinfo can be used at init time to acquire the properties of an fsig.

The fsig enables the nominal separation between the analysis and resynthesis stages of the phase
vocoder to be exposed to the Csound programmer, so that not only can alternatives be employed for
either or both of these stages (not only oscillator-bank resynthesis, but also the generation of synthetic
fsig streams), but opcodes, operating on the fsig stream, can themselves become more elemental. Thus
the fsig enables the creation of a true streaming plugin framework for frequency domain signals. With
the old pvoc opcodes, each opcode is required to act as a resynthesiser, so that facilities such as pitch
scaling are duplicated in each opcode; and in many cases the opcodes are parameter-rich. The
separation of analysis and synthesis stages by means of the fsig encourages the development of a wide
range of simple building-block opcodes implementing one or two functions, with which more elaborate
processes can be constructed.

63

Chapter 12. Spectral Processing

This is very much a preliminary and experimental release, and it is possible that the precise definition of the
opcodes may change, in response to user feedback. Also, clearly, many new possibilities for opcodes are
opened up; these factors may also have a retrospective influence on the opcodes presented here.

Note that some opcode parameters currently have restricted or missing implementation. This is at least in
part in order to keep the opcodes simple at this stage, and also because they highlight important design
issues on which no decision has yet been made, and on which opinions from users are sought.

One important point about the new signal type is that because the analysis rate is typically much lower than
kr, new analysis frames are not available on each k-cycle. Internally, the opcodes track ksmps, and also
maintain a frame counter, so that frames are read and written at the correct times; this process is generally
transparent to the user. However, it means that k-rate signals only act on an fsig at the analysis rate, not at
each k-cycle. The opocde pvsftw returns a k-rate flag that is set when new fsig data is valid.

Because of the nature of the overlap-add system, the use of these opcodes incurs a small but significant delay,
or latency, determined by the window size (max(ifftsize,iwinsize)). This is typically around 23msecs. In this
first release, the delay is slightly in excess of the theoretical minimum, and it is hoped that it can be reduced,
as the opcodes are further optimized for real-time streaming.

The opcodes for real-time spectral processing are pvsadsyn, pvsanal, pvscross, pvsfread, pvsftr , pvsftw,
pvsinfo, pvsmaska, and pvsynth.

64

Chapter 13. Zak Patch System

The zak opcodes are used to create a system for i-rate, k-rate or a-rate patching. The zak system can be
thought of as a global array of variables. These opcodes are useful for performing flexible patching or routing
from one instrument to another. The system is similar to a patching matrix on a mixing console or to a
modulation matrix on a synthesizer. It is also useful whenever an array of variables is required.

The zak system is initialized by the zakinit opcode, which is usually placed just after the other global
initializations: sr , kr , ksmps, nchnls. The zakinit opcode defines two areas of memory, one area for i- and
k-rate patching, and the other area for a-rate patching. The zakinit opcode may only be called once. Once the
zak space is initialized, other zak opcodes can be used to read from, and write to the zak memory space, as
well as perform various other tasks.

Opcodes for the zak patch system are zacl, zakinit , zamod, zar , zarg , zaw, zawm, zir , ziw, ziwm, zkcl,
zkmod, zkr , zkw, and zkwm.

65

Chapter 13. Zak Patch System

66

Chapter 14. The Standard Numeric Score

Preprocessing of Standard Scores
A Score (a collection of score statements) is divided into time-ordered sections by the s statement . Before
being read by the orchestra, a score is preprocessed one section at a time. Each section is normally processed
by 3 routines: Carry, Tempo, and Sort .

Carry

Within a group of consecutive i statements whose p1 whole numbers correspond, any pfield left empty will
take its value from the same pfield of the preceding statement. An empty pfield can be denoted by a single
point (.) delimited by spaces. No point is required after the last nonempty pfield. The output of Carry
preprocessing will show the carried values explicitly. The Carry Feature is not affected by intervening
comments or blank lines; it is turned off only by a non- i statement or by an i statement with unlike p1 whole
number.

Three additional features are available for p2 alone: +, ^ + x, and ^ - x. The symbol + in p2 will be given the
value of p2 + p3 from the preceding i statement. This enables note action times to be automatically
determined from the sum of preceding durations. The + symbol can itself be carried. It is legal only in p2. E.g.:
the statements

i1 0 .5 100
i . +
i

will result in

i1 0 .5 100
i1 .5 .5 100
i1 1 .5 100

The symbols ^ + x and ^ - x determine the current p2 by adding or subtracting, respectively, the value of x
from the preceding p2. These may be used in p2 only.

The Carry feature should be used liberally. Its use, especially in large scores, can greatly reduce input typing
and will simplify later changes.

Tempo

This operation time warps a score section according to the information in a t statement . The tempo operation
converts p2 (and, for i statements, p3) from original beats into real seconds, since those are the units required
by the orchestra. After time warping, score files will be seen to have orchestra-readable format demonstrated
by the following: i p1 p2beats p2seconds p3beats p3seconds p4 p5

Sort

This routine sorts all action-time statements into chronological order by p2 value. It also sorts coincident
events into precedence order. Whenever an f statement and an i statement have the same p2 value, the f
statement will precede. Whenever two or more i statements have the same p2 value, they will be sorted into
ascending p1 value order. If they also have the same p1 value, they will be sorted into ascending p3 value

67

Chapter 14. The Standard Numeric Score

order. Score sorting is done section by section (see s statement). Automatic sorting implies that score
statements may appear in any order within a section.

N.B.

The operations Carry, Tempo and Sort are combined in a 3-phase single pass over a score file, to produce a
new file in orchestra-readable format (see the Tempo example). Processing can be invoked either explicitly
by the Scsort command, or implicitly by CSound which processes the score before calling the orchestra.
Source-format files and orchestra-readable files are both in ASCII character form, and may be either perused
or further modified by standard text editors. User-written routines can be used to modify score files before or
after the above processes, provided the final orchestra-readable statement format is not violated. Sections of
different formats can be sequentially batched; and sections of like format can be merged for automatic
sorting.

Next-P and Previous-P Symbols
At the close of any of the operations Carry, Tempo, and Sort , three additional score features are interpreted
during file writeout: next-p, previous-p, and ramping .

i statement pfields containing the symbols npx or ppx (where x is some integer) will be replaced by the
appropriate pfield value found on the next i statement (or previous i statement) that has the same p1. For
example, the symbol np7 will be replaced by the value found in p7 of the next note that is to be played by this
instrument. np and pp symbols are recursive and can reference other np and pp symbols which can reference
others, etc. References must eventually terminate in a real number or a ramp symbol. Closed loop references
should be avoided. np and pp symbols are illegal in p1, p2 and p3 (although they may reference these). np
and pp symbols may be Carried. np and pp references cannot cross a Section boundary. Any forward or
backward reference to a non-existent note-statement will be given the value zero.

E.g.: the statements

i1 0 1 10 np4 pp5
i1 1 1 20
i1 1 1 30

will result in

i1 0 1 10 20 0
i1 1 1 20 30 20
i1 2 1 30 0 30

np and pp symbols can provide an instrument with contextual knowledge of the score, enabling it to
glissando or crescendo, for instance, toward the pitch or dynamic of some future event (which may or may
not be immediately adjacent). Note that while the Carry feature will propagate np and pp through unsorted
statements, the operation that interprets these symbols is acting on a time-warped and fully sorted version of
the score.

68

Chapter 14. The Standard Numeric Score

Ramping
i statement pfields containing the symbol < will be replaced by values derived from linear interpolation of a
time-based ramp. Ramps are anchored at each end by the first real number found in the same pfield of a
preceding and following note played by the same instrument. E.g.: the statements

i1 0 1 100
i1 1 1 <
i1 2 1 <
i1 3 1 400
i1 4 1 <
i1 5 1 0

will result in

i1 0 1 100
i1 1 1 200
i1 2 1 300
i1 3 1 400
i1 4 1 200
i1 5 1 0

Ramps cannot cross a Section boundary. Ramps cannot be anchored by an np or pp symbol (although they
may be referenced by these). Ramp symbols are illegal in p1, p2 and p3. Ramp symbols may be Carried. Note,
however, that while the Carry feature will propagate ramp symbols through unsorted statements, the
operation that interprets these symbols is acting on a time-warped and fully sorted version of the score. In
fact, time-based linear interpolation is based on warped score-time, so that a ramp which spans a group of
accelerating notes will remain linear with respect to strict chronological time.

Starting with Csound version 3.52, using the symbols (or) will result in an exponential interpolation ramp,
similar to expon. The symbols { and } to define an exponential ramp have been deprecated. Using the symbol
~ will result in uniform, random distribution between the first and last values of the ramp. Use of these
functions must follow the same rules as the linear ramp function.

Score Macros

Description

Macros are textual replacements which are made in the score as it is being presented to the system. The
macro system in Csound is a very simple one, and uses the characters # and $ to define and call macros. This
can can allow for simpler score writing, and provide an elementary alternative to full score generation
systems.The score macro system is similar to, but independent of, the macro system in the orchestra
language.

#define NAME -- defines a simple macro. The name of the macro must begin with a letter and can consist of
any combination of letters and numbers. Case is significant. This form is limiting, in that the variable names
are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a' b' c') -- defines a macro with arguments. This can be used in more complex situations. The
name of the macro must begin with a letter and can consist of any combination of letters and numbers.
Within the replacement text, the arguments can be substituted by the form: $A. In fact, the implementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any choice
of letters. Remember that case is significant in macro names.

$NAME. -- calls a defined macro. To use a macro, the name is used following a $ character. The name is
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not to

69

Chapter 14. The Standard Numeric Score

terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME ., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with #undef
NAME.

Syntax

#define NAME # replacement text #

#define NAME(a' b' c') # replacement text #

$NAME.

#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Another Use For Macros. When writing a complex score it is sometimes all too easy to forget to what the
various instrument numbers refer. One can use macros to give names to the numbers. For example

#define Flute #i1#
#define Whoop #i2#

$Flute. 0 10 4000 440
$Whoop. 5 1

Examples

Example 14-1. Simple Macro

A note-event has a set of p-fields which are repeated:

#define ARGS # 1.01 2.33 138#
i1 0 1 8.00 1000 $ARGS
i1 0 1 8.01 1500 $ARGS
i1 0 1 8.02 1200 $ARGS
i1 0 1 8.03 1000 $ARGS

This will get expanded before sorting into:
i1 0 1 8.00 1000 1.01 2.33 138
i1 0 1 8.01 1500 1.01 2.33 138
i1 0 1 8.02 1200 1.01 2.33 138

70

Chapter 14. The Standard Numeric Score

i1 0 1 8.03 1000 1.01 2.33 138

This can save typing, and is makes revisions easier. If there were two sets of p-fields one could have a second
macro (there is no real limit on the number of macros one can define).

#define ARGS1 # 1.01 2.33 138#
#define ARGS2 # 1.41 10.33 1.00#
i1 0 1 8.00 1000 $ARGS1
i1 0 1 8.01 1500 $ARGS2
i1 0 1 8.02 1200 $ARGS1
i1 0 1 8.03 1000 $ARGS2

Example 14-2. Macros with arguments

#define ARG(A) # 2.345 1.03 $A 234.9#
i1 0 1 8.00 1000 $ARG(2.0)
i1 + 1 8.01 1200 $ARG(3.0)

which expands to

i1 0 1 8.00 1000 2.345 1.03 2.0 234.9
i1 + 1 8.01 1200 2.345 1.03 3.0 234.9

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Multiple File Score

Description

Using the score in more than one file.

71

Chapter 14. The Standard Numeric Score

Syntax

#include “filename”

Performance

It is sometimes convenient to have the score in more than one file. This use is supported by the #include
facility which is part of the macro system. A line containing the text

#include "filename"

where the character " can be replaced by any suitable character. For most uses the double quote symbol will
probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. There is currently
a limit of 20 on the depth of included files and macros.

A suggested use of #include would be to define a set of macros which are part of the composer’s style. It could
also be used to provide repeated sections.

s
#include :section1:
;; Repeat that
s
#include :section1:

Alternative methods of doing repeats, use the r statement , m statement , and n statement .

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Thanks to Luis Jure for pointing out the incorrect syntax in multiple file include statement.

Evaluation of Expressions
In earlier versions of Csound the numbers presented in a score were used as given. There are occasions when
some simple evaluation would be easier. This need is increased when there are macros. To assist in this area
the syntax of an arithmetic expressions within square brackets [] has been introduced. Expressions built from
the operations +, -, *, /, %, and ^ are allowed, together with grouping with (). The expressions can include
numbers, and naturally macros whose values are numeric or arithmetic strings. All calculations are made in
floating point numbers. Note that unary minus is not yet supported.

New in Csound version 3.56 are @x (next power-of-two greater than or equal to x) and @@x (next
power-of-two-plus-one greater than or equal to x).

72

Chapter 14. The Standard Numeric Score

Example

r3 CNT

i1 0 [0.3*$CNT.]
i1 + [($CNT./3)+0.2]

e

As the three copies of the section have the macro $CNT. with the different values of 1, 2 and 3, this expands to

s
i1 0 0.3
i1 0.3 0.533333
s
i1 0 0.6
i1 0.6 0.866667
s
i1 0 0.9
i1 0.9 1.2
e

This is an extreme form, but the evaluation system can be used to ensure that repeated sections are subtly
different.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Score Statements
The statements used in scores are a, b, e, f , i, m, n, r , s, t , v, and x.

Sine/Cosine Generators
The GEN routines that generate sine or cosine values are GEN09, GEN10, GEN11, GEN19, GEN30, GEN33, and
GEN34.

Line/Exponential Segment Generators
GEN routines that generate tables with linear or exponential segments are GEN05, GEN06, GEN07 , GEN08,
GEN16, GEN25, and GEN27 .

73

Chapter 14. The Standard Numeric Score

File Access GEN Routines
The GEN routines that access files are GEN01, GEN23, and GEN28.

Numeric Value Access GEN Routines
The GEN routines that generate tables from numeric values are GEN02 and GEN17 .

Window Function GEN Routines
The GEN routine for window functions is GEN20.

Random Function GEN Routines
GEN routines the generate random distributions are GEN21, GEN40, GEN41, and GEN42.

Waveshaping GEN Routines
The GEN routines that have waveshaping functionality are GEN03, GEN13, GEN14, and GEN15.

Amplitude Scaling GEN Routines
GEN routines that perform amplitude scaling are GEN04, GEN12, and GEN24.

Mixing GEN Routines
GEN routines that mix together waverforms are GEN18, GEN31, and GEN32.

74

II. Reference

Chapter 15. Orchestra Opcodes and Operators

!=

!= — Determines if one value is not equal to another.

Description

Determines if one value is not equal to another.

Syntax

(a != b ? v1 : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "= =".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, * , / , & and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples

Here is an example of the != opcode. It uses the files notequal.orc and notequal.sco.

Example 15-1. Example of the != opcode.

/* notequal.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Get the 4th p-field from the score.
k1 = p4

; Is it not equal to 3? (1 = true, 0 = false)
k2 = (p4 != 3 ? 1 : 0)

; Print the values of k1 and k2.
printks "k1 = %f, k2 = %f\\n", 1, k1, k2

endin
/* notequal.orc */

77

Chapter 15. Orchestra Opcodes and Operators

/* notequal.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.
i 1 0 0.5 2
; Call Instrument #1 with a p4 = 3.
i 1 1 0.5 3
; Call Instrument #1 with a p4 = 4.
i 1 2 0.5 4
e
/* notequal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 1.000000
k1 = 3.000000, k2 = 0.000000
k1 = 4.000000, k2 = 1.000000

See Also

==, >=, >, <=, <

#define

#define — Defines a macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

#define NAME -- defines a simple macro. The name of the macro must begin with a letter and can consist of
any combination of letters and numbers. Case is significant. This form is limiting, in that the variable names
are fixed. More flexibility can be obtained by using a macro with arguments, described below.

#define NAME(a' b' c') -- defines a macro with arguments. This can be used in more complex situations. The
name of the macro must begin with a letter and can consist of any combination of letters and numbers.
Within the replacement text, the arguments can be substituted by the form: $A. In fact, the implementation
defines the arguments as simple macros. There may be up to 5 arguments, and the names may be any choice
of letters. Remember that case is significant in macro names.

Syntax

#define NAME # replacement text #

#define NAME(a' b' c') # replacement text #

78

Chapter 15. Orchestra Opcodes and Operators

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Examples

Here is a simple example of the defining a macro. It uses the files define.orc and define.sco.

Example 15-1. Simple example of the define macro.

/* define.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Define the macros.
#define VOLUME #5000#
#define FREQ #440#
#define TABLE #1#

; Instrument #1
instr 1

; Use the macros.
; This will be expanded to "a1 oscil 5000, 440, 1".
a1 oscil $VOLUME, $FREQ, $TABLE

; Send it to the output.
out a1

endin
/* define.orc */

/* define.sco */
/* Written by Kevin Conder */
; Define Table #1 with an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* define.sco */

Its output should include lines like this:

Macro definition for VOLUME
Macro definition for CPS
Macro definition for TABLE

79

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the defining a macro with arguments. It uses the files define_args.orc and
define_args.sco.

Example 15-2. Example of the define macro with arguments.

/* define_args.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Define the oscillator macro.
#define OSCMACRO(VOLUME’FREQ’TABLE) #oscil $VOLUME, $FREQ, $TABLE#

; Instrument #1
instr 1

; Use the oscillator macro.
; This will be expanded to "a1 oscil 5000, 440, 1".
a1 $OSCMACRO(5000’440’1)

; Send it to the output.
out a1

endin
/* define_args.orc */

/* define_args.sco */
/* Written by Kevin Conder */
; Define Table #1 with an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* define_args.sco */

Its output should include lines like this:

Macro definition for OSCMACRO

See Also

$NAME , #undef

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

80

Chapter 15. Orchestra Opcodes and Operators

#include

#include — Includes an external file for processing.

Description

Includes an external file for processing.

Syntax

#include “filename”

Performance

It is sometimes convenient to have the orchestra arranged in a number of files, for example with each
instrument in a separate file. This style is supported by the #include facility which is part of the macro system.
A line containing the text

#include “filename”

where the character " can be replaced by any suitable character. For most uses the double quote symbol will
probably be the most convenient. The file name can include a full path.

This takes input from the named file until it ends, when input reverts to the previous input. There is currently
a limit of 20 on the depth of included files and macros.

Another suggested use of #include would be to define a set of macros which are part of the composer’s style.

An extreme form would be to have each instrument defines as a macro, with the instrument number as a
parameter. Then an entire orchestra could be constructed from a number of #include statements followed by
macro calls.

#include “clarinet”
#include “flute”
#include “bassoon”
$CLARINET(1)
$FLUTE(2)
$BASSOON(3)

It must be stressed that these changes are at the textual level and so take no cognizance of any meaning.

Examples

Here is an example of the include opcode. It uses the files include.orc, include.sco, and table1.inc.

Example 15-1. Example of the include opcode.

/* include.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410

81

Chapter 15. Orchestra Opcodes and Operators

ksmps = 10
nchnls = 1

; Instrument #1 - a basic oscillator.
instr 1

kamp = 10000
kcps = 440
ifn = 1

a1 oscil kamp, kcps, ifn
out a1

endin
/* include.orc */

/* table1.inc */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1
/* table1.inc */

/* include.sco */
/* Written by Kevin Conder */

; Include the file for Table #1.
#include "table1.inc"

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* oscil.sco */

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

#undef

#undef — Un-defines a macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

#undef NAME -- undefines a macro name. If a macro is no longer required, it can be undefined with #undef
NAME .

82

Chapter 15. Orchestra Opcodes and Operators

Syntax

#undef NAME

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

See Also

#define, $NAME

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

$NAME

$NAME— Calls a defined macro.

Description

Macros are textual replacements which are made in the orchestra as it is being read. The macro system in
Csound is a very simple one, and uses the characters # and $ to define and call macros. This can save typing,
and can lead to a coherent structure and consistent style. This is similar to, but independent of, the macro
system in the score language.

$NAME -- calls a defined macro. To use a macro, the name is used following a $ character. The name is
terminated by the first character which is neither a letter nor a number. If it is necessary for the name not to
terminate with a space, a period, which will be ignored, can be used to terminate the name. The string,
$NAME ., is replaced by the replacement text from the definition. The replacement text can also include
macro calls.

Syntax

$NAME

83

Chapter 15. Orchestra Opcodes and Operators

Initialization

replacement text # -- The replacement text is any character string (not containing a #) and can extend over
mutliple lines. The replacement text is enclosed within the # characters, which ensure that additional
characters are not inadvertently captured.

Performance

Some care is needed with textual replacement macros, as they can sometimes do strange things. They take no
notice of any meaning, so spaces are significant. This is why, unlike the C programming language, the
definition has the replacement text surrounded by # characters. Used carefully, this simple macro system is a
powerful concept, but it can be abused.

Examples

Here is an example of the calling a macro. It uses the files define.orc and define.sco.

Example 15-1. An example of the calling a macro.

/* define.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Define the macros.
#define VOLUME #5000#
#define FREQ #440#
#define TABLE #1#

; Instrument #1
instr 1

; Use the macros.
; This will be expanded to "a1 oscil 5000, 440, 1".
a1 oscil $VOLUME, $FREQ, $TABLE

; Send it to the output.
out a1

endin
/* define.orc */

/* define.sco */
/* Written by Kevin Conder */
; Define Table #1 with an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* define.sco */

Its output should include lines like this:

Macro definition for VOLUME
Macro definition for CPS
Macro definition for TABLE

84

Chapter 15. Orchestra Opcodes and Operators

Here is an example of the calling a macro with arguments. It uses the files define_args.orc and define_args.sco.

Example 15-2. An example of the calling a macro with arguments.

/* define_args.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Define the oscillator macro.
#define OSCMACRO(VOLUME’FREQ’TABLE) #oscil $VOLUME, $FREQ, $TABLE#

; Instrument #1
instr 1

; Use the oscillator macro.
; This will be expanded to "a1 oscil 5000, 440, 1".
a1 $OSCMACRO(5000’440’1)

; Send it to the output.
out a1

endin
/* define_args.orc */

/* define_args.sco */
/* Written by Kevin Conder */
; Define Table #1 with an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* define_args.sco */

Its output should include a line like this:

Macro definition for OSCMACRO

See Also

#define, #undef

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

85

Chapter 15. Orchestra Opcodes and Operators

%

%— Modulus operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

(a && (b - c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

(a - b) - c

Parentheses may be used as above to force particular groupings.

The operator % returns the value of a reduced by b, so that the result, in absolute value, is that of the absolute
value of b, by repeated subtraction. This is the same as modulus function in integers. New in Csound version
3.50.

86

Chapter 15. Orchestra Opcodes and Operators

Syntax

a % b (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the % operator. It uses the files modulus.orc and modulus.sco.

Example 15-1. Example of the % operator.

/* modulus.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 5 % 3
print i1

endin
/* modulus.orc */

/* modulus.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* modulus.sco */

Its output should include a line like this:

instr 1: i1 = 2.000

See Also

-, +, &&, ||, ∗, / , ˆ

&&

&&— Logical AND operator.

87

Chapter 15. Orchestra Opcodes and Operators

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

(a && (b - c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

(a - b) - c

Parentheses may be used as above to force particular groupings.

Syntax

a && b (logical AND; not audio-rate)

where the arguments a and b may be further expressions.

88

Chapter 15. Orchestra Opcodes and Operators

See Also

-, +, ||, ∗, / , ˆ , %

>

> — Determines if one value is greater than another.

Description

Determines if one value is greater than another.

Syntax

(a > b ? v1 : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "= =".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, * , / , & and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples

Here is an example of the > opcode. It uses the files greaterthan.orc and greaterthan.sco.

Example 15-1. Example of the> opcode.

/* greaterthan.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Get the 4th p-field from the score.
k1 = p4

; Is it greater than 3? (1 = true, 0 = false)
k2 = (p4 > 3 ? 1 : 0)

89

Chapter 15. Orchestra Opcodes and Operators

; Print the values of k1 and k2.
printks "k1 = %f, k2 = %f\\n", 1, k1, k2

endin
/* greaterthan.orc */

/* greaterthan.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.
i 1 0 0.5 2
; Call Instrument #1 with a p4 = 3.
i 1 1 0.5 3
; Call Instrument #1 with a p4 = 4.
i 1 2 0.5 4
e
/* greaterthan.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 0.000000
k1 = 4.000000, k2 = 1.000000

See Also

==, >=, <=, <, !=

>=

>= — Determines if one value is greater than or equal to another.

Description

Determines if one value is greater than or equal to another.

Syntax

(a >= b ? v1 : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "= =".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, * , / , & and ||).

90

Chapter 15. Orchestra Opcodes and Operators

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples

Here is an example of the >= opcode. It uses the files greaterequal.orc and greaterequal.sco.

Example 15-1. Example of the>= opcode.

/* greaterequal.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Get the 4th p-field from the score.
k1 = p4

; Is it greater than or equal to 3? (1 = true, 0 = false)
k2 = (p4 >= 3 ? 1 : 0)

; Print the values of k1 and k2.
printks "k1 = %f, k2 = %f\\n", 1, k1, k2

endin
/* greaterequal.orc */

/* greaterequal.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.
i 1 0 0.5 2
; Call Instrument #1 with a p4 = 3.
i 1 1 0.5 3
; Call Instrument #1 with a p4 = 4.
i 1 2 0.5 4
e
/* greaterequal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 1.000000

See Also

==, >, <=, <, !=

91

Chapter 15. Orchestra Opcodes and Operators

<

< — Determines if one value is less than another.

Description

Determines if one value is less than another.

Syntax

(a < b ? v1 : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "= =".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, * , / , & and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples

Here is an example of the < opcode. It uses the files lessthan.orc and lessthan.sco.

Example 15-1. Example of the< opcode.

/* lessthan.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Get the 4th p-field from the score.
k1 = p4

; Is it less than 3? (1 = true, 0 = false)
k2 = (p4 < 3 ? 1 : 0)

; Print the values of k1 and k2.
printks "k1 = %f, k2 = %f\\n", 1, k1, k2

endin
/* lessthan.orc */

/* lessthan.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.

92

Chapter 15. Orchestra Opcodes and Operators

i 1 0 0.5 2
; Call Instrument #1 with a p4 = 3.
i 1 1 0.5 3
; Call Instrument #1 with a p4 = 4.
i 1 2 0.5 4
e
/* lessthan.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 1.000000
k1 = 3.000000, k2 = 0.000000
k1 = 4.000000, k2 = 0.000000

See Also

==, >=, >, <=, !=

<=

<= — Determines if one value is less than or equal to another.

Description

Determines if one value is less than or equal to another.

Syntax

(a <= b ? v1 : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "= =".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, * , / , & and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

93

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the <= opcode. It uses the files lessequal.orc and lessequal.sco.

Example 15-1. Example of the<= opcode.

/* lessequal.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Get the 4th p-field from the score.
k1 = p4

; Is it less than or equal to 3? (1 = true, 0 = false)
k2 = (p4 <= 3 ? 1 : 0)

; Print the values of k1 and k2.
printks "k1 = %f, k2 = %f\\n", 1, k1, k2

endin
/* lessequal.orc */

/* lessequal.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.
i 1 0 0.5 2
; Call Instrument #1 with a p4 = 3.
i 1 1 0.5 3
; Call Instrument #1 with a p4 = 4.
i 1 2 0.5 4
e
/* lessequal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 1.000000
k1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 0.000000

See Also

==, >=, >, <, !=

∗

∗— Multiplication operator.

94

Chapter 15. Orchestra Opcodes and Operators

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

(a && (b - c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

(a - b) - c

Parentheses may be used as above to force particular groupings.

Syntax

a ∗ b (no rate restriction)

where the arguments a and b may be further expressions.

95

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the ∗ operator. It uses the files multiplies.orc and multiplies.sco.

Example 15-1. Example of the ∗ operator.

/* multiplies.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 24 * 8
print i1

endin
/* multiplies.orc */

/* multiplies.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* multiplies.sco */

Its output should include a line like this:

instr 1: i1 = 192.000

See Also

-, +, &&, ||, / , ˆ , %

+

+ — Addition operator

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

96

Chapter 15. Orchestra Opcodes and Operators

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

(a && (b - c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

(a - b) - c

Parentheses may be used as above to force particular groupings.

Syntax

+ a (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the + operator. It uses the files adds.orc and adds.sco.

Example 15-1. Example of the + operator.

/* adds.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

97

Chapter 15. Orchestra Opcodes and Operators

i1 = 24 + 8
print i1

endin
/* adds.orc */

/* adds.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* adds.sco */

Its output should include lines like:

instr 1: i1 = 32.000

See Also

-, &&, ||, ∗, / , ˆ , %

-

- — Subtraction operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

98

Chapter 15. Orchestra Opcodes and Operators

(a && (b - c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

(a - b) - c

Parentheses may be used as above to force particular groupings.

Syntax

- a (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the - operator. It uses the files subtracts.orc and subtracts.sco.

Example 15-1. Example of the - operator.

/* subtracts.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 24 - 8
print i1

endin
/* subtracts.orc */

/* subtracts.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* subtracts.sco */

Its output should include lines like this:

instr 1: i1 = 16.000

99

Chapter 15. Orchestra Opcodes and Operators

See Also

+, &&, ||, ∗, / , ˆ , %

/

/ — Division operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

(a && (b - c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

100

Chapter 15. Orchestra Opcodes and Operators

(a - b) - c

Parentheses may be used as above to force particular groupings.

Syntax

a / b (no rate restriction)

where the arguments a and b may be further expressions.

Examples

Here is an example of the / operator. It uses the files divides.orc and divides.sco.

Example 15-1. Example of the / operator.

/* divides.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 24 / 8
print i1

endin
/* divides.orc */

/* divides.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* divides.sco */

Its output should include lines like this:

instr 1: i1 = 3.000

See Also

-, +, &&, ||, ∗, ˆ , %

101

Chapter 15. Orchestra Opcodes and Operators

=

= — Performs a simple assignment.

Syntax

ar = xarg

ir = iarg

kr = karg

Description

Performs a simple assignment.

Initialization

= (simple assignment) - Put the value of the expression iarg (karg, xarg) into the named result. This provides
a means of saving an evaluated result for later use.

Examples

Here is an example of the assign opcode. It uses the files assign.orc and assign.sco.

Example 15-1. Example of the assign opcode.

/* assign.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Assign a value to the variable i1.
i1 = 1234

; Print the value of the i1 variable.
print i1

endin
/* assign.orc */

/* assign.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* assign.sco */

Its output should include a line like this:

instr 1: i1 = 1234.000

102

Chapter 15. Orchestra Opcodes and Operators

See Also

divz, init , tival

==

== — Compares two values for equality.

Description

Compares two values for equality.

Syntax

(a == b ? v1 : v2)

where a, b, v1 and v2 may be expressions, but a, b not audio-rate.

Performance

In the above conditionals, a and b are first compared. If the indicated relation is true (a greater than b, a less
than b, a greater than or equal to b, a less than or equal to b, a equal to b, a not equal to b), then the
conditional expression has the value of v1; if the relation is false, the expression has the value of v2. (For
convenience, a sole "=" will function as "= =".)

NB.: If v1 or v2 are expressions, these will be evaluated before the conditional is determined.

In terms of binding strength, all conditional operators (i.e. the relational operators (<, etc.), and ?, and :) are
weaker than the arithmetic and logical operators (+, -, * , / , & and ||).

These are operators not opcodes. Therefore, they can be used within orchestra statements, but do not form
complete statements themselves.

Examples

Here is an example of the == opcode. It uses the files equal.orc and equal.sco.

Example 15-1. Example of the == opcode.

/* equal.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Get the 4th p-field from the score.
k1 = p4

103

Chapter 15. Orchestra Opcodes and Operators

; Is it equal to 3? (1 = true, 0 = false)
k2 = (p4 == 3 ? 1 : 0)

; Print the values of k1 and k2.
printks "k1 = %f, k2 = %f\\n", 1, k1, k2

endin
/* equal.orc */

/* equal.sco */
/* Written by Kevin Conder */
; Call Instrument #1 with a p4 = 2.
i 1 0 0.5 2
; Call Instrument #1 with a p4 = 3.
i 1 1 0.5 3
; Call Instrument #1 with a p4 = 4.
i 1 2 0.5 4
e
/* equal.sco */

Its output should include lines like this:

k1 = 2.000000, k2 = 0.000000
k1 = 3.000000, k2 = 1.000000
k1 = 4.000000, k2 = 0.000000

See Also

>=, >, <=, <, !=

ˆ

ˆ — “Power of” operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

104

Chapter 15. Orchestra Opcodes and Operators

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

(a && (b - c)) || d

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

(a - b) - c

Parentheses may be used as above to force particular groupings.

The operator ˆ raises a to the b power. b may not be audio-rate. Use with caution as precedence may not
work correctly. See pow. (New in Csound version 3.493.)

Syntax

a ˆ b (b not audio-rate)

where the arguments a and b may be further expressions.

Examples

Here is an example of the ˆ operator. It uses the files raises.orc and raises.sco.

Example 15-1. Example of the ˆ operator.

/* raises.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 2 ^ 12
print i1

endin

105

Chapter 15. Orchestra Opcodes and Operators

/* raises.orc */

/* raises.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* raises.sco */

Its output should include a line like this:

instr 1: i1 = 4096.000

See Also

-, +, &&, ||, ∗, / , %

||

||— Logical OR operator.

Description

Arithmetic operators perform operations of change-sign (negate), don’t-change-sign, logical AND logical OR,
add, subtract, multiply and divide. Note that a value or an expression may fall between two of these
operators, either of which could take it as its left or right argument, as in

a + b * c.

In such cases three rules apply:

1. ∗ and / bind to their neighbors more strongly than + and -. Thus the above expression is taken as

a + (b * c)

with ∗ taking b and c and then + taking a and b ∗ c.

2. + and - bind more strongly than &&, which in turn is stronger than ||:

a && b - c || d

is taken as

(a && (b - c)) || d

106

Chapter 15. Orchestra Opcodes and Operators

3. When both operators bind equally strongly, the operations are done left to right:

a - b - c i

is taken as

(a - b) - c

Parentheses may be used as above to force particular groupings.

Syntax

a || b (logical OR; not audio-rate)

where the arguments a and b may be further expressions.

See Also

-, +, &&, ∗, / , ˆ , %

0dbfs

0dbfs — Sets the value of 0 decibels using full scale amplitude.

Description

Sets the value of 0 decibels using full scale amplitude.

Syntax

0dbfs = iarg

Initialization

iarg -- the value of 0 decibels using full scale amplitude.

107

Chapter 15. Orchestra Opcodes and Operators

Performance

The default is 32767, so all existing orcs should work.

These calls should all work:

ipeak = 0dbfs

asig oscil 0dbfs,freq,1
out asig * 0.3 * 0dbfs

and so on.

As for documentation: the usage should be obvious - the main thing is for people to start to code
0dbfs-relatively (and use the ampdb() opcodes a lot more!), rather than use explicit sample values.

Floats written to a file, when 0dbfs = 1, will in effect go through no range translation at all. So the nunbers in
the file are exactly what the orc says they are.

BIG NB: All the main sample formats are supported, but I haven’t got around to dealing with the char formats. Probably
it’s straight-forward...

I have tried to cover the main utils - adsyn,lpanal etc. But there are bound to be things missing, sorry.

Some of the parsing code is a bit grungy because I have a variable with a leading digit!

Examples

Here is an example of the 0dbfs opcode. It uses the files 0dbfs.orc and 0dbfs.sco.

Example 15-1. Example of the 0dbfs opcode.

/* 0dbfs.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Set the 0dbfs to the 16-bit maximum.
0dbfs = 32767

; Instrument #1.
instr 1

; Linearly increase the amplitude value "kamp" from
; 0 to 1 over the duration defined by p3.
kamp line 0, p3, 1

; Generate a basic tone using our amplitude value.
a1 oscil kamp, 440, 1

; Multiply the basic tone (with its amplitude between
; 0 and 1) by the full-scale 0dbfs value.
out a1 * 0dbfs

endin
/* 0dbfs.orc */

108

Chapter 15. Orchestra Opcodes and Operators

/* 0dbfs.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for three seconds.
i 1 0 3
e
/* 0dbfs.sco */

Credits

Author: Richard Dobson

May 2002

New in version 4.20

a

a — Converts a k-rate parameter to an a-rate value with interpolation.

Description

Converts a k-rate parameter to an a-rate value with interpolation.

Syntax

a(x) (control-rate args only)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

See Also

i

Credits

Author: Gabriel Maldonado

New in version 4.21

abetarand

abetarand — Deprecated.

109

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the betarand opcode instead.

abexprnd

abexprnd — Deprecated.

Description

Deprecated as of version 3.49. Use the bexprnd opcode instead.

abs

abs — Returns an absolute value.

Description

Returns the absolute value of x.

Syntax

abs(x) (no rate restriction)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the abs opcode. It uses the files abs.orc and abs.sco.

Example 15-1. Example of the abs opcode.

/* abs.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = -6
i2 = abs(i1)

print i2
endin
/* abs.orc */

/* abs.sco */

110

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* abs.sco */

Its output should include lines like:

instr 1: i2 = 6.000

See Also

exp, frac, int , log , log10, i, sqrt

acauchy

acauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the cauchy opcode instead.

active

active — Returns the number of active instances of an instrument.

Description

Returns the number of active instances of an instrument.

Syntax

ir active insnum

kr active kinsnum

Initialization

insnum -- number of the instrument to be reported

111

Chapter 15. Orchestra Opcodes and Operators

Performance

kinsnum -- number of the instrument to be reported

active returns the number of active instances of instrument number insnum/kinsnum. As of Csound4.17 the
output is updated at k-rate (if input arg is k-rate), to allow running count of instr instances.

Examples

Here is a simple example of the active opcode. It uses the files active.orc and active.sco.

Example 15-1. Simple example of the active opcode.

/* active.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a noisy waveform.
instr 1

; Generate a really noisy waveform.
anoisy rand 44100
; Turn down its amplitude.
aoutput gain anoisy, 2500
; Send it to the output.
out aoutput

endin

; Instrument #2 - counts active instruments.
instr 2

; Count the active instances of Instrument #1.
icount active 1
; Print the number of active instances.
print icount

endin
/* active.orc */

/* active.sco */
/* Written by Kevin Conder */
; Start the first instance of Instrument #1 at 0:00 seconds.
i 1 0.0 3.0

; Start the second instance of Instrument #1 at 0:015 seconds.
i 1 1.5 1.5

; Play Instrument #2 at 0:01 seconds, when we have only
; one active instance of Instrument #1.
i 2 1.0 0.1

; Play Instrument #2 at 0:02 seconds, when we have
; two active instances of Instrument #1.
i 2 2.0 0.1
e
/* active.sco */

Its output should include lines like this:

instr 2: icount = 1.000

112

Chapter 15. Orchestra Opcodes and Operators

instr 2: icount = 2.000

Here is a more advanced example of the active opcode. It displays the results of the active opcode at k-rate
instead of i-rate. It uses the files active_k.orc and active_k.sco.

Example 15-2. Example of the active opcode at k-rate.

/* active_k.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a noisy waveform.
instr 1

; Generate a really noisy waveform.
anoisy rand 44100
; Turn down its amplitude.
aoutput gain anoisy, 2500
; Send it to the output.
out aoutput

endin

; Instrument #2 - counts active instruments at k-rate.
instr 2

; Count the active instances of Instrument #1.
kcount active 1
; Print the number of active instances.
printk2 kcount

endin
/* active_k.orc */

/* active_k.sco */
/* Written by Kevin Conder */
; Start the first instance of Instrument #1 at 0:00 seconds.
i 1 0.0 3.0

; Start the second instance of Instrument #1 at 0:015 seconds.
i 1 1.5 1.5

; Play Instrument #2 at 0:01 seconds, when we have only
; one active instance of Instrument #1.
i 2 1.0 0.1

; Play Instrument #2 at 0:02 seconds, when we have
; two active instances of Instrument #1.
i 2 2.0 0.1
e
/* active_k.sco */

Its output should include lines like:

i2 1.00000
i2 2.00000

113

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

July, 1999

New in Csound version 3.57

adsr

adsr — Calculates the classical ADSR envelope using linear segments.

Description

Calculates the classical ADSR envelope using linear segments.

Syntax

ar adsr iatt, idec, islev, irel [, idel]

kr adsr iatt, idec, islev, irel [, idel]

Initialization

iatt -- duration of attack phase

idec -- duration of decay

islev -- level for sustain phase

irel -- duration of release phase

idel -- period of zero before the envelope starts

114

Chapter 15. Orchestra Opcodes and Operators

Performance

The envelope is the range 0 to 1 and may need to be scaled further. The envelope may be described as:

Picture of an ADSR envelope.

The length of the sustain is calculated from the length of the note. This means adsr is not suitable for use with
MIDI events. The opcode madsr uses the linsegr mechanism, and so can be used in MIDI applications.

adsr is new in Csound version 3.49.

Examples

Here is an example of the adsr opcode. It uses the files adsr.orc and adsr.sco.

Example 15-1. Example of the adsr opcode.

/* adsr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a simple instrument.
instr 1

; Set the amplitude.
kamp init 20000
; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

a1 vco kamp, kcps, 1
out a1

endin

; Instrument #2 - instrument with an ADSR envelope.
instr 2

iatt = 0.05
idec = 0.5
islev = 0.08
irel = 0.008

115

Chapter 15. Orchestra Opcodes and Operators

; Create an amplitude envelope.
kenv adsr iatt, idec, islev, irel
kamp = kenv * 20000

; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

a1 vco kamp, kcps, 1
out a1

endin
/* adsr.orc */

/* adsr.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Set the tempo to 120 beats per minute.
t 0 120

; Play a melody with Instrument #1.
; p4 = frequency in pitch-class notation.
i 1 0 1 8.04
i 1 1 1 8.04
i 1 2 1 8.05
i 1 3 1 8.07
i 1 4 1 8.07
i 1 5 1 8.05
i 1 6 1 8.04
i 1 7 1 8.02
i 1 8 1 8.00
i 1 9 1 8.00
i 1 10 1 8.02
i 1 11 1 8.04
i 1 12 2 8.04
i 1 14 2 8.02

; Repeat the melody with Instrument #2.
; p4 = frequency in pitch-class notation.
i 2 16 1 8.04
i 2 17 1 8.04
i 2 18 1 8.05
i 2 19 1 8.07
i 2 20 1 8.07
i 2 21 1 8.05
i 2 22 1 8.04
i 2 23 1 8.02
i 2 24 1 8.00
i 2 25 1 8.00
i 2 26 1 8.02
i 2 27 1 8.04
i 2 28 2 8.04
i 2 30 2 8.02
e
/* adsr.sco */

116

Chapter 15. Orchestra Opcodes and Operators

See Also

madsr , mxadsr , xadsr

adsyn

adsyn — Output is an additive set of individually controlled sinusoids, using an oscillator bank.

Description

Output is an additive set of individually controlled sinusoids, using an oscillator bank.

Syntax

ar adsyn kamod, kfmod, ksmod, ifilcod

Initialization

ifilcod -- integer or character-string denoting a control-file derived from analysis of an audio signal. An
integer denotes the suffix of a file adsyn.m or pvoc.m; a character-string (in double quotes) gives a filename,
optionally a full pathname. If not fullpath, the file is sought first in the current directory, then in the one given
by the environment variable SADIR (if defined). adsyn control contains breakpoint amplitude- and
frequency-envelope values organized for oscillator resynthesis, while pvoc control contains similar data
organized for fft resynthesis. Memory usage depends on the size of the files involved, which are read and held
entirely in memory during computation but are shared by multiple calls (see also lpread).

Performance

kamod -- amplitude factor of the contributing partials.

kfmod -- frequency factor of the contributing partials. It is a control-rate transposition factor: a value of 1
incurs no transposition, 1.5 transposes up a perfect fifth, and .5 down an octave.

ksmod -- speed factor of the contributing partials.

adsyn synthesizes complex time-varying timbres through the method of additive synthesis. Any number of
sinusoids, each individually controlled in frequency and amplitude, can be summed by high-speed
arithmetic to produce a high-fidelity result.

Component sinusoids are described by a control file describing amplitude and frequency tracks in
millisecond breakpoint fashion. Tracks are defined by sequences of 16-bit binary integers:

-1, time, amp, time, amp,...
-2, time, freq, time, freq,...

such as from hetrodyne filter analysis of an audio file. (For details see hetro.) The instantaneous amplitude
and frequency values are used by an internal fixed-point oscillator that adds each active partial into an
accumulated output signal. While there is a practical limit (limit removed in version 3.47) on the number of
contributing partials, there is no restriction on their behavior over time. Any sound that can be described in
terms of the behavior of sinusoids can be synthesized by adsyn alone.

Sound described by an adsyn control file can also be modified during re-synthesis. The signals kamod,
kfmod, ksmod will modify the amplitude, frequency, and speed of contributing partials. These are
multiplying factors, with kfmod modifying the frequency and ksmod modifying the speed with which the

117

Chapter 15. Orchestra Opcodes and Operators

millisecond breakpoint line-segments are traversed. Thus .7, 1.5, and 2 will give rise to a softer sound, a
perfect fifth higher, but only half as long. The values 1,1,1 will leave the sound unmodified. Each of these
inputs can be a control signal.

Examples

Here is an example of the adsyn opcode. It uses the files adsyn.orc, adsyn.sco, and kickroll.het . The file
“kickroll.het” was created by using the hetro utility with the audio file kickroll.wav.

Example 15-1. Example of the adsyn opcode.

/* adsyn.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; If the modulation amounts are set to 1, adsyn
; will not perform any special modulation.
kamod init 1
kfmod init 1
ksmod init 1

; Re-synthesizes the file "kickroll.het".
a1 adsyn kamod, kfmod, ksmod, "kickroll.het"

out a1 * 32768
endin
/* adsyn.orc */

/* adsyn.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* adsyn.sco */

adsynt

adsynt — Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.

Description

Performs additive synthesis with an arbitrary number of partials, not necessarily harmonic.

118

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar adsynt kamp, kcps, iwfn, ifreqfn, iampfn, icnt [, iphs]

Initialization

iwfn -- table containing a waveform, usually a sine. Table values are not interpolated for performance
reasons, so larger tables provide better quality.

ifreqfn -- table containing frequency values for each partial. ifreqfn may contain beginning frequency values
for each partial, but is usually used for generating parameters at runtime with tablew. Frequencies must be
relative to kcps. Size must be at least icnt .

iampfn -- table containing amplitude values for each partial. iampfn may contain beginning amplitude
values for each partial, but is usually used for generating parameters at runtime with tablew. Amplitudes
must be relative to kamp. Size must be at least icnt .

icnt -- number of partials to be generated

iphs -- initial phase of each oscillator, if iphs = -1, initialization is skipped. If iphs > 1, all phases will be
initialized with a random value.

Performance

kamp -- amplitude of note

kcps -- base frequency of note. Partial frequencies will be relative to kcps.

Frequency and amplitude of each partial is given in the two tables provided. The purpose of this opcode is to
have an instrument generate synthesis parameters at k-rate and write them to global parameter tables with
the tablew opcode.

Examples

Here is an example of the adsynt opcode. It uses the files adsynt.orc and adsynt.sco. These two instruments
perform additive synthesis. The output of each sounds like a Tibetan bowl. The first one is static, as
parameters are only generated at init-time. In the second one, parameters are continuously changed.

Example 15-1. Example of the adsynt opcode.

/* adsynt.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Generate a sinewave table.
giwave ftgen 1, 0, 1024, 10, 1
; Generate two empty tables for adsynt.
gifrqs ftgen 2, 0, 32, 7, 0, 32, 0
; A table for freqency and amp parameters.
giamps ftgen 3, 0, 32, 7, 0, 32, 0

; Generates parameters at init time
instr 1

; Generate 10 voices.
icnt = 10
; Init loop index.
index = 0

119

Chapter 15. Orchestra Opcodes and Operators

; Loop only executed at init time.
loop:

; Define non-harmonic partials.
ifreq pow index + 1, 1.5
; Define amplitudes.
iamp = 1 / (index+1)
; Write to tables.
tableiw ifreq, index, gifrqs
; Used by adsynt.
tableiw iamp, index, giamps

index = index + 1
; Do loop/
if (index < icnt) igoto loop

asig adsynt 5000, 150, giwave, gifrqs, giamps, icnt
out asig

endin

; Generates parameters every k-cycle.
instr 2

; Generate 10 voices.
icnt = 10
; Reset loop index.
kindex = 0

; Loop executed every k-cycle.
loop:

; Generate lfo for frequencies.
kspeed pow kindex + 1, 1.6
; Individual phase for each voice.
kphas phasorbnk kspeed * 0.7, kindex, icnt
klfo table kphas, giwave, 1
; Arbitrary parameter twiddling...
kdepth pow 1.4, kindex
kfreq pow kindex + 1, 1.5
kfreq = kfreq + klfo*0.006*kdepth

; Write freqs to table for adsynt.
tablew kfreq, kindex, gifrqs

; Generate lfo for amplitudes.
kspeed pow kindex + 1, 0.8
; Individual phase for each voice.
kphas phasorbnk kspeed*0.13, kindex, icnt, 2
klfo table kphas, giwave, 1
; Arbitrary parameter twiddling...
kamp pow 1 / (kindex + 1), 0.4
kamp = kamp * (0.3+0.35*(klfo+1))

; Write amps to table for adsynt.
tablew kamp, kindex, giamps

kindex = kindex + 1
; Do loop.
if (kindex < icnt) kgoto loop

asig adsynt 5000, 150, giwave, gifrqs, giamps, icnt
out asig

endin
/* adsynt.orc */

/* adsynt.sco */
; Play Instrument #1 for 2.5 seconds.

120

Chapter 15. Orchestra Opcodes and Operators

i 1 0 2.5
; Play Instrument #2 for 2.5 seconds.
i 2 3 2.5
e
/* adsynt.sco */

Credits

Author: Peter Neubäcker

Munich, Germany

August, 1999

New in Csound version 3.58

aexprand

aexprand — Deprecated.

Description

Deprecated as of version 3.49. Use the exprand opcode instead.

aftouch

aftouch — Get the current after-touch value for this channel.

Description

Get the current after-touch value for this channel.

Syntax

kaft aftouch [imin] [, imax]

Initialization

imin (optional, default=0) -- minimum limit on values obtained.

imax (optional, default=127) -- maximum limit on values obtained.

121

Chapter 15. Orchestra Opcodes and Operators

Performance

Get the current after-touch value for this channel. Note that this access to pitch-bend data is independent of
the MIDI pitch, enabling the value here to be used for any arbitrary purpose.

Examples

Here is an example of the aftouch opcode. It uses the files aftouch.orc and aftouch.sco.

Example 15-1. Example of the aftouch opcode.

/* aftouch.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

k1 aftouch

printk2 k1
endin
/* aftouch.orc */

/* aftouch.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* aftouch.sco */

See Also

ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

agauss

agauss — Deprecated.

122

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the gauss opcode instead.

agogobel

agogobel — Deprecated.

Description

Deprecated as of version 3.52. Use the gogobel opcode instead.

alinrand

alinrand — Deprecated.

Description

Deprecated as of version 3.49. Use the linrand opcode instead.

alpass

alpass — Reverberates an input signal with a flat frequency response.

Description

Reverberates an input signal with a flat frequency response.

Syntax

ar alpass asig, krvt, ilpt [, iskip] [, insmps]

Initialization

ilpt -- loop time in seconds, which determines the “echo density” of the reverberation. This in turn
characterizes the “color” of the filter whose frequency response curve will contain ilpt * sr/2 peaks spaced
evenly between 0 and sr/2 (the Nyquist frequency). Loop time can be as large as available memory will
permit. The space required for an n second loop is 4n*sr bytes. The delay space is allocated and returned as in
delay.

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

insmps (optional, default=0) -- delay amount, as a number of samples.

123

Chapter 15. Orchestra Opcodes and Operators

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

This filter reiterates the input with an echo density determined by loop time ilpt . The attenuation rate is
independent and is determined by krvt , the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Output will begin to appear immediately.

Examples

Here is an example of the alpass opcode. It uses the files alpass.orc and alpass.sco.

Example 15-1. Example of the alpass opcode.

/* alpass.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the audio mixer.
gamix init 0

; Instrument #1.
instr 1

; Generate a source signal.
a1 oscili 30000, cpspch(p4), 1
; Output the direct sound.
out a1

; Add the source signal to the audio mixer.
gamix = gamix + a1

endin

; Instrument #99 (highest instr number executed last)
instr 99

krvt = 1.5
ilpt = 0.1

; Filter the mixed signal.
a99 alpass gamix, krvt, ilpt
; Output the result.
out a99

; Empty the mixer for the next pass.
gamix = 0

endin
/* alpass.orc */

/* alpass.sco */
; Table #1, a sine wave.
f 1 0 128 10 1

; p4 = frequency (in a pitch-class)
; Play Instrument #1 for a tenth of a second, p4=7.00
i 1 0 0.1 7.00
; Play Instrument #1 for a tenth of a second, p4=7.02
i 1 1 0.1 7.02
; Play Instrument #1 for a tenth of a second, p4=7.04

124

Chapter 15. Orchestra Opcodes and Operators

i 1 2 0.1 7.04
; Play Instrument #1 for a tenth of a second, p4=7.06
i 1 3 0.1 7.06

; Make sure the filter remains active.
i 99 0 5
e
/* alpass.sco */

See Also

comb, reverb, valpass, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)

University of Texas at Austin

Austin, Texas USA

January 2002

ampdb

ampdb — Returns the amplitude equivalent of the decibel value x.

Description

Returns the amplitude equivalent of the decibel value x. Thus:

• 60 dB = 1000

• 66 dB = 1995.262

• 72 dB = 3891.07

• 78 dB = 7943.279

• 84 dB = 15848.926

• 90 dB = 31622.764

Syntax

ampdb(x) (no rate restriction)

125

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the ampdb opcode. It uses the files ampdb.orc and ampdb.sco.

Example 15-1. Example of the ampdb opcode.

/* ampdb.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

idb = 90
iamp = ampdb(idb)

print iamp
endin
/* ampdb.orc */

/* ampdb.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* ampdb.sco */

Its output should include lines like:

instr 1: iamp = 31622.764

See Also

ampdbfs, db, dbamp, dbfsamp

ampdbfs

ampdbfs — Returns the amplitude equivalent of the decibel value x, which is relative to full scale amplitude.

Description

Returns the amplitude equivalent of the decibel value x, which is relative to full scale amplitude. Full scale is
assumed to be 16 bit. New is Csound version 4.10.

Syntax

ampdbfs(x) (no rate restriction)

126

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the ampdbfs opcode. It uses the files ampdbfs.orc and ampdbfs.sco.

Example 15-1. Example of the ampdbfs opcode.

/* ampdbfs.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

idb = -1
iamp = ampdbfs(idb)

print iamp
endin
/* ampdbfs.orc */

/* ampdbfs.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* ampdbfs.sco */

Its output should include lines like:

instr 1: iamp = 29203.621

See Also

ampdb, dbamp, dbfsamp

ampmidi

ampmidi — Get the velocity of the current MIDI event.

Description

Get the velocity of the current MIDI event.

Syntax

iamp ampmidi iscal [, ifn]

127

Chapter 15. Orchestra Opcodes and Operators

Initialization

iscal -- i-time scaling factor

ifn (optional, default=0) -- function table number of a normalized translation table, by which the incoming
value is first interpreted. The default value is 0, denoting no translation.

Performance

Get the velocity of the current MIDI event, optionally pass it through a normalized translation table, and
return an amplitude value in the range 0 - iscal.

Examples

Here is an example of the ampmidi opcode. It uses the files ampmidi.orc and ampmidi.sco.

Example 15-1. Example of the ampmidi opcode.

/* ampmidi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Scale the amplitude between 0 and 1.
i1 ampmidi 1

print i1
endin
/* ampmidi.orc */

/* ampmidi.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* ampmidi.sco */

See Also

aftouch, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

128

Chapter 15. Orchestra Opcodes and Operators

apcauchy

apcauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the pcauchy opcode instead.

apoisson

apoisson — Deprecated.

Description

Deprecated as of version 3.49. Use the poisson opcode instead.

apow

apow — Deprecated.

Description

Deprecated as of version 3.48. Use the pow opcode instead.

areson

areson — A notch filter whose transfer functions are the complements of the reson opcode.

Description

A notch filter whose transfer functions are the complements of the reson opcode.

Syntax

ar areson asig, kcf, kbw [, iscl] [, iskip]

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white

129

Chapter 15. Orchestra Opcodes and Operators

noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

ar -- the output signal at audio rate.

asig -- the input signal at audio rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

areson is a filter whose transfer functions is the complement of reson. Thus areson is a notch filter whose
transfer functions represents the “filtered out” aspects of their complements. However, power scaling is not
normalized in areson but remains the true complement of the corresponding unit. Thus an audio signal,
filtered by parallel matching reson and areson units, would under addition simply reconstruct the original
spectrum.

This property is particularly useful for controlled mixing of different sources (see lpreson). Complex response
curves such as those with multiple peaks can be obtained by using a bank of suitable filters in series. (The
resultant response is the product of the component responses.) In such cases, the combined attenuation may
result in a serious loss of signal power, but this can be regained by the use of balance.

Examples

Here is an example of the areson opcode. It uses the files areson.orc and areson.sco.

Example 15-1. Example of the areson opcode.

/* areson.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; Generate a white noise signal.
asig rand 20000

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; Generate a white noise signal.
asig rand 20000

; Filter it using the areson opcode.
kcf init 1000
kbw init 100
afilt areson asig, kcf, kbw

; Clip the filtered signal’s amplitude to 85 dB.
a1 clip afilt, 2, ampdb(85)

130

Chapter 15. Orchestra Opcodes and Operators

out a1
endin
/* areson.orc */

/* areson.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* areson.sco */

See Also

aresonk, atone, atonek, port , portk, reson, resonk, tone, tonek

aresonk

aresonk — A notch filter whose transfer functions are the complements of the reson opcode.

Description

A notch filter whose transfer functions are the complements of the reson opcode.

Syntax

kr aresonk ksig, kcf, kbw [, iscl] [, iskip]

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white
noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

131

Chapter 15. Orchestra Opcodes and Operators

aresonk is a filter whose transfer functions is the complement of reson. Thus aresonk is a notch filter whose
transfer functions represents the “filtered out” aspects of their complements. However, power scaling is not
normalized in aresonk but remains the true complement of the corresponding unit.

See Also

areson, atone, atonek, port , portk, reson, resonk, tone, tonek

atone

atone — A notch filter whose transfer functions are the complements of the tone opcode.

Description

A notch filter whose transfer functions are the complements of the tone opcode.

Syntax

ar atone asig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

ar -- the output signal at audio rate.

asig -- the input signal at audio rate.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

atone is a filter whose transfer functions is the complement of tone. atone is thus a form of high-pass filter
whose transfer functions represent the “filtered out” aspects of their complements. However, power scaling is
not normalized in atone but remains the true complement of the corresponding unit. Thus an audio signal,
filtered by parallel matching tone and atone units, would under addition simply reconstruct the original
spectrum.

This property is particularly useful for controlled mixing of different sources (see lpreson). Complex response
curves such as those with multiple peaks can be obtained by using a bank of suitable filters in series. (The
resultant response is the product of the component responses.) In such cases, the combined attenuation may
result in a serious loss of signal power, but this can be regained by the use of balance.

132

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the atone opcode. It uses the files atone.orc and atone.sco.

Example 15-1. Example of the atone opcode.

/* atone.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; Generate a white noise signal.
asig rand 20000

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; Generate a white noise signal.
asig rand 20000

; Filter it using the atone opcode.
khp init 2000
afilt atone asig, khp

; Clip the filtered signal’s amplitude to 85 dB.
a1 clip afilt, 2, ampdb(85)
out a1

endin
/* atone.orc */

/* atone.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* atone.sco */

See Also

areson, aresonk, atonek, port , portk, reson, resonk, tone, tonek

atonek

atonek — A notch filter whose transfer functions are the complements of the tone opcode.

133

Chapter 15. Orchestra Opcodes and Operators

Description

A notch filter whose transfer functions are the complements of the tone opcode.

Syntax

kr atonek ksig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

atonek is a filter whose transfer functions is the complement of tonek. atonek is thus a form of high-pass filter
whose transfer functions represent the “filtered out” aspects of their complements. However, power scaling is
not normalized in atonek but remains the true complement of the corresponding unit.

See Also

areson, aresonk, atone, port , portk, reson, resonk, tone, tonek

atonex

atonex — Emulates a stack of filters using the atone opcode.

Description

atonex is equivalent to a filter consisting of more layers of atone with the same arguments, serially connected.
Using a stack of a larger number of filters allows a sharper cutoff. They are faster than using a larger number
instances in a Csound orchestra of the old opcodes, because only one initialization and k- cycle are needed at
time and the audio loop falls entirely inside the cache memory of processor.

Syntax

ar atonex asig, khp [, inumlayer] [, iskip]

Initialization

inumlayer (optional) -- number of elements in the filter stack. Default value is 4.

134

Chapter 15. Orchestra Opcodes and Operators

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

asig -- input signal

khp -- the response curve’s half-power point. Half power is defined as peak power / root 2.

See Also

resonx, tonex

Credits

Author: Gabriel Maldonado (adapted by John ffitch)

Italy

New in Csound version 3.49

atrirand

atrirand — Deprecated.

Description

Deprecated as of version 3.49. Use the trirand opcode instead.

aunirand

aunirand — Deprecated.

Description

Deprecated as of version 3.49. Use the unirand opcode instead.

aweibull

aweibull — Deprecated.

135

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the weibull opcode instead.

babo

babo — A physical model reverberator.

Description

babo stands for ball-within-the-box. It is a physical model reverberator based on the paper by Davide
Rocchesso "The Ball within the Box: a sound-processing metaphor", Computer Music Journal, Vol 19, N.4,
pp.45-47, Winter 1995.

The resonator geometry can be defined, along with some response characteristics, the position of the listener
within the resonator, and the position of the sound source.

Syntax

a1, a2 babo asig, ksrcx, ksrcy, ksrcz, irx, iry, irz [, idiff] [, ifno]

Initialization

irx, iry, irz -- the coordinates of the geometry of the resonator (length of the edges in meters)

idiff -- is the coefficient of diffusion at the walls, which regulates the amount of diffusion (0-1, where 0 = no
diffusion, 1 = maximum diffusion - default: 1)

ifno -- expert values function: a function number that holds all the additional parameters of the resonator.
This is typically a GEN2--type function used in non-rescaling mode. They are as follows:

• decay -- main decay of the resonator (default: 0.99)

• hydecay -- high frequency decay of the resonator (default: 0.1)

• rcvx, rcvy, rcvz -- the coordinates of the position of the receiver (the listener) (in meters; 0,0,0 is the
resonator center)

• rdistance -- the distance in meters between the two pickups (your ears, for example - default: 0.3)

• direct -- the attenuation of the direct signal (0-1, default: 0.5)

• early_diff -- the attenuation coefficient of the early reflections (0-1, default: 0.8)

Performance

asig -- the input signal

ksrcx, ksrcy, ksrcz -- the virtual coordinates of the source of sound (the input signal). These are allowed to
move at k-rate and provide all the necessary variations in terms of response of the resonator.

136

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is a simple example of the babo opcode. It uses the files babo.orc, babo.sco, and beats.wav.

Example 15-1. A simple example of the babo opcode.

/* babo.orc */
/* Written by Nicola Bernardini */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; minimal babo instrument
;
instr 1

ix = p4 ; x position of source
iy = p5 ; y position of source
iz = p6 ; z position of source
ixsize = p7 ; width of the resonator
iysize = p8 ; depth of the resonator
izsize = p9 ; height of the resonator

ainput soundin "beats.wav"

al,ar babo ainput*0.7, ix, iy, iz, ixsize, iysize, izsize

outs al,ar
endin
/* babo.orc */

/* babo.sco */
/* Written by Nicola Bernardini */
; simple babo usage:
;
;p4 : x position of source
;p5 : y position of source
;p6 : z position of source
;p7 : width of the resonator
;p8 : depth of the resonator
;p9 : height of the resonator
;
i 1 0 10 6 4 3 14.39 11.86 10
; ^^^^^^^ ^^^^^^^^^^^^^^
; ||||||| ++++++++++++++: optimal room dims according to
; ||||||| Milner and Bernard JASA 85(2), 1989
; +++++++++: source position
e
/* babo.sco */

Here is an advanced example of the babo opcode. It uses the files babo_expert.orc, babo_expert.sco, and
beats.wav.

137

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. An advanced example of the babo opcode.

/* babo_expert.orc */
/* Written by Nicola Bernardini */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; full blown babo instrument with movement
;
instr 2

ixstart = p4 ; start x position of source (left-right)
ixend = p7 ; end x position of source
iystart = p5 ; start y position of source (front-back)
iyend = p8 ; end y position of source
izstart = p6 ; start z position of source (up-down)
izend = p9 ; end z position of source
ixsize = p10 ; width of the resonator
iysize = p11 ; depth of the resonator
izsize = p12 ; height of the resonator
idiff = p13 ; diffusion coefficient
iexpert = p14 ; power user values stored in this function

ainput soundin "beats.wav"
ksource_x line ixstart, p3, ixend
ksource_y line iystart, p3, iyend
ksource_z line izstart, p3, izend

al,ar babo ainput*0.7, ksource_x, ksource_y, ksource_z, ixsize, iysize, izsize, idiff, iexpert

outs al,ar
endin
/* babo_expert.orc */

/* babo_expert.sco */
/* Written by Nicola Bernardini */
; full blown instrument
;p4 : start x position of source (left-right)
;p5 : end x position of source
;p6 : start y position of source (front-back)
;p7 : end y position of source
;p8 : start z position of source (up-down)
;p9 : end z position of source
;p10 : width of the resonator
;p11 : depth of the resonator
;p12 : height of the resonator
;p13 : diffusion coefficient
;p14 : power user values stored in this function

; decay hidecay rx ry rz rdistance direct early_diff
f1 0 8 -2 0.95 0.95 0 0 0 0.3 0.5 0.8 ; brighter
f2 0 8 -2 0.95 0.5 0 0 0 0.3 0.5 0.8 ; default (to be set as)
f3 0 8 -2 0.95 0.01 0 0 0 0.3 0.5 0.8 ; darker
f4 0 8 -2 0.95 0.7 0 0 0 0.3 0.1 0.4 ; to hear the effect of diffusion
f5 0 8 -2 0.9 0.5 0 0 0 0.3 2.0 0.98 ; to hear the movement
f6 0 8 -2 0.99 0.1 0 0 0 0.3 0.5 0.8 ; default vals
; ^
; ----- gen. number: negative to avoid rescaling

i2 0 10 6 4 3 6 4 3 14.39 11.86 10 1 6 ; defaults
i2 + 4 6 4 3 6 4 3 14.39 11.86 10 1 1 ; hear brightness 1

138

Chapter 15. Orchestra Opcodes and Operators

i2 + 4 6 4 3 -6 -4 3 14.39 11.86 10 1 2 ; hear brightness 2
i2 + 4 6 4 3 -6 -4 3 14.39 11.86 10 1 3 ; hear brightness 3
i2 + 3 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 0.0 4 ; hear diffusion 1
i2 + 3 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 1.0 4 ; hear diffusion 2
i2 + 4 12 4 3 -12 -4 -3 24.39 21.86 20 1 5 ; hear movement
;
i2 + 4 6 4 3 6 4 3 14.39 11.86 10 1 1 ; hear brightness 1
i2 + 4 6 4 3 -6 -4 3 14.39 11.86 10 1 2 ; hear brightness 2
i2 + 4 6 4 3 -6 -4 3 14.39 11.86 10 1 3 ; hear brightness 3
i2 + 3 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 0.0 4 ; hear diffusion 1
i2 + 3 .6 .4 .3 -.6 -.4 .3 1.439 1.186 1.0 1.0 4 ; hear diffusion 2
i2 + 4 12 4 3 -12 -4 -3 24.39 21.86 20 1 5 ; hear movement
; ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^ ^
; ||||||||||||||||||| ||||||||||||||||| | --: expert values function
; ||||||||||||||||||| ||||||||||||||||| +--: diffusion
; ||||||||||||||||||| ----------------: optimal room dims according to Milner and Bernard JASA 85(2), 1989
; |||||||||||||||||||
; --------------------: source position start and end
e
/* babo_expert.sco */

Credits

Author: Paolo Filippi

Padova, Italy

1999

Nicola Bernardini

Rome, Italy

2000

New in Csound version 4.09

balance

balance — Adjust one audio signal according to the values of another.

Description

The rms power of asig can be interrogated, set, or adjusted to match that of a comparator signal.

Syntax

ar balance asig, acomp [, ihp] [, iskip]

139

Chapter 15. Orchestra Opcodes and Operators

Initialization

ihp (optional) -- half-power point (in Hz) of a special internal low-pass filter. The default value is 10.

iskip (optional, default=0) -- initial disposition of internal data space (see reson). The default value is 0.

Performance

asig -- input audio signal

acomp -- the comparator signal

balance outputs a version of asig , amplitude-modified so that its rms power is equal to that of a comparator
signal acomp. Thus a signal that has suffered loss of power (eg., in passing through a filter bank) can be
restored by matching it with, for instance, its own source. It should be noted that gain and balance provide
amplitude modification only - output signals are not altered in any other respect.

Examples

Here is an example of the balance opcode. It uses the files balance.orc and balance.sco.

Example 15-1. Example of the balance opcode.

/* balance.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a band-limited pulse train.
asrc buzz 30000, 440, sr/440, 1

; Send the source signal through 2 filters.
a1 reson asrc, 1000, 100
a2 reson a1, 3000, 500

; Balance the filtered signal with the source.
afin balance a2, asrc

out afin
endin
/* balance.orc */

/* balance.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* balance.sco */

140

Chapter 15. Orchestra Opcodes and Operators

See Also

gain, rms

bamboo

bamboo — Semi-physical model of a bamboo sound.

Description

bamboo is a semi-physical model of a bamboo sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar bamboo kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 1.25.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.9999 + (idamp * 0.002)

The default damping_amount is 0.9999 which means that the default value of idamp is 0. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 0.05.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 2800.

ifreq1 (optional) -- the first resonant frequency. The default value is 2240.

ifreq2 (optional) -- the second resonant frequency. The default value is 3360.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

Examples

Here is an example of the bamboo opcode. It uses the files bamboo.orc and bamboo.sco.

Example 15-1. Example of the bamboo opcode.

/* bamboo.orc */

141

Chapter 15. Orchestra Opcodes and Operators

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 01 ;example of bamboo
a1 bamboo p4, 0.01

out a1
endin

/* bamboo.orc */

/* bamboo.sco */
i1 0 1 20000
e
/* bamboo.sco */

See Also

dripwater , guiro, sleighbells, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

bbcutm

bbcutm — Generates breakbeat-style cut-ups of a mono audio stream.

Description

The BreakBeat Cutter automatically generates cut-ups of a source audio stream in the style of drum and
bass/jungle breakbeat manipulations. There are two versions, for mono (bbcutm) or stereo (bbcuts) sources.
Whilst originally based on breakbeat cutting, the opcode can be applied to any type of source audio.

The prototypical cut sequence favoured over one bar with eighth note subdivisions would be

3+ 3R + 2

where we take a 3 unit block from the source’s start, repeat it, then 2 units from the 7th and 8th eighth notes of
the source.

We talk of rendering phrases (a sequence of cuts before reaching a new phrase at the beginning of a bar) and
units (as subdivision th notes).

142

Chapter 15. Orchestra Opcodes and Operators

The opcode comes most alive when multiple synchronised versions are used simultaneously.

Syntax

a1 bbcutm asource, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats [, istutterspeed] [, istutterchance] [,
ienvchoice]

Initialization

ibps -- Tempo to cut at, in beats per second.

isubdiv -- Subdivisions unit, for a bar. So 8 is eighth notes (of a 4/4 bar).

ibarlength -- How many beats per bar. Set to 4 for default 4/4 bar behaviour.

iphrasebars -- The output cuts are generated in phrases, each phrase is up to iphrasebars long

inumrepeats -- In normal use the algorithm would allow up to one additional repeat of a given cut at a time.
This parameter allows that to be changed. Value 1 is normal- up to one extra repeat. 0 would avoid repeating,
and you would always get back the original source except for enveloping and stuttering.

istutterspeed -- (optional, default=1) The stutter can be an integer multiple of the subdivision speed. For
instance, if subdiv is 8 (quavers) and stutterspeed is 2, then the stutter is in semiquavers (sixteenth notes=
subdiv 16). The default is 1.

istutterchance -- (optional, default=0) The tail of a phrase has this chance of becoming a single repeating one
unit cell stutter (0.0 to 1.0). The default is 0.

ienvchoice -- (optional, default=1) choose 1 for on (exponential envelope for cut grains) or 0 for off. Off will
cause clicking, but may give good noisy results, especially for percussive sources. The default is 1, on.

Performance

asource -- The audio signal to be cut up. This version runs in real-time without knowledge of future audio.

Examples

Example 15-1. First steps- mono and stereo versions

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 1
asource diskin "break7.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!

; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; no enveloping
asig bbcutm asource, 2.6937, 8,4,4,1, 2,0.1,0

outs asig,asig
endin

instr 2 ;stereo version
asource1,asource2 diskin "break7stereo.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!

143

Chapter 15. Orchestra Opcodes and Operators

; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; no enveloping
asig1,asig2 bbcuts asource1, asource2, 2.6937, 8,4,4,1, 2,0.1,0

outs asig1,asig2
endin

</CsInstruments >
<CsScore >
i1 0 10
i2 11 10
e
</CsScore >
</CsoundSynthesizer >

Example 15-2. Multiple simultaneous synchronised breaks

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
ibps = 2.6937
iplaybackspeed = ibps/p5
asource diskin p4,iplaybackspeed,0,1

asig bbcutm asource, 2.6937, p6,4,4,p7, 2,0.1,1

out asig
endin

</CsInstruments >
<CsScore >

; source bps cut repeats
i1 0 10 "break1.wav" 2.3 8 2 //2.3 is the source original tempo
i1 0 10 "break2.wav" 2.4 8 3
i1 0 10 "break3.wav" 2.5 16 4
e
</CsScore >
</CsoundSynthesizer >

Example 15-3. Cutting up any old audio- much more interesting noises than this should be possible!

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

144

Chapter 15. Orchestra Opcodes and Operators

instr 1
asource oscil 20000,70,1
; ain,bps,subdiv,barlength,phrasebars,numrepeats,
;stutterspeed,stutterchance,envelopingon
asig bbcutm asource, 2, 32,1,1,2, 4,0.6,1
outs asig

endin

</CsInstruments >
<CsScore >
f1 0 256 10 1
i1 0 10
e
</CsScore >
</CsoundSynthesizer >

Example 15-4. Constant stuttering- faked, not possible since can only stutter in last half bar could make
extra stuttering option parameter

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
asource diskin "break7.wav",1,0,1

;16th note cuts- but cut size 2 over half a beat.
;each half beat will eiather survive intact or be turned into
;the first sixteenth played twice in succession

asig bbcutm asource,2.6937,2,0.5,1,2, 2,1.0,0
outs asig

endin

</CsInstruments >
<CsScore >
i1 0 30
e
</CsScore >
</CsoundSynthesizer >

See Also

bbcuts

145

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Nick Collins

London

August 2001

New in version 4.13

bbcuts

bbcuts — Generates breakbeat-style cut-ups of a stereo audio stream.

Description

The BreakBeat Cutter automatically generates cut-ups of a source audio stream in the style of drum and
bass/jungle breakbeat manipulations. There are two versions, for mono (bbcutm) or stereo (bbcuts) sources.
Whilst originally based on breakbeat cutting, the opcode can be applied to any type of source audio.

The prototypical cut sequence favoured over one bar with eighth note subdivisions would be

3+ 3R + 2

where we take a 3 unit block from the source’s start, repeat it, then 2 units from the 7th and 8th eighth notes of
the source.

We talk of rendering phrases (a sequence of cuts before reaching a new phrase at the beginning of a bar) and
units (as subdivision th notes).

The opcode comes most alive when multiple synchronised versions are used simultaneously.

Syntax

a1,a2 bbcuts asource1, asource2, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats [, istutterspeed] [,
istutterchance] [, ienvchoice]

Initialization

ibps -- Tempo to cut at, in beats per second.

isubdiv -- Subdivisions unit, for a bar. So 8 is eighth notes (of a 4/4 bar).

ibarlength -- How many beats per bar. Set to 4 for default 4/4 bar behaviour.

iphrasebars -- The output cuts are generated in phrases, each phrase is up to iphrasebars long

inumrepeats -- In normal use the algorithm would allow up to one additional repeat of a given cut at a time.
This parameter allows that to be changed. Value 1 is normal- up to one extra repeat. 0 would avoid repeating,
and you would always get back the original source except for enveloping and stuttering.

istutterspeed -- (optional, default=1) The stutter can be an integer multiple of the subdivision speed. For
instance, if subdiv is 8 (quavers) and stutterspeed is 2, then the stutter is in semiquavers (sixteenth notes=
subdiv 16). The default is 1.

istutterchance -- (optional, default=0) The tail of a phrase has this chance of becoming a single repeating one
unit cell stutter (0.0 to 1.0). The default is 0.

146

Chapter 15. Orchestra Opcodes and Operators

ienvchoice -- (optional, default=1) choose 1 for on (exponential envelope for cut grains) or 0 for off. Off will
cause clicking, but may give good noisy results, especially for percussive sources. The default is 1, on.

Performance

asource -- The audio signal to be cut up. This version runs in real-time without knowledge of future audio.

Examples

Example 15-1. First steps- mono and stereo versions

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 1
asource diskin "break7.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!

; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; no enveloping
asig bbcutm asource, 2.6937, 8,4,4,1, 2,0.1,0

outs asig,asig
endin

instr 2 ;stereo version
asource1,asource2 diskin "break7stereo.wav",1,0,1 ; a source breakbeat sample, wraparound lest it stop!

; cuts in eighth notes per 4/4 bar, up to 4 bar phrases, up to 1
; repeat in total (standard use) rare stuttering at 16 note speed,
; no enveloping
asig1,asig2 bbcuts asource1, asource2, 2.6937, 8,4,4,1, 2,0.1,0

outs asig1,asig2
endin

</CsInstruments >
<CsScore >
i1 0 10
i2 11 10
e
</CsScore >
</CsoundSynthesizer >

147

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. Multiple simultaneous synchronised breaks

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
ibps = 2.6937
iplaybackspeed = ibps/p5
asource diskin p4,iplaybackspeed,0,1

asig bbcutm asource, 2.6937, p6,4,4,p7, 2,0.1,1

out asig
endin

</CsInstruments >
<CsScore >

; source bps cut repeats
i1 0 10 "break1.wav" 2.3 8 2 //2.3 is the source original tempo
i1 0 10 "break2.wav" 2.4 8 3
i1 0 10 "break3.wav" 2.5 16 4
e
</CsScore >
</CsoundSynthesizer >

Example 15-3. Cutting up any old audio- much more interesting noises than this should be possible!

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
asource oscil 20000,70,1
; ain,bps,subdiv,barlength,phrasebars,numrepeats,
;stutterspeed,stutterchance,envelopingon
asig bbcutm asource, 2, 32,1,1,2, 4,0.6,1
outs asig

endin

</CsInstruments >
<CsScore >
f1 0 256 10 1
i1 0 10
e
</CsScore >
</CsoundSynthesizer >

148

Chapter 15. Orchestra Opcodes and Operators

Example 15-4. Constant stuttering- faked, not possible since can only stutter in last half bar could make
extra stuttering option parameter

<CsoundSynthesizer >
<CsInstruments >
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
asource diskin "break7.wav",1,0,1

;16th note cuts- but cut size 2 over half a beat.
;each half beat will eiather survive intact or be turned into
;the first sixteenth played twice in succession

asig bbcutm asource,2.6937,2,0.5,1,2, 2,1.0,0
outs asig

endin

</CsInstruments >
<CsScore >
i1 0 30
e
</CsScore >
</CsoundSynthesizer >

See Also

bbcutm

Credits

Author: Nick Collins

London

August 2001

New in version 4.13

betarand

betarand — Beta distribution random number generator (positive values only).

Description

Beta distribution random number generator (positive values only). This is an x-class noise generator.

149

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar betarand krange, kalpha, kbeta

ir betarand krange, kalpha, kbeta

kr betarand krange, kalpha, kbeta

Performance

krange -- range of the random numbers (0 - krange).

kalpha -- alpha value. If kalpha is smaller than one, smaller values favor values near 0.

kbeta -- beta value. If kbeta is smaller than one, smaller values favor values near krange.

If both kalpha and kbeta equal one we have uniform distribution. If both kalpha and kbeta are greater than
one we have a sort of Gaussian distribution. Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the betarand opcode. It uses the files betarand.orc and betarand.sco.

Example 15-1. Example of the betarand opcode.

/* betarand.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a number between 0 and 1 with a
; uniform distribution.
; krange = 1
; kalpha = 1
; kbeta = 1

i1 betarand 1, 1, 1

print i1
endin
/* betarand.orc */

/* betarand.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* betarand.sco */

150

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like:

instr 1: i1 = 24583.412

See Also

bexprnd, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

bexprnd

bexprnd — Exponential distribution random number generator.

Description

Exponential distribution random number generator. This is an x-class noise generator.

Syntax

ar bexprnd krange

ir bexprnd krange

kr bexprnd krange

Performance

krange -- the range of the random numbers (-krange to +krange)

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

151

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the bexprnd opcode. It uses the files bexprnd.orc and bexprnd.sco.

Example 15-1. Example of the bexprnd opcode.

/* bexprnd.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number between -1 and 1.
; krange = 1

i1 bexprnd 1

print i1
endin
/* bexprnd.orc */

/* bexprnd.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* bexprnd.sco */

Its output should include lines like:

instr 1: i1 = 1.141

See Also

betarand, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

biquad

biquad — A sweepable general purpose biquadratic digital filter.

152

Chapter 15. Orchestra Opcodes and Operators

Description

A sweepable general purpose biquadratic digital filter.

Syntax

ar biquad asig, kb0, kb1, kb2, ka0, ka1, ka2 [, iskip]

Initialization

iskip (optional, default=0) -- if non-zero, intialization will be skipped. Default value 0. (New in Csound
version 3.50)

Performance

asig -- input signal

biquad is a general purpose biquadratic digital filter of the form:

a0*y(n) + a1*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2]

This filter has the following frequency response:

B(Z) b0 + b1*Z-1 + b2*Z-2

H(Z) = ---- = ------------------
A(Z) a0 + a1*Z-1 + a2*Z-2

This type of filter is often encountered in digital signal processing literature. It allows six user-defined k-rate
coefficients.

Examples

Here is an example of the biquad opcode. It uses the files biquad.orc and biquad.sco.

Example 15-1. Example of the biquad opcode.

/* biquad.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; Instrument #1.
instr 1

; Get the values from the score.
idur = p3
iamp = p4
icps = cpspch(p5)
kfco = p6
krez = p7

153

Chapter 15. Orchestra Opcodes and Operators

; Calculate the biquadratic filter’s coefficients
kfcon = 2*3.14159265*kfco/sr
kalpha = 1-2*krez*cos(kfcon)*cos(kfcon)+krez*krez*cos(2*kfcon)
kbeta = krez*krez*sin(2*kfcon)-2*krez*cos(kfcon)*sin(kfcon)
kgama = 1+cos(kfcon)
km1 = kalpha*kgama+kbeta*sin(kfcon)
km2 = kalpha*kgama-kbeta*sin(kfcon)
kden = sqrt(km1*km1+km2*km2)
kb0 = 1.5*(kalpha*kalpha+kbeta*kbeta)/kden
kb1 = kb0
kb2 = 0
ka0 = 1
ka1 = -2*krez*cos(kfcon)
ka2 = krez*krez

; Generate an input signal.
axn vco 1, icps, 1

; Filter the input signal.
ayn biquad axn, kb0, kb1, kb2, ka0, ka1, ka2
outs ayn*iamp/2, ayn*iamp/2

endin
/* biquad.orc */

/* biquad.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Sta Dur Amp Pitch Fco Rez
i 1 0.0 1.0 20000 6.00 1000 .8
i 1 1.0 1.0 20000 6.03 2000 .95
e
/* biquad.sco */

See Also

biquada, moogvcf , rezzy

Credits

Author: Hans Mikelson

October 1998

New in Csound version 3.49

biquada

biquada — A sweepable general purpose biquadratic digital filter with a-rate parameters.

154

Chapter 15. Orchestra Opcodes and Operators

Description

A sweepable general purpose biquadratic digital filter.

Syntax

ar biquada asig, ab0, ab1, ab2, aa0, aa1, aa2 [, iskip]

Initialization

iskip (optional, default=0) -- if non-zero, intialization will be skipped. Default value 0. (New in Csound
version 3.50)

Performance

asig -- input signal

biquada is a general purpose biquadratic digital filter of the form:

a0*y(n) + a1*y[n-1] + a2*y[n-2] = b0*x[n] + b1*x[n-1] + b2*x[n-2]

This filter has the following frequency response:

B(Z) b0 + b1*Z-1 + b2*Z-2

H(Z) = ---- = ------------------
A(Z) a0 + a1*Z-1 + a2*Z-2

This type of filter is often encountered in digital signal processing literature. It allows six user-defined a-rate
coefficients.

See Also

biquad

Credits

Author: Hans Mikelson

October 1998

New in Csound version 3.49

birnd

birnd — Returns a random number in a bi-polar range.

155

Chapter 15. Orchestra Opcodes and Operators

Description

Returns a random number in a bi-polar range.

Syntax

birnd(x) (init- or control-rate only)

Where the argument within the parentheses may be an expression. These value converters sample a global
random sequence, but do not reference seed. The result can be a term in a further expression.

Performance

Returns a random number in the bipolar range -x to x. rnd and birnd obtain values from a global
pseudo-random number generator, then scale them into the requested range. The single global generator will
thus distribute its sequence to these units throughout the performance, in whatever order the requests arrive.

Examples

Here is an example of the birnd opcode. It uses the files birnd.orc and birnd.sco.

Example 15-1. Example of the birnd opcode.

/* birnd.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number from -1 to 1.
i1 = birnd(1)
print i1

endin
/* birnd.orc */

/* birnd.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #1 for one second.
i 1 1 1
e
/* birnd.sco */

Its output should include lines like:

instr 1: i1 = 0.947
instr 1: i1 = -0.721

156

Chapter 15. Orchestra Opcodes and Operators

See Also

rnd

Credits

Author: Barry L. Vercoe

MIT

Cambridge, Massachussetts

1997

butbp

butbp — Same as the butterbp opcode.

Description

Same as the butterbp opcode.

Syntax

ar butbp asig, kfreq, kband [, iskip]

butbr

butbr — Same as the butterbr opcode.

Description

Same as the butterbr opcode.

Syntax

ar butbr asig, kfreq, kband [, iskip]

buthp

buthp — Same as the butterhp opcode.

157

Chapter 15. Orchestra Opcodes and Operators

Description

Same as the butterhp opcode.

Syntax

ar buthp asig, kfreq [, iskip]

butlp

butlp — Same as the butterlp opcode.

Description

Same as the butterlp opcode.

Syntax

ar butlp asig, kfreq [, iskip]

butterbp

butterbp — A band-pass Butterworth filter.

Description

Implementation of a second-order band-pass Butterworth filter. This opcode can also be written as butbp.

Syntax

ar butterbp asig, kfreq, kband [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.

kfreq -- Cutoff or center frequency for each of the filters.

kband -- Bandwidth of the bandpass and bandreject filters.

158

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the butterbp opcode. It uses the files butterbp.orc and butterbp.sco.

Example 15-1. Example of the butterbp opcode.

/* butterbp.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal
asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal
asig rand 22050

; Filter it, passing only 1950 to 2050 Hz.
abp butterbp asig, 2000, 100

out abp
endin
/* butterbp.orc */

/* butterbp.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* butterbp.sco */

See Also

butterbr , butterhp, butterlp

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

159

Chapter 15. Orchestra Opcodes and Operators

butterbr

butterbr — A band-reject Butterworth filter.

Description

Implementation of a second-order band-reject Butterworth filter. This opcode can also be written as butbr .

Syntax

ar butterbr asig, kfreq, kband [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.

kfreq -- Cutoff or center frequency for each of the filters.

kband -- Bandwidth of the bandpass and bandreject filters.

Examples

Here is an example of the butterbr opcode. It uses the files butterbr.orc and butterbr.sco.

Example 15-1. Example of the butterbr opcode.

/* butterbr.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal
asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal
asig rand 22050

; Filter it, cutting 2000 to 6000 Hz.
abr butterbr asig, 4000, 2000

160

Chapter 15. Orchestra Opcodes and Operators

out abr
endin
/* butterbr.orc */

/* butterbr.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* butterbr.sco */

See Also

butterbp, butterhp, butterlp

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

butterhp

butterhp — A high-pass Butterworth filter.

Description

Implementation of second-order high-pass Butterworth filter. This opcode can also be written as buthp.

Syntax

ar butterhp asig, kfreq [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.

kfreq -- Cutoff or center frequency for each of the filters.

161

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the butterhp opcode. It uses the files butterhp.orc and butterhp.sco.

Example 15-1. Example of the butterhp opcode.

/* butterhp.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal
asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal
asig rand 22050

; Filter it, passing frequencies above 250 Hz.
ahp butterhp asig, 250

out ahp
endin
/* butterhp.orc */

/* butterhp.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* butterhp.sco */

See Also

butterbp, butterbr , butterlp

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

162

Chapter 15. Orchestra Opcodes and Operators

butterlp

butterlp — A low-pass Butterworth filter.

Description

Implementation of a second-order low-pass Butterworth filter. This opcode can also be written as butlp.

Syntax

ar butterlp asig, kfreq [, iskip]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

Performance

These filters are Butterworth second-order IIR filters. They are slightly slower than the original filters in
Csound, but they offer an almost flat passband and very good precision and stopband attenuation.

asig -- Input signal to be filtered.

kfreq -- Cutoff or center frequency for each of the filters.

Examples

Here is an example of the butterlp opcode. It uses the files butterlp.orc and butterlp.sco.

Example 15-1. Example of the butterlp opcode.

/* butterlp.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal
asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal
asig rand 22050

; Filter it, cutting frequencies above 1 KHz.
alp butterlp asig, 1000

out alp
endin

163

Chapter 15. Orchestra Opcodes and Operators

/* butterlp.orc */

/* butterlp.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* butterlp.sco */

See Also

butterbp, butterbr , butterhp

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

button

button — Sense on-screen controls.

Description

Sense on-screen controls. Requires Winsound or TCL/TK.

Syntax

kr button knum

Performance

kr -- value of the button control. If the button has been pushed since the last k-period, then return 1,
otherwise return 0.

knum -- the number of the button. If it does not exist, it is made on-screen at initialization.

See Also

checkbox

164

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

September, 2000

New in Csound version 4.08

buzz

buzz — Output is a set of harmonically related sine partials.

Description

Output is a set of harmonically related sine partials.

Syntax

ar buzz xamp, xcps, knh, ifn [, iphs]

Initialization

ifn -- table number of a stored function containing a sine wave. A large table of at least 8192 points is
recommended.

iphs (optional, default=0) -- initial phase of the fundamental frequency, expressed as a fraction of a cycle (0 to
1). A negative value will cause phase initialization to be skipped. The default value is zero

Performance

xamp -- amplitude

xcps -- frequency in cycles per second

The buzz units generate an additive set of harmonically related cosine partials of fundamental frequency
xcps, and whose amplitudes are scaled so their summation peak equals xamp. The selection and strength of
partials is determined by the following control parameters:

knh -- total number of harmonics requested. New in Csound version 3.57, knh defaults to one. If knh is
negative, the absolute value is used.

buzz and gbuzz are useful as complex sound sources in subtractive synthesis. buzz is a special case of the
more general gbuzz in which klh = kr= 1; it thus produces a set of knh equal-strength harmonic partials,
beginning with the fundamental. (This is a band-limited pulse train; if the partials extend to the Nyquist, i.e.
knh = int (sr / 2 / fundamental freq.), the result is a real pulse train of amplitude xamp.)

Although both knh and klh may be varied during performance, their internal values are necessarily integer
and may cause “pops” due to discontinuities in the output; kr, however, can be varied during performance to
good effect. Both buzz and gbuzz can be amplitude- and/or frequency-modulated by either control or audio
signals.

N.B. These two units have their analogs in GEN11, in which the same set of cosines can be stored in a
function table for sampling by an oscillator. Although computationally more efficient, the stored pulse train
has a fixed spectral content, not a time-varying one as above.

165

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the buzz opcode. It uses the files buzz.orc and buzz.sco.

Example 15-1. Example of the buzz opcode.

/* buzz.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 20000
kcps = 440
knh = 3
ifn = 1

a1 buzz kamp, kcps, knh, ifn
out a1

endin
/* buzz.orc */

/* buzz.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* buzz.sco */

See Also

gbuzz

cabasa

cabasa — Semi-physical model of a cabasa sound.

Description

cabasa is a semi-physical model of a cabasa sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

166

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar cabasa iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 512.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping_amount is 0.997 which means that the default value of idamp is -0.5. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.

Examples

Here is an example of the cabasa opcode. It uses the files cabasa.orc and cabasa.sco.

Example 15-1. Example of the cabasa opcode.

/* cabasa.orc */
;orchestra ---------------

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 01 ;an example of a cabasa
a1 cabasa p4, 0.01

out a1
endin

/* cabasa.orc */

/* cabasa.sco */
;score -------------------

i1 0 1 26000
e

/* cabasa.sco */

See Also

crunch, sandpaper , sekere, stix

167

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

cauchy

cauchy — Cauchy distribution random number generator.

Description

Cauchy distribution random number generator. This is an x-class noise generator.

Syntax

ar cauchy kalpha

ir cauchy kalpha

kr cauchy kalpha

Performance

kalpha -- controls the spread from zero (big kalpha = big spread). Outputs both positive and negative
numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the cauchy opcode. It uses the files cauchy.orc and cauchy.sco.

Example 15-1. Example of the cauchy opcode.

/* cauchy.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

168

Chapter 15. Orchestra Opcodes and Operators

; Instrument #1.
instr 1

; Generate a random number, spread from 10.
; kalpha = 10

i1 cauchy 10

print i1
endin
/* cauchy.orc */

/* cauchy.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cauchy.sco */

Its output should include lines like:

instr 1: i1 = -0.106

See Also

betarand, bexprnd, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

cent

cent — Calculates a factor to raise/lower a frequency by a given amount of cents.

Description

Calculates a factor to raise/lower a frequency by a given amount of cents.

Syntax

cent(x)

This function works at a-rate, i-rate, and k-rate.

169

Chapter 15. Orchestra Opcodes and Operators

Initialization

x -- a value expressed in cents.

Performance

The value returned by the cent function is a factor. You can multiply a frequency by this factor to raise/lower
it by the given amount of cents.

Examples

Here is an example of the cent opcode. It uses the files cent.orc and cent.sco.

Example 15-1. Example of the cent opcode.

/* cent.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; The root note is A above middle-C (440 Hz)
iroot = 440

; Raise the root note by 300 cents to C.
icents = 300

; Calculate the new note.
ifactor = cent(icents)
inew = iroot * ifactor

; Print out of all of the values.
print iroot
print ifactor
print inew

endin
/* cent.orc */

/* cent.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cent.sco */

Its output should include lines like:

instr 1: iroot = 440.000
instr 1: ifactor = 1.189
instr 1: inew = 523.229

170

Chapter 15. Orchestra Opcodes and Operators

See Also

db, octave, semitone

Credits

Author: Kevin Conder

New in version 4.16

cggoto

cggoto — Conditionally transfer control on every pass.

Description

Transfer control to label on every pass. (Combination of cigoto and ckgoto)

Syntax

cggoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the cggoto opcode. It uses the files cggoto.orc and cggoto.sco.

Example 15-1. Example of the cggoto opcode.

/* cggoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 1

; If i1 is equal to one, play a high note.
; Otherwise play a low note.
cggoto (i1 == 1), highnote

lownote:
a1 oscil 10000, 220, 1
goto playit

highnote:
a1 oscil 10000, 440, 1
goto playit

171

Chapter 15. Orchestra Opcodes and Operators

playit:
out a1

endin
/* cggoto.orc */

/* cggoto.sco */
/* Written by Kevin Conder */
; Table #1: a simple sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* cggoto.sco */

See Also

cigoto, ckgoto, cngoto, if , igoto, kgoto, tigoto, timout

Credits

Added a note by Jim Aikin.

chanctrl

chanctrl — Get the current value of a MIDI channel controller.

Description

Get the current value of a controller and optionally map it onto specified range.

Syntax

ival chanctrl ichnl, ictlno [, ilow] [, ihigh]

kval chanctrl ichnl, ictlno [, ilow] [, ihigh]

Initialization

ichnl -- the MIDI channel (1-16).

ictlno -- the MIDI controller number (0-127).

ilow, ihigh -- low and high ranges for mapping

172

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Mike Berry

Mills College

May, 1997

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

checkbox

checkbox — Sense on-screen controls.

Description

Sense on-screen controls. Requires Winsound or TCL/TK.

Syntax

kr checkbox knum

Performance

kr -- value of the checkbox control. If the checkbox is set (pushed) then return 1, if not, return 0.

knum -- the number of the checkbox. If it does not exist, it is made on-screen at initialization.

Examples

Here is a simple example of the checkbox opcode. It uses the files checkbox.orc and checkbox.sco.

Example 15-1. Simple example of the checkbox opcode.

/* checkbox.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

instr 1
; Get the value from the checkbox.
k1 checkbox 1

; If the checkbox is selected then k2=440, otherwise k2=880.
k2 = (k1 == 0 ? 440 : 880)

a1 oscil 10000, k2, 1
out a1

endin
/* checkbox.orc */

/* checkbox.sco */
/* Written by Kevin Conder */

173

Chapter 15. Orchestra Opcodes and Operators

; Just generate a nice, ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* checkbox.sco */

See Also

button

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

September, 2000

New in Csound version 4.08

cigoto

cigoto — Conditionally transfer control during the i-time pass.

Description

During the i-time pass only, unconditionally transfer control to the statement labeled by label.

Syntax

cigoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the cigoto opcode. It uses the files cigoto.orc and cigoto.sco.

Example 15-1. Example of the cigoto opcode.

/* cigoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10

174

Chapter 15. Orchestra Opcodes and Operators

nchnls = 1

; Instrument #1.
instr 1

; Get the value of the 4th p-field from the score.
iparam = p4

; If iparam is 1 then play the high note.
; If not then play the low note.
cigoto (iparam ==1), highnote

igoto lownote

highnote:
ifreq = 880
goto playit

lownote:
ifreq = 440
goto playit

playit:
; Print the values of iparam and ifreq.
print iparam
print ifreq

a1 oscil 10000, ifreq, 1
out a1

endin
/* cigoto.orc */

/* cigoto.sco */
/* Written by Kevin Conder */
; Table #1: a simple sine wave.
f 1 0 32768 10 1

; p4: 1 = high note, anything else = low note
; Play Instrument #1 for one second, a low note.
i 1 0 1 0
; Play a Instrument #1 for one second, a high note.
i 1 1 1 1
e
/* cigoto.sco */

Its output should include lines like:

instr 1: iparam = 0.000
instr 1: ifreq = 440.000
instr 1: iparam = 1.000
instr 1: ifreq = 880.000

See Also

cggoto, ckgoto, cngoto, goto, if , kgoto, rigoto, tigoto, timout

175

Chapter 15. Orchestra Opcodes and Operators

Credits

Added a note by Jim Aikin.

ckgoto

ckgoto — Conditionally transfer control during the p-time passes.

Description

During the p-time passes only, unconditionally transfer control to the statement labeled by label.

Syntax

ckgoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the ckgoto opcode. It uses the files ckgoto.orc and ckgoto.sco.

Example 15-1. Example of the ckgoto opcode.

/* ckgoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Change kval linearly from 0 to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

; If kval is greater than or equal to 1 then play the high note.
; If not then play the low note.
ckgoto (kval >= 1), highnote

kgoto lownote

highnote:
kfreq = 880
goto playit

lownote:
kfreq = 440
goto playit

playit:
; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\\n", 1, kval, kfreq

176

Chapter 15. Orchestra Opcodes and Operators

a1 oscil 10000, kfreq, 1
out a1

endin
/* ckgoto.orc */

/* ckgoto.sco */
/* Written by Kevin Conder */
; Table: a simple sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* ckgoto.sco */

Its output should include lines like:

kval = 0.000000, kfreq = 440.000000
kval = 0.999732, kfreq = 440.000000
kval = 1.999639, kfreq = 880.000000

See Also

cggoto, cigoto, cngoto, goto, if , igoto, tigoto, timout

Credits

Added a note by Jim Aikin.

clear

clear — Zeroes a list of audio signals.

Description

clear zeroes a list of audio signals.

Syntax

clear avar1 [, avar2] [, avar3] [...]

Performance

avar1, avar2, avar3, ... -- signals to be zeroed

vincr (variable increment) and clear are intended to be used together. vincr stores the result of the sum of two
audio variables into the first variable itself (which is intended to be used as an accumulator in polyphony).
The accumulator variable can be used for output signal by means of fout opcode. After the disk writing
operation, the accumulator variable should be set to zero by means of clear opcode (or it will explode).

177

Chapter 15. Orchestra Opcodes and Operators

See Also

vincr

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

clfilt

clfilt — Implements low-pass and high-pass filters of different styles.

Description

Implements the classical standard analog filter types: low-pass and high-pass. They are implemented with
the four classical kinds of filters: Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptical. The
number of poles may be any even number from 2 to 80.

Syntax

ar clfilt asig, kfreq, itype, inpol [, ikind] [, ipbr] [, isba] [, iskip]

Initialization

itype -- 0 for low-pass, 1 for high-pass.

inpol -- The number of poles in the filter. It must be an even number from 2 to 80.

ikind (optional) -- 0 for Butterworth, 1 for Chebyshev Type I, 2 for Chebyshev Type II, 3 for Elliptical. Defaults
to 0 (Butterworth)

ipbr (optional) -- The pass-band ripple in dB. Must be greater than 0. It is ignored by Butterworth and
Chebyshev Type II. The default is 1 dB.

isba (optional) -- The stop-band attenuation in dB. Must be less than 0. It is ignored by Butterworth and
Chebyshev Type I. The default is -60 dB.

iskip (optional) -- 0 initializes all filter internal states to 0. 1 skips initialization. The default is 0.

Performance

asig -- The input audio signal.

kfreq -- The corner frequency for low-pass or high-pass.

178

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the clfilt opcode as a low-pass filter. It uses the files clfilt_lowpass.orc and
clfilt_lowpass.sco.

Example 15-1. Example of the clfilt opcode as a low-pass filter.

/* clfilt_lowpass.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal
asig rand 22050

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal
asig rand 22050

; Lowpass filter signal asig with a
; 10-pole Butterworth at 500 Hz.
a1 clfilt asig, 500, 0, 10

out a1
endin
/* clfilt_lowpass.orc */

/* clfilt_lowpass.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* clfilt_lowpass.sco */

Here is an example of the clfilt opcode as a high-pass filter. It uses the files clfilt_highpass.orc and
clfilt_highpass.sco.

Example 15-2. Example of the clfilt opcode as a high-pass filter.

/* clfilt_highpass.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1 - an unfiltered noise waveform.
instr 1

; White noise signal
asig rand 22050

179

Chapter 15. Orchestra Opcodes and Operators

out asig
endin

; Instrument #2 - a filtered noise waveform.
instr 2

; White noise signal
asig rand 22050

; Highpass filter signal asig with a 6-pole Chebyshev
; Type I at 20 Hz with 3 dB of passband ripple.
a1 clfilt asig, 20, 1, 6, 1, 3

out a1
endin
/* clfilt_highpass.orc */

/* clfilt_highpass.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* clfilt_highpass.sco */

Credits

Author: Erik Spjut

New in version 4.20

clip

clip — Clips a signal to a predefined limit.

Description

Clips an a-rate signal to a predefined limit, in a “soft” manner, using one of three methods.

Syntax

ar clip asig, imeth, ilimit [, iarg]

Initialization

imeth -- selects the clipping method. The default is 0. The methods are:

• 0 = Bram de Jong method (default)

• 1 = sine clipping

180

Chapter 15. Orchestra Opcodes and Operators

• 2 = tanh clipping

ilimit -- limiting value

iarg (optional, default=0.5) -- when imeth = 0, indicates the point at which clipping starts, in the range 0 - 1.
Not used when imeth = 1 or imeth = 2. Default is 0.5.

Performance

asig -- a-rate input signal

The Bram de Jong method (imeth = 0) applies the algorithm:

| x | > a: f(x) = sin(x) * (a+(x-a)/(1+((x-a)/(1- a)) 2 | x | > 1: f(x) = sin(x) * (a+1)/2

This method requires that asig be normalized to 1.

The second method (imeth = 1) is the sine clip:

| x | < limit : f(x) = limit * sin(π* x /(2* limit)) f(x) = limit * sin(x)

The third method (imeth = 0) is the tanh clip:

| x | < limit : f(x) = limit * tanh(x/limit)/tanh(1) f(x) = limit * sin(x)

Note: Method 1 appears to be non-functional at release of Csound version 4.07.

Examples

Here is an example of the clip opcode. It uses the files clip.orc and clip.sco.

Example 15-1. Example of the clip opcode.

/* clip.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a noisy waveform.
arnd rand 44100
; Clip the noisy waveform’s amplitude to 20,000
a1 clip arnd, 2, 20000

181

Chapter 15. Orchestra Opcodes and Operators

out a1
endin
/* clip.orc */

/* clip.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* clip.sco */

Credits

Author: John ffitch

University of Bath, Codemist Ltd.

Bath, UK

August, 2000

New in Csound version 4.07

clock

clock — Deprecated.

Description

Deprecated. Use the rtclock opcode instead.

clockoff

clockoff — Stops one of a number of internal clocks.

Description

Stops one of a number of internal clocks.

Syntax

clockoff inum

182

Chapter 15. Orchestra Opcodes and Operators

Initialization

inum -- the number of a clock. There are 32 clocks numbered 0 through 31. All other values are mapped to
clock number 32.

Performance

Between a clockon and a clockoff opcode, the CPU time used is accumulated in the clock. The precision is
machine dependent but is the millisecond range on UNIX and Windows systems. The readclock opcode reads
the current value of a clock at initialization time.

Examples

Here is an example of the clockoff opcode. It uses the files readclock.orc and readclock.sco.

Example 15-1. Example of the clockoff opcode.

/* readclock.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Start clock #1.
clockon 1
; Do something that keeps Csound busy.
a1 oscili 10000, 440, 1
out a1
; Stop clock #1.
clockoff 1
; Print the time accumulated in clock #1.
i1 readclock 1
print i1

endin
/* readclock.orc */

/* readclock.sco */
/* Written by Kevin Conder */

; Initialize the function tables.
; Table 1: an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for one second starting at 0:00.
i 1 0 1
; Play Instrument #1 for one second starting at 0:01.
i 1 1 1
; Play Instrument #1 for one second starting at 0:02.
i 1 2 1
e
/* readclock.sco */

Its output should include lines like this:

instr 1: i1 = 0.000

183

Chapter 15. Orchestra Opcodes and Operators

instr 1: i1 = 90.000
instr 1: i1 = 180.000

See Also

clockon, readclock

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

July, 1999

New in Csound version 3.56

clockon

clockon — Starts one of a number of internal clocks.

Description

Starts one of a number of internal clocks.

Syntax

clockon inum

Initialization

inum -- the number of a clock. There are 32 clocks numbered 0 through 31. All other values are mapped to
clock number 32.

Performance

Between a clockon and a clockoff opcode, the CPU time used is accumulated in the clock. The precision is
machine dependent but is the millisecond range on UNIX and Windows systems. The readclock opcode reads
the current value of a clock at initialization time.

184

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the clockon opcode. It uses the files readclock.orc and readclock.sco.

Example 15-1. Example of the clockon opcode.

/* readclock.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Start clock #1.
clockon 1
; Do something that keeps Csound busy.
a1 oscili 10000, 440, 1
out a1
; Stop clock #1.
clockoff 1
; Print the time accumulated in clock #1.
i1 readclock 1
print i1

endin
/* readclock.orc */

/* readclock.sco */
/* Written by Kevin Conder */

; Initialize the function tables.
; Table 1: an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for one second starting at 0:00.
i 1 0 1
; Play Instrument #1 for one second starting at 0:01.
i 1 1 1
; Play Instrument #1 for one second starting at 0:02.
i 1 2 1
e
/* readclock.sco */

Its output should include lines like this:

instr 1: i1 = 0.000
instr 1: i1 = 90.000
instr 1: i1 = 180.000

See Also

clockoff , readclock

185

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

July, 1999

New in Csound version 3.56

cngoto

cngoto — Transfers control on every pass when a condition is not true.

Description

Transfers control on every pass when the condition is not true.

Syntax

cngoto condition, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the cngoto opcode. It uses the files cngoto.orc and cngoto.sco.

Example 15-1. Example of the cngoto opcode.

/* cngoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Change kval linearly from 0 to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

; If kval *is not* greater than or equal to 1 then play
; the high note. Otherwise, play the low note.
cngoto (kval >= 1), highnote

kgoto lownote

highnote:
kfreq = 880
goto playit

lownote:

186

Chapter 15. Orchestra Opcodes and Operators

kfreq = 440
goto playit

playit:
; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\\n", 1, kval, kfreq

a1 oscil 10000, kfreq, 1
out a1

endin
/* cngoto.orc */

/* cngoto.sco */
/* Written by Kevin Conder */
; Table: a simple sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* cngoto.sco */

Its output should include lines like:

kval = 0.000000, kfreq = 880.000000
kval = 0.999732, kfreq = 880.000000
kval = 1.999639, kfreq = 440.000000

See Also

cggoto, cigoto, ckgoto, goto, if , igoto, tigoto, timout

Credits

New in version 4.21

comb

comb — Reverberates an input signal with a “colored” frequency response.

Description

Reverberates an input signal with a “colored” frequency response.

Syntax

ar comb asig, krvt, ilpt [, iskip] [, insmps]

187

Chapter 15. Orchestra Opcodes and Operators

Initialization

ilpt -- loop time in seconds, which determines the “echo density” of the reverberation. This in turn
characterizes the “color” of the comb filter whose frequency response curve will contain ilpt * sr/2 peaks
spaced evenly between 0 and sr/2 (the Nyquist frequency). Loop time can be as large as available memory
will permit. The space required for an n second loop is 4n*sr bytes. Delay space is allocated and returned as
in delay.

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

insmps (optional, default=0) -- delay amount, as a number of samples.

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

This filter reiterates input with an echo density determined by loop time ilpt . The attenuation rate is
independent and is determined by krvt , the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Output from a comb filter will appear only after
ilpt seconds.

Examples

Here is an example of the comb opcode. It uses the files comb.orc and comb.sco.

Example 15-1. Example of the comb opcode.

/* comb.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the audio mixer.
gamix init 0

; Instrument #1.
instr 1

; Generate a source signal.
a1 oscili 30000, cpspch(p4), 1
; Output the direct sound.
out a1

; Add the source signal to the audio mixer.
gamix = gamix + a1

endin

; Instrument #99 (highest instr number executed last)
instr 99

krvt = 1.5
ilpt = 0.1

; Comb-filter the mixed signal.
a99 comb gamix, krvt, ilpt
; Output the result.
out a99

; Empty the mixer for the next pass.

188

Chapter 15. Orchestra Opcodes and Operators

gamix = 0
endin
/* comb.orc */

/* comb.sco */
; Table #1, a sine wave.
f 1 0 128 10 1

; p4 = frequency (in a pitch-class)
; Play Instrument #1 for a tenth of a second, p4=7.00
i 1 0 0.1 7.00
; Play Instrument #1 for a tenth of a second, p4=7.02
i 1 1 0.1 7.02
; Play Instrument #1 for a tenth of a second, p4=7.04
i 1 2 0.1 7.04
; Play Instrument #1 for a tenth of a second, p4=7.06
i 1 3 0.1 7.06

; Make sure the comb-filter remains active.
i 99 0 5
e
/* comb.sco */

See Also

alpass, reverb, valpass, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)

University of Texas at Austin

Austin, Texas USA

January 2002

control

control — Configurable slider controls for realtime user input.

Description

Configurable slider controls for realtime user input. Requires Winsound or TCL/TK. control reads a slider’s
value.

Syntax

kr control knum

189

Chapter 15. Orchestra Opcodes and Operators

Performance

knum -- number of the slider to be read.

Calling control will create a new slider on the screen. There is no theoretical limit to the number of sliders.
Windows and TCL/TK use only integers for slider values, so the values may need rescaling. GUIs usually pass
values at a fairly slow rate, so it may be advisable to pass the output of control through port .

Examples

Here is an example of the control opcode. It uses the files setctrl.orc and setctrl.sco.

Example 15-1. Example of the control opcode.

/* setctrl.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Display the label "Volume" on Slider #1.
setctrl 1, "Volume", 4
; Set Slider #1’s initial value to 20.
setctrl 1, 20, 1

; Capture and display the values for Slider #1.
k1 control 1
printk2 k1

; Play a simple oscillator.
; Use the values from Slider #1 for amplitude.
kamp = k1 * 128
a1 oscil kamp, 440, 1
out a1

endin
/* setctrl.orc */

/* setsctrl.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for thirty seconds.
i 1 0 30
e
/* setsctrl.sco */

Its output should include lines like this:

i1 38.00000
i1 40.00000
i1 43.00000

190

Chapter 15. Orchestra Opcodes and Operators

See Also

setctrl

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

May, 2000

New in Csound version 4.06

convle

convle — Same as the convolve opcode.

Description

Same as the convolve opcode.

Syntax

ar1 [, ar2] [, ar3] [, ar4] convle ain, ifilcod [, ichannel]

convolve

convolve — Convolves a signal and an impulse response.

Description

Output is the convolution of signal ain and the impulse response contained in ifilcod. If more than one
output signal is supplied, each will be convolved with the same impulse response. Note that it is considerably
more efficient to use one instance of the operator when processing a mono input to create stereo, or quad,
outputs.

Note: this opcode can also be written as convle.

Syntax

ar1 [, ar2] [, ar3] [, ar4] convolve ain, ifilcod [, ichannel]

191

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifilcod -- integer or character-string denoting an impulse response data file. An integer denotes the suffix of a
file convolve.m; a character string (in double quotes) gives a filename, optionally a full pathname. If not a
fullpath, the file is sought first in the current directory, then in the one given by the environment variable
SADIR (if defined). The data file contains the Fourier transform of an impulse response. Memory usage
depends on the size of the data file, which is read and held entirely in memory during computation, but
which is shared by multiple calls.

ichannel (optional) -- which channel to use from the impulse response data file.

Performance

ain -- input audio signal.

convolve implements Fast Convolution. The output of this operator is delayed with respect to the input. The
following formulas should be used to calculate the delay:

For (1/kr) <= IRdur:
Delay = ceil(IRdur * kr) / kr

For (1/kr) IRdur:
Delay = IRdur * ceil(1/(kr*IRdur))

Where:
kr = Csound control rate
IRdur = duration, in seconds, of impulse response
ceil(n) = smallest integer not smaller than n

One should be careful to also take into account the initial delay, if any, of the impulse response. For example,
if an impulse response is created from a recording, the soundfile may not have the initial delay included.
Thus, one should either ensure that the soundfile has the correct amount of zero padding at the start, or,
preferably, compensate for this delay in the orchestra. (the latter method is more efficient). To compensate
for the delay in the orchestra, subtract the initial delay from the result calculated using the above formula(s),
when calculating the required delay to introduce into the ’dry’ audio path.

For typical applications, such as reverb, the delay will be in the order of 0.5 to 1.5 seconds, or even longer. This
renders the current implementation unsuitable for real time applications. It could conceivably be used for
real time filtering however, if the number of taps is small enough.

The author intends to create a higher-level operator at some stage, that would mix the wet & dry signals,
using the correct amount of delay automatically.

Examples

Create frequency domain impulse response file using the cvanal utility:

csound -Ucvanal l1_44.wav l1_44.cv

Determine duration of impulse response. For high accuracy, determine the number of sample frames in the
impulse response soundfile, and then compute the duration with:

duration = (sample frames)/(sample rate of soundfile)

192

Chapter 15. Orchestra Opcodes and Operators

This is due to the fact that the sndinfo utility only reports the duration to the nearest 10ms. If you have a
utility that reports the duration to the required accuracy, then you can simply use the reported value directly.

sndinfo l1_44.wav

length = 60822 samples, sample rate = 44100

Duration = 60822/44100 = 1.379s.

Determine initial delay, if any, of impulse response. If the impulse response has not had the initial delay
removed, then you can skip this step. If it has been removed, then the only way you will know the initial delay
is if the information has been provided separately. For this example, let’s assume that the initial delay is 60ms.
(0.06s)

Determine the required delay to apply to the dry signal, to align it with the convolved signal:

If kr = 441:
1/kr = 0.0023, which is <= IRdur (1.379s), so:
Delay1 = ceil(IRdur * kr) / kr

= ceil(608.14) / 441
= 609/441
= 1.38s

Accounting for the initial delay:
Delay2 = 0.06s

Total delay = delay1 - delay2
= 1.38 - 0.06
= 1.32s

Create .orc file, e.g.:

; Simple demonstration of CONVOLVE operator, to apply reverb.
sr = 44100
kr = 441
ksmps = 100
nchnls = 2
instr 1

imix = 0.22 ; Wet/dry mix. Vary as desired.
; NB: ’Small’ reverbs often require a much higher
; percentage of wet signal to sound interesting. ’Large’
; reverbs seem require less. Experiment! The wet/dry mix is
; very important - a small change can make a large difference.

ivol = 0.9 ; Overall volume level of reverb. May need to adjust
; when wet/dry mix is changed, to avoid clipping.

idel = 1.32 ; Required delay to align dry audio with output of convolve.
; This can be automatically calculated within the orc file,
; if desired.

adry soundin "anechoic.wav" ; input (dry) audio
awet1,awet2 convolve adry,"l1_44.cv" ; stereo convolved (wet) audio
adrydel delay (1-imix)*adry,idel ; Delay dry signal, to align it with

; convolved signal. Apply level
; adjustment here too.

outs ivol*(adrydel+imix*awet1),ivol*(adrydel+imix*awet2)
; Mix wet & dry signals, and output

193

Chapter 15. Orchestra Opcodes and Operators

endin

Credits

Author: Greg Sullivan

1996

cos

cos — Performs a cosine function.

Description

Returns the cosine of x (x in radians).

Syntax

cos(x) (no rate restriction)

Examples

Here is an example of the cos opcode. It uses the files cos.orc and cos.sco.

Example 15-1. Example of the cos opcode.

/* cos.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 25
i1 = cos(irad)

print i1
endin
/* cos.orc */

/* cos.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cos.sco */

194

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like this:

instr 1: i1 = 0.991

See Also

cosh, cosinv, sin, sinh, sininv, tan, tanh, taninv

cosh

cosh — Performs a hyperbolic cosine function.

Description

Returns the hyperbolic cosine of x (x in radians).

Syntax

cosh(x) (no rate restriction)

Examples

Here is an example of the cosh opcode. It uses the files cosh.orc and cosh.sco.

Example 15-1. Example of the cosh opcode.

/* cosh.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 1
i1 = cosh(irad)

print i1
endin
/* cosh.orc */

/* cosh.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cosh.sco */

195

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like this:

instr 1: i1 = 1.543

See Also

cos, cosinv, sin, sinh, sininv, tan, tanh, taninv

cosinv

cosinv — Performs a arccosine function.

Description

Returns the arccosine of x (x in radians).

Syntax

cosinv(x) (no rate restriction)

Examples

Here is an example of the cosinv opcode. It uses the files cosinv.orc and cosinv.sco.

Example 15-1. Example of the cosinv opcode.

/* cosinv.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 0.5
i1 = cosinv(irad)

print i1
endin
/* cosinv.orc */

/* cosinv.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cosinv.sco */

196

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like this:

instr 1: i1 = 1.047

See Also

cos, cosh, sin, sinh, sininv, tan, tanh, taninv

cps2pch

cps2pch — Converts a pitch-class value into cycles-per-second for equal divisions of the octave.

Description

Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of the octave.

Syntax

icps cps2pch ipch, iequal

Initialization

ipch -- Input number of the form 8ve.pc, indicating an ’octave’ and which note in the octave.

iequal -- if positive, the number of equal intervals into which the ’octave’ is divided. Must be less than or
equal to 100. If negative, is the number of a table of frequency multipliers.

Note:

1. The following are essentially the same

ia = cpspch(8.02)
ib cps2pch 8.02, 12
ic cpsxpch 8.02, 12, 2, 1.02197503906

2. These are opcodes not functions

3. Negative values of ipch are allowed.

197

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the cps2pch opcode. It uses the files cps2pch.orc and cps2pch.sco.

Example 15-1. Example of the cps2pch opcode.

/* cps2pch.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a normal twelve-tone scale.
ipch = 8.02
iequal = 12

icps cps2pch ipch, iequal

print icps
endin
/* cps2pch.orc */

/* cps2pch.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cps2pch.sco */

Its output should include lines like this:

instr 1: icps = 293.666

Here is an example of the cps2pch opcode using a table of frequency multipliers. It uses the files
cps2pch_ftable.orc and cps2pch_ftable.sco.

Example 15-2. Example of the cps2pch opcode using a table of frequency multipliers.

/* cps2pch_ftable.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

ipch = 8.02

; Use Table #1, a table of frequency multipliers.
icps cps2pch ipch, -1

print icps
endin
/* cps2pch_ftable.orc */

/* cps2pch_ftable.sco */

198

Chapter 15. Orchestra Opcodes and Operators

; Table #1: a table of frequency multipliers.
; Creates a 10-note scale of unequal divisions.
f 1 0 16 -2 1 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9

; Play Instrument #1 for one second.
i 1 0 1
e
/* cps2pch_ftable.sco */

Its output should include lines like this:

instr 1: icps = 313.951

Here is an example of the cps2pch opcode using a 19ET scale. It uses the files cps2pch_19et.orc and
cps2pch_19et.sco.

Example 15-3. Example of the cps2pch opcode using a 19ET scale.

/* cps2pch_19et.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use 19ET scale.
ipch = 8.02
iequal = 19

icps cps2pch ipch, iequal

print icps
endin
/* cps2pch_19et.orc */

/* cps2pch_19et.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cps2pch_19et.sco */

Its output should include lines like this:

instr 1: icps = 281.429

See Also

cpspch, cpsxpch

199

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

1997

Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

cpsmidi

cpsmidi — Get the note number of the current MIDI event, expressed in cycles-per-second.

Description

Get the note number of the current MIDI event, expressed in cycles-per-second.

Syntax

icps cpsmidi

Performance

Get the note number of the current MIDI event, expressed in cycles-per-second units, for local processing.

Examples

Here is an example of the cpsmidi opcode. It uses the files cpsmidi.orc and cpsmidi.sco.

Example 15-1. Example of the cpsmidi opcode.

/* cpsmidi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 cpsmidi

print i1
endin
/* cpsmidi.orc */

/* cpsmidi.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.

200

Chapter 15. Orchestra Opcodes and Operators

i 1 0 12
e
/* cpsmidi.sco */

See Also

aftouch, ampmidi, cpsmidib, cpstmid, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib,
veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

cpsmidib

cpsmidib — Get the note number of the current MIDI event and modify it by the current pitch-bend value,
express it in cycles-per-second.

Description

Get the note number of the current MIDI event and modify it by the current pitch-bend value, express it in
cycles-per-second.

Syntax

icps cpsmidib [irange]

kcps cpsmidib [irange]

Initialization

irange (optional) -- the pitch bend range in semitones.

Performance

Get the note number of the current MIDI event, modify it by the current pitch-bend value, and express the
result in cycles-per-second units. Available as an i-time value or as a continuous k-rate value.

201

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the cpsmidib opcode. It uses the files cpsmidib.orc and cpsmidib.sco.

Example 15-1. Example of the cpsmidib opcode.

/* cpsmidib.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 cpsmidib

print i1
endin
/* cpsmidib.orc */

/* cpsmidib.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* cpsmidib.sco */

See Also

aftouch, ampmidi, cpsmidi, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

cpsoct

cpsoct — Converts an octave-point-decimal value to cycles-per-second.

Description

Converts an octave-point-decimal value to cycles-per-second.

202

Chapter 15. Orchestra Opcodes and Operators

Syntax

cpsoct (oct) (no rate restriction)

where the argument within the parentheses may be a further expression.

Performance

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

Table 15-1. Pitch and Frequency Values

Name Abbreviation

octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct , the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which k1 varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples

Here is an example of the cpsoct opcode. It uses the files cpsoct.orc and cpsoct.sco.

Example 15-1. Example of the cpsoct opcode.

/* cpsoct.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

203

Chapter 15. Orchestra Opcodes and Operators

instr 1
; Convert an octave-point-decimal value into a
; cycles-per-second value.
ioct = 8.75
icps = cpsoct(ioct)

print icps
endin
/* cpsoct.orc */

/* cpsoct.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cpsoct.sco */

Its output should include lines like this:

instr 1: icps = 440.000

See Also

cpspch, octcps, octpch, pchoct

cpspch

cpspch — Converts a pitch-class value to cycles-per-second.

Description

Converts a pitch-class value to cycles-per-second.

Syntax

cpspch (pch) (init- or control-rate args only)

where the argument within the parentheses may be a further expression.

Performance

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

204

Chapter 15. Orchestra Opcodes and Operators

Name Abbreviation

Table 15-1. Pitch and Frequency Values

Name Abbreviation

octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct , the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which k1 varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples

Here is an example of the cpspch opcode. It uses the files cpspch.orc and cpspch.sco.

Example 15-1. Example of the cpspch opcode.

/* cpspch.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Convert a pitch-class value into a
; cycles-per-second value.
ipch = 8.09
icps = cpspch(ipch)

print icps
endin
/* cpspch.orc */

/* cpspch.sco */

205

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cpspch.sco */

Its output should include lines like this:

instr 1: icps = 440.000

See Also

cps2pch, cpsoct , cpsxpch, octcps, octpch, pchoct

cpstmid

cpstmid — Get a MIDI note number (allows customized micro-tuning scales).

Description

This unit is similar to cpsmidi, but allows fully customized micro-tuning scales.

Syntax

icps cpstmid ifn

Initialization

ifn -- function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

Performance

Init-rate only

cpsmid requires five parameters, the first, ifn, is the function table number of the tuning ratios, and the other
parameters must be stored in the function table itself. The function table ifn should be generated by GEN02,
with normalization inhibited. The first four values stored in this function are:

1. numgrades -- the number of grades of the micro-tuning scale

2. interval -- the frequency range covered before repeating the grade ratios, for example 2 for one octave,
1.5 for a fifth etc.

3. basefreq -- the base frequency of the scale in Hz

4. basekeymidi -- the MIDI note number to which basefreq is assigned unmodified

206

Chapter 15. Orchestra Opcodes and Operators

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12 note scale
with the base frequency of 261 Hz assigned to the key number 60, the corresponding f-statement in the score
to generate the table should be:

; numgrades interval basefreq basekeymidi tuning ratios (equal temp)
f1 0 64 -2 12 2 261 60 1 1.059463094359 1.122462048309 1.189207115003 ..etc...

Another example with a 24 note scale with a base frequency of 440 assigned to the key number 48, and a
repetition interval of 1.5:

; numgrades interval basefreq basekeymidi tuning-ratios (equal temp)
f1 0 64 -2 24 1.5 440 48 1 1.01 1.02 1.03 ..etc...

Examples

Here is an example of the cpstmid opcode. It uses the files cpstmid.orc and cpstmid.sco.

Example 15-1. Example of the cpstmid opcode.

/* cpstmid.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Table #1, a normal 12-tone equal temperament scale.
; numgrades = 12 (twelve tones)
; interval = 2 (one octave)
; basefreq = 261.659 (Middle C)
; basekeymidi = 60 (Middle C)
gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \

1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

; Instrument #1.
instr 1

; Use Table #1.
ifn = 1
i1 cpstmid ifn

print i1
endin
/* cpstmid.orc */

/* cpstmid.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* cpstmid.sco */

207

Chapter 15. Orchestra Opcodes and Operators

See Also

cpsmidi, GEN02

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

cpstun

cpstun — Returns micro-tuning values at k-rate.

Description

Returns micro-tuning values at k-rate.

Syntax

kcps cpstun ktrig, kindex, kfn

Performance

kcps -- Return value in cycles per second.

ktrig -- A trigger signal used to trigger the evaluation.

kindex -- An integer number denoting an index of scale.

kfn -- Function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

These opcodes are similar to cpstmid, but work without necessity of MIDI.

cpstun works at k-rate. It allows fully customized micro-tuning scales. It requires a function table number
containing the tuning ratios, and some other parameters stored in the function table itself.

kindex arguments should be filled with integer numbers expressing the grade of given scale to be converted
in cps. In cpstun, a new value is evaluated only when ktrig contains a non-zero value. The function table kfn
should be generated by GEN02 and the first four values stored in this function are parameters that express:

• numgrades -- The number of grades of the micro-tuning scale.

• interval -- The frequency range covered before repeating the grade ratios, for example 2 for one octave, 1.5
for a fifth etcetera.

• basefreq -- The base frequency of the scale in cycles per second.

• basekey -- The integer index of the scale to which to assign basefreq unmodified.

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12-grade
scale with the base-frequency of 261 cps assigned to the key-number 60, the corresponding f-statement in the
score to generate the table should be:

208

Chapter 15. Orchestra Opcodes and Operators

; numgrades basefreq tuning-ratios (eq.temp)
; interval basekey
f1 0 64 -2 12 2 261 60 1 1.059463 1.12246 1.18920 ..etc...

Another example with a 24-grade scale with a base frequency of 440 assigned to the key-number 48, and a
repetition interval of 1.5:

numgrades basefreq tuning-ratios
interval basekey

f1 0 64 -2 24 1.5 440 48 1 1.01 1.02 1.03 ..etc...

Examples

Here is an example of the cpstun opcode. It uses the files cpstun.orc and cpstun.sco.

Example 15-1. Example of the cpstun opcode.

/* cpstun.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Table #1, a normal 12-tone equal temperament scale.
; numgrades = 12 (twelve tones)
; interval = 2 (one octave)
; basefreq = 261.659 (Middle C)
; basekeymidi = 60 (Middle C)
gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \

1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

; Instrument #1.
instr 1

; Set the trigger.
ktrig init 1

; Use Table #1.
kfn init 1

; If the base key (note #60) is C, then 9 notes
; above it (note #60 + 9 = note #69) should be A.
kindex init 69

k1 cpstun ktrig, kindex, kfn

printk2 k1
endin
/* cpstun.orc */

/* cpstun.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.

209

Chapter 15. Orchestra Opcodes and Operators

i 1 0 1
e
/* cpstun.sco */

Its output should include lines like this:

i1 440.11044

See Also

cpstmid, cpstuni, GEN02

cpstuni

cpstuni — Returns micro-tuning values at init-rate.

Description

Returns micro-tuning values at init-rate.

Syntax

icps cpstuni index, ifn

Initialization

icps -- Return value in cycles per second.

index -- An integer number denoting an index of scale.

ifn -- Function table containing the parameters (numgrades, interval, basefreq, basekeymidi) and the tuning
ratios.

Performance

These opcodes are similar to cpstmid, but work without necessity of MIDI.

cpstuni works at init-rate. It allows fully customized micro-tuning scales. It requires a function table number
containing the tuning ratios, and some other parameters stored in the function table itself.

The index argument should be filled with integer numbers expressing the grade of given scale to be converted
in cps. The function table ifn should be generated by GEN02 and the first four values stored in this function
are parameters that express:

• numgrades -- The number of grades of the micro-tuning scale.

• interval -- The frequency range covered before repeating the grade ratios, for example 2 for one octave, 1.5
for a fifth etcetera.

• basefreq -- The base frequency of the scale in cycles per second.

210

Chapter 15. Orchestra Opcodes and Operators

• basekey -- The integer index of the scale to which to assign basefreq unmodified.

After these four values, the user can begin to insert the tuning ratios. For example, for a standard 12-grade
scale with the base-frequency of 261 cps assigned to the key-number 60, the corresponding f-statement in the
score to generate the table should be:

; numgrades basefreq tuning-ratios (eq.temp)
; interval basekey
f1 0 64 -2 12 2 261 60 1 1.059463 1.12246 1.18920 ..etc...

Another example with a 24-grade scale with a base frequency of 440 assigned to the key-number 48, and a
repetition interval of 1.5:

numgrades basefreq tuning-ratios
interval basekey

f1 0 64 -2 24 1.5 440 48 1 1.01 1.02 1.03 ..etc...

Examples

Here is an example of the cpstuni opcode. It uses the files cpstuni.orc and cpstuni.sco.

Example 15-1. Example of the cpstuni opcode.

/* cpstuni.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Table #1, a normal 12-tone equal temperament scale.
; numgrades = 12 (twelve tones)
; interval = 2 (one octave)
; basefreq = 261.659 (Middle C)
; basekeymidi = 60 (Middle C)
gitemp ftgen 1, 0, 64, -2, 12, 2, 261.659, 60, 1.00, \

1.059, 1.122, 1.189, 1.260, 1.335, 1.414, \
1.498, 1.588, 1.682, 1.782, 1.888, 2.000

; Instrument #1.
instr 1

; Use Table #1.
ifn = 1

; If the base key (note #60) is C, then 9 notes
; above it (note #60 + 9 = note #69) should be A.
index = 69

i1 cpstuni index, ifn

print i1
endin
/* cpstuni.orc */

211

Chapter 15. Orchestra Opcodes and Operators

/* cpstuni.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cpstuni.sco */

Its output should include lines like this:

instr 1: i1 = 440.110

See Also

cpstmid, cpstun, GEN02

cpsxpch

cpsxpch — Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of any interval.

Description

Converts a pitch-class value into cycles-per-second (Hz) for equal divisions of any interval. There is a
restriction of no more than 100 equal divisions.

Syntax

icps cpsxpch ipch, iequal, irepeat, ibase

Initialization

ipch -- Input number of the form 8ve.pc, indicating an ’octave’ and which note in the octave.

iequal -- if positive, the number of equal intervals into which the ’octave’ is divided. Must be less than or
equal to 100. If negative, is the number of a table of frequency multipliers.

irepeat -- Number indicating the interval which is the ’octave.’ The integer 2 corresponds to octave divisions,
3 to a twelfth, 4 is two octaves, and so on. This need not be an integer, but must be positive.

ibase -- The frequency which corresponds to pitch 0.0

Note:

1. The following are essentially the same

ia = cpspch(8.02)
ib cps2pch 8.02, 12
ic cpsxpch 8.02, 12, 2, 1.02197503906

2. These are opcodes not functions

212

Chapter 15. Orchestra Opcodes and Operators

3. Negative values of ipch are allowed, but not negative irepeat , iequal or ibase.

Examples

Here is an example of the cpsxpch opcode. It uses the files cpsxpch.orc and cpsxpch.sco.

Example 15-1. Example of the cpsxpch opcode.

/* cpsxpch.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a normal twelve-tone scale.
ipch = 8.02
iequal = 12
irepeat = 2
ibase = 1.02197503906

icps cpsxpch ipch, iequal, irepeat, ibase

print icps
endin
/* cpsxpch.orc */

/* cpsxpch.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cpsxpch.sco */

Its output should include lines like this:

instr 1: icps = 293.666

Here is an example of the cpsxpch opcode using a 10.5 ET scale. It uses the files cpsxpch_105et.orc and
cpsxpch_105et.sco.

Example 15-2. Example of the cpsxpch opcode using a 10.5 ET scale.

/* cpsxpch_105et.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a 10.5ET scale.

213

Chapter 15. Orchestra Opcodes and Operators

ipch = 4.02
iequal = 21
irepeat = 4
ibase = 16.35160062496

icps cpsxpch ipch, iequal, irepeat, ibase

print icps
endin
/* cpsxpch_105et.orc */

/* cpsxpch_105et.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cpsxpch_105et.sco */

Its output should include lines like this:

instr 1: icps = 4776.824

Here is an example of the cpsxpch opcode using a Pierce scale centered on middle A. It uses the files
cpsxpch_pierce.orc and cpsxpch_pierce.sco.

Example 15-3. Example of the cpsxpch opcode using a Pierce scale centered on middle A.

/* cpsxpch_pierce.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a Pierce scale centered on middle A.
ipch = 2.02
iequal = 12
irepeat = 3
ibase = 261.62561

icps cpsxpch ipch, iequal, irepeat, ibase

print icps
endin
/* cpsxpch_pierce.orc */

/* cpsxpch_pierce.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* cpsxpch_pierce.sco */

Its output should include lines like this:

instr 1: icps = 2827.762

214

Chapter 15. Orchestra Opcodes and Operators

See Also

cpspch, cps2pch

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

1997

Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

cpuprc

cpuprc — Control allocation of cpu resources on a per-instrument basis, to optimize realtime output.

Description

Control allocation of cpu resources on a per-instrument basis, to optimize realtime output.

Syntax

cpuprc insnum, ipercent

Initialization

insnum -- instrument number

ipercent -- percent of cpu processing-time to assign. Can also be expressed as a fractional value.

Performance

cpuprc sets the cpu processing-time percent usage of an instrument, in order to avoid buffer underrun in
realtime performances, enabling a sort of polyphony theshold. The user must set ipercent value for each
instrument to be activated in realtime. Assuming that the total theoretical processing time of the cpu of the
computer is 100%, this percent value can only be defined empirically, because there are too many factors that
contribute to limiting realtime polyphony in different computers.

For example, if ipercent is set to 5% for instrument 1, the maximum number of voices that can be allocated in
realtime, is 20 (5% * 20 = 100%). If the user attempts to play a further note while the 20 previous notes are still
playing, Csound inhibits the allocation of that note and will display the following warning message:

can’t allocate last note because it exceeds 100% of cpu time

215

Chapter 15. Orchestra Opcodes and Operators

In order to avoid audio buffer underruns, it is suggested to set the maximum number of voices slightly lower
than the real processing power of the computer. Sometimes an instrument can require more processing time
than normal. If, for example, the instrument contains an oscillator which reads a table that doesn’t fit in
cache memory, it will be slower than normal. In addition, any program running concurrently in multitasking,
can subtract processing power to varying degrees.

At the start, all instruments are set to a default value of ipercent = 0.0% (i.e. zero processing time or rather
infinite cpu processing-speed). This setting is OK for deferred-time sessions.

All instances of cpuprc must be defined in the header section, not in the instrument body.

Examples

Here is an example of the cpuprc opcode. It uses the files cpuprc.orc and cpuprc.sco.

Example 15-1. Example of the cpuprc opcode.

/* cpuprc.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Limit Instrument #1 to 5% of the CPU processing time.
cpuprc 1, 5

; Instrument #1
instr 1

a1 oscil 10000, 440, 1
out a1

endin
/* cpuprc.orc */

/* cpuprc.sco */
/* Written by Kevin Conder */
; Just generate a nice, ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* cpuprc.sco */

See Also

maxalloc, prealloc

216

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

July, 1999

New in Csound version 3.57

cross2

cross2 — Cross synthesis using FFT’s.

Description

This is an implementation of cross synthesis using FFT’s.

Syntax

ar cross2 ain1, ain2, isize, ioverlap, iwin, kbias

Initialization

isize -- This is the size of the FFT to be performed. The larger the size the better the frequency response but a
sloppy time response.

ioverlap -- This is the overlap factor of the FFT’s, must be a power of two. The best settings are 2 and 4. A big
overlap takes a long time to compile.

iwin -- This is the ftable that contains the window to be used in the analysis.

Performance

ain1 -- The stimulus sound. Must have high frequencies for best results.

ain2 -- The modulating sound. Must have a moving frequency response (like speech) for best results.

kbias -- The amount of cross synthesis. 1 is the normal, 0 is no cross synthesis.

Examples

a1 oscil 10000, 1, 1
a2 rand 10000
a3 cross2 a2, a1, 2048, 4, 2, 1

out a3

If ftable one is a speech sound, this will result in speaking white noise.

ftable 2 must be a window function (GEN20).

217

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Paris Smaragdis

MIT, Cambridge

1997

crunch

crunch — Semi-physical model of a crunch sound.

Description

crunch is a semi-physical model of a crunch sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar crunch iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 7.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping_amount is 0.99806 which means that the default value of idamp is 0.03. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.

Examples

Here is an example of the crunch opcode. It uses the files crunch.orc and crunch.sco.

Example 15-1. Example of the crunch opcode.

/* crunch.orc */
;orchestra ---------------

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

218

Chapter 15. Orchestra Opcodes and Operators

instr 01 ;an example of a crunch
a1 crunch p4, 0.01

out a1
endin

/* crunch.orc */

/* crunch.sco */
;score -------------------

i1 0 1 26000
e

/* crunch.sco */

See Also

cabasa, sandpaper , sekere, stix

Credits

Author: Perry Cook, part of the PhOLIES (Physically-Oriented Library of Imitated Environmental Sounds)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

ctrl14

ctrl14 — Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.

Description

Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.

Syntax

idest ctrl14 ichan, ictlno1, ictlno2, imin, imax [, ifn]

kdest ctrl14 ichan, ictlno1, ictlno2, kmin, kmax [, ifn]

Initialization

idest -- output signal

ichan -- MIDI channel number (1-16)

ictln1o -- most-significant byte controller number (0-127)

219

Chapter 15. Orchestra Opcodes and Operators

ictlno2 -- least-significant byte controller number (0-127)

imin -- user-defined minimum floating-point value of output

imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output

kmax -- user-defined maximum floating-point value of output

ctrl14 (i- and k-rate 14 bit MIDI control) allows a floating-point 14-bit MIDI signal scaled with a minimum
and a maximum range. The minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires two MIDI controllers as input.

ctrl14 differs from midic14 becase it can be included in score-oriented instruments without Csound crashes.
It needs the additional parameter ichan containing the MIDI channel of the controller. MIDI channel is the
same for all the controllers used in a single ctrl14 opcode.

See Also

ctrl7 , ctrl21, initc7 , initc14, initc21, midic7 , midic14, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrl21

ctrl21 — Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.

Description

Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.

Syntax

idest ctrl21 ichan, ictlno1, ictlno2, ictlno3, imin, imax [, ifn]

kdest ctrl21 ichan, ictlno1, ictlno2, ictlno3, kmin, kmax [, ifn]

220

Chapter 15. Orchestra Opcodes and Operators

Initialization

idest -- output signal

ichan -- MIDI channel number (1-16)

ictlno -- MIDI controller number (0-127)

ictln1o -- most-significant byte controller number (0-127)

ictlno2 -- mid-significant byte controller number (0-127)

ictlno3 -- least-significant byte controller number (0-127)

imin -- user-defined minimum floating-point value of output

imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output

kmax -- user-defined maximum floating-point value of output

ctrl21 (i- and k-rate 21 bit MIDI control) allows a floating-point 21-bit MIDI signal scaled with a minimum
and a maximum range. Minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires three MIDI controllers as input.

ctrl21 differs from midic21 because it can be included in score oriented instruments without Csound crashes.
It needs the additional parameter ichan containing the MIDI channel of the controller. MIDI channel is the
same for all the controllers used in a single ctrl21 opcode.

See Also

ctrl7 , ctrl14, initc7 , initc14, initc21, midic7 , midic14, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrl7

ctrl7 — Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.

Description

Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.

221

Chapter 15. Orchestra Opcodes and Operators

Syntax

idest ctrl7 ichan, ictlno, imin, imax [, ifn]

kdest ctrl7 ichan, ictlno, kmin, kmax [, ifn]

Initialization

idest -- output signal

ichan -- MIDI channel (1-16)

ictlno -- MIDI controller number (0-127)

imin -- user-defined minimum floating-point value of output

imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imax and imin val.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output

kmax -- user-defined maximum floating-point value of output

ctrl7 (i- and k-rate 7 bit MIDI control) allows a floating-point 7-bit MIDI signal scaled with a minimum and a
maximum range. It also allows optional non-interpolated table indexing. Minimum and maximum values
can be varied at k-rate.

ctrl7 differs from midic7 because it can be included in score-oriented instruments without Csound crashes. It
also needs the additional parameter ichan containing the MIDI channel of the controller.

See Also

ctrl14, ctrl21, initc7 , initc14, initc21, midic7 , midic14, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ctrlinit

ctrlinit — Sets the initial values for a set of MIDI controllers.

222

Chapter 15. Orchestra Opcodes and Operators

Description

Sets the initial values for a set of MIDI controllers.

Syntax

ctrlinit ichnl, ictlno1, ival1 [, ictlno2] [, ival2] [, ictlno3] [, ival3] [,...ival32]

Initialization

ichnl -- MIDI channel number (1-16)

ictlno1, ictlno1, etc. -- MIDI controller numbers (0-127)

ival1, ival2, etc. -- initial value for corresponding MIDI controller number

Performance

Sets the initial values for a set of MIDI controllers.

See Also

massign

Credits

Author: Barry L. Vercoe - Mike Berry

MIT, Cambridge, Mass.

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

cuserrnd

cuserrnd — Continuous USER-defined-distribution RaNDom generator.

Description

Continuous USER-defined-distribution RaNDom generator.

Syntax

aout cuserrnd kmin, kmax, ktableNum

iout cuserrnd imin, imax, itableNum

kout cuserrnd kmin, kmax, ktableNum

223

Chapter 15. Orchestra Opcodes and Operators

Initialization

imin -- minimum range limit

imax -- maximum range limit

itableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

Performance

ktableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

kmin -- minimum range limit

kmax -- maximum range limit

cuserrnd (continuous user-defined-distribution random generator) generates random values according to a
continuous random distribution created by the user. In this case the shape of the distribution histogram can
be drawn or generated by any GEN routine. The table containing the shape of such histogram must then be
translated to a distribution function by means of GEN40 (see GEN40 for more details). Then such function
must be assigned to the XtableNum argument of cuserrnd. The output range can then be rescaled according
to the Xmin and Xmax arguments. cuserrnd linearly interpolates between table elements, so it is not
recommended for discrete distributions (GEN41 and GEN42).

For a tutorial about random distribution histograms and functions see:

• D. Lorrain. "A panoply of stochastic cannons". In C. Roads, ed. 1989. Music machine. Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

See Also

duserrnd, urd

Credits

Author: Gabriel Maldonado

New in Version 4.16

dam

dam— A dynamic compressor/expander.

Description

This opcode dynamically modifies a gain value applied to the input sound ain by comparing its power level to
a given threshold level. The signal will be compressed/expanded with different factors regarding that it is over
or under the threshold.

224

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar dam asig, kthreshold, icomp1, icomp2, irtime, iftime

Initialization

icomp1 -- compression ratio for upper zone.

icomp2 -- compression ratio for lower zone

irtime -- gain rise time in seconds. Time over which the gain factor is allowed to raise of one unit.

iftime -- gain fall time in seconds. Time over which the gain factor is allowed to decrease of one unit.

Performance

asig -- input signal to be modified

kthreshold -- level of input signal which acts as the threshold. Can be changed at k-time (e.g. for ducking)

Note on the compression factors: A compression ratio of one leaves the sound unchanged. Setting the ratio to
a value smaller than one will compress the signal (reduce its volume) while setting the ratio to a value greater
than one will expand the signal (augment its volume).

Examples

Because the results of the dam opcode can be subtle, I recommend looking at them in a graphical audio
editor program like audacity. audacity is available for Linux, Windows, and the MacOS and may be
downloaded from http://audacity.sourceforge.net .

Here is an example of the dam opcode. It uses the files dam.orc, dam.sco, and beats.wav.

Example 15-1. An example of the dam opcode compressing an audio signal.

/* dam.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1, uncompressed signal.
instr 1

; Use the "beats.wav" audio file.
asig soundin "beats.wav"

out asig
endin

; Instrument #2, compressed signal.
instr 2

; Use the "beats.wav" audio file.
asig soundin "beats.wav"

; Compress the audio signal.
kthreshold init 25000
icomp1 = 0.5
icomp2 = 0.763
irtime = 0.1
iftime = 0.1

225

Chapter 15. Orchestra Opcodes and Operators

a1 dam asig, kthreshold, icomp1, icomp2, irtime, iftime

out a1
endin
/* dam.orc */

/* dam.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 2 seconds.
i 1 0 2
; Play Instrument #2 for 2 seconds.
i 2 2 2
e
/* dam.sco */

This example compresses the audio file “beats.wav”. You should hear a drum pattern repeat twice. The
second time, the sound should be quieter (compressed) than the first.

Here is another example of the dam opcode. It uses the files dam_expanded.orc, dam_expanded.sco, and
mary.wav.

Example 15-2. An example of the dam opcode expanding an audio signal.

/* dam_expanded.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1, normal audio signal.
instr 1

; Use the "mary.wav" audio file.
asig soundin "mary.wav"

out asig
endin

; Instrument #2, expanded audio signal.
instr 2

; Use the "mary.wav" audio file.
asig soundin "mary.wav"

; Expand the audio signal.
kthreshold init 7500
icomp1 = 2.25
icomp2 = 2.25
irtime = 0.1
iftime = 0.6
a1 dam asig, kthreshold, icomp1, icomp2, irtime, iftime

out a1
endin
/* dam_expanded.orc */

/* dam_expanded.sco */
/* Written by Kevin Conder */
; Play Instrument #1.
i 1 0.0 3.5
; Play Instrument #2.
i 2 3.5 3.5

226

Chapter 15. Orchestra Opcodes and Operators

e
/* dam_expanded.sco */

This example expands the audio file “mary.wav”. You should hear a melody repeat twice. The second time,
the sound should be louder (expanded) than the first.

Credits

Author: Marc Resibois

Belgium

1997

db

db — Returns the amplitude equivalent for a given decibel amount.

Description

Returns the amplitude equivalent for a given decibel amount. This opcode is the same as db.

Syntax

db(x)

This function works at a-rate, i-rate, and k-rate.

Initialization

x -- a value expressed in decibels.

Performance

Returns the amplitude for a given decibel amount.

Examples

Here is an example of the db opcode. It uses the files db.orc and db.sco.

Example 15-1. Example of the db opcode.

/* db.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

227

Chapter 15. Orchestra Opcodes and Operators

instr 1
; Calculate the amplitude of 40 decibels.
idecibels = 40
iamp = db(idecibels)

print iamp
endin
/* db.orc */

/* db.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* db.sco */

Its output should include lines like:

instr 1: iamp = 100.000

See Also

ampdb, cent , octave, semitone

Credits

Author: Kevin Conder

New in version 4.16

dbamp

dbamp — Returns the decibel equivalent of the raw amplitude x.

Description

Returns the decibel equivalent of the raw amplitude x.

Syntax

dbamp(x) (init-rate or control-rate args only)

228

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the dbamp opcode. It uses the files dbamp.orc and dbamp.sco.

Example 15-1. Example of the dbamp opcode.

/* dbamp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

iamp = 30000
idb = dbamp(iamp)

print idb
endin
/* dbamp.orc */

/* dbamp.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* dbamp.sco */

Its output should include lines like this:

instr 1: idb = 89.542

See Also

ampdb, ampdbfs, dbfsamp

dbfsamp

dbfsamp — Returns the decibel equivalent of the raw amplitude x, relative to full scale amplitude.

Description

Returns the decibel equivalent of the raw amplitude x, relative to full scale amplitude. Full scale is assumed to
be 16 bit. New is Csound version 4.10.

Syntax

dbfsamp(x) (init-rate or control-rate args only)

229

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the dbfsamp opcode. It uses the files dbfsamp.orc and dbfsamp.sco.

Example 15-1. Example of the dbfsamp opcode.

/* dbfsamp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

iamp = 30000
idb = dbfsamp(iamp)

print idb
endin
/* dbfsamp.orc */

/* dbfsamp.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* dbfsamp.sco */

Its output should include lines like this:

instr 1: idb = -0.767

See Also

ampdb, ampdbfs, dbamp

dcblock

dcblock — A DC blocking filter.

Description

Implements the DC blocking filter

Y[i] = X[i] - X[i-1] + (igain * Y[i=1])

Based on work by Perry Cook.

230

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar dcblock ain [, igain]

Initialization

igain -- the gain of the filter, which defaults to 0.99

Performance

ain -- audio signal input

Examples

Here is an example of the dcblock opcode. It uses the files dcblock.orc, dcblock.sco, and beats.wav.

Example 15-1. Example of the dcblock opcode.

/* dcblock.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 -- normal audio signal.
instr 1

asig soundin "beats.wav"
out asig

endin

; Instrument #2 -- dcblock-ed audio signal.
instr 2

asig soundin "beats.wav"

igain = 0.75
a1 dcblock asig, igain

out a1
endin
/* dcblock.orc */

/* dcblock.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 2 seconds.
i 1 0 2
; Play Instrument #2 for 2 seconds.
i 2 2 2
e
/* dcblock.sco */

231

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.49

dconv

dconv — A direct convolution opcode.

Description

A direct convolution opcode.

Syntax

ar dconv asig, isize, ifn

Initialization

isize -- the size of the convolution buffer to use. if the buffer size is smaller than the size of ifn, then only the
first isize values will be used from the table.

ifn -- table number of a stored function containing the impulse response for convolution.

Performance

Rather than the analysis/resynthesis method of the convolve opcode, dconv uses direct convolution to create
the result. For small tables it can do this quite efficiently, however larger table require much more time to run.
dconv does (isize * ksmps) multiplies on every k-cycle. Therefore, reverb and delay effects are best done with
other opcodes (unless the times are short).

dconv was designed to be used with time varying tables to facilitate new realtime filtering capabilities.

Examples

Here is an example of the dconv opcode. It uses the files dconv.orc and dconv.sco.

Example 15-1. Example of the dconv opcode.

/* dconv.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

#define RANDI(A) #kout randi 1, kfq, $A*.001+iseed, 1
tablew kout, $A, itable#

instr 1

232

Chapter 15. Orchestra Opcodes and Operators

itable init 1
iseed init .6
isize init ftlen(itable)
kfq line 1, p3, 10

$RANDI(0)
$RANDI(1)
$RANDI(2)
$RANDI(3)
$RANDI(4)
$RANDI(5)
$RANDI(6)
$RANDI(7)
$RANDI(8)
$RANDI(9)
$RANDI(10)
$RANDI(11)
$RANDI(12)
$RANDI(13)
$RANDI(14)
$RANDI(15)

asig rand 10000, .5, 1
asig butlp asig, 5000
asig dconv asig, isize, itable

out asig *.5
endin
/* dconv.orc */

/* dconv.sco */
f1 0 16 10 1
i1 0 10
e
/* dconv.sco */

Credits

Author: William “Pete” Moss 2001

New in version 4.12

delay

delay — Delays an input signal by some time interval.

Description

A signal can be read from or written into a delay path, or it can be automatically delayed by some time
interval.

233

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar delay asig, idlt [, iskip]

Initialization

idlt -- requested delay time in seconds. This can be as large as available memory will permit. The space
required for n seconds of delay is 4n * sr bytes. It is allocated at the time the instrument is first initialized, and
returned to the pool at the end of a score section.

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance

asig -- audio signal

delay is a composite of delayr and delayw, both reading from and writing into its own storage area. It can thus
accomplish signal time-shift, although modified feedback is not possible. There is no minimum delay period.

Examples

Here is an example of the delay opcode. It uses the files delay.orc and delay.sco.

Example 15-1. Example of the delay opcode.

/* delay.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; Instrument #1 -- Delayed beeps.
instr 1

; Make a basic sound.
abeep vco 20000, 440, 1

; Delay the beep by .1 seconds.
idlt = 0.1
adel delay abeep, idlt

; Send the beep to the left speaker and
; the delayed beep to the right speaker.
outs abeep, adel

endin
/* delay.orc */

/* delay.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Keep the score running for 2 seconds.
f 0 2

; Play Instrument #1.
i 1 0.0 0.2
i 1 0.5 0.2
e

234

Chapter 15. Orchestra Opcodes and Operators

/* delay.sco */

See Also

delay1, delayr , delayw

delay1

delay1 — Delays an input signal by one sample.

Description

Delays an input signal by one sample.

Syntax

ar delay1 asig [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance

delay1 is a special form of delay that serves to delay the audio signal asig by just one sample. It is thus
functionally equivalent to the delay opcode but is more efficient in both time and space. This unit is
particularly useful in the fabrication of generalized non-recursive filters.

See Also

delay, delayr , delayw

delayr

delayr — Reads from an automatically established digital delay line.

Description

Reads from an automatically established digital delay line.

235

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar delayr idlt [, iskip]

Initialization

idlt -- requested delay time in seconds. This can be as large as available memory will permit. The space
required for n seconds of delay is 4n * sr bytes. It is allocated at the time the instrument is first initialized, and
returned to the pool at the end of a score section.

iskip (optional, default=0) -- initial disposition of delay-loop data space (see reson). The default value is 0.

Performance

delayr reads from an automatically established digital delay line, in which the signal retrieved has been
resident for idlt seconds. This unit must be paired with and precede an accompanying delayw unit. Any other
Csound statements can intervene.

Examples

See the example for delayw.

See Also

delay, delay1, delayw

delayw

delayw — Writes the audio signal to a digital delay line.

Description

Writes the audio signal to a digital delay line.

Syntax

delayw asig

Performance

delayw writes asig into the delay area established by the preceding delayr unit. Viewed as a pair, these two
units permit the formation of modified feedback loops, etc. However, there is a lower bound on the value of
idlt , which must be at least 1 control period (or 1/kr).

236

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the delayw opcode. It uses the files delayw.orc and delayw.sco.

Example 15-1. Example of the delayw opcode.

/* delayw.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; Instrument #1 -- Delayed beeps.
instr 1

; Make a basic sound.
abeep vco 20000, 440, 1

; Set up a delay line.
idlt = 0.1
adel delayr idlt

; Write the beep to the delay line.
delayw abeep

; Send the beep to the left speaker and
; the delayed beep to the right speaker.
outs abeep, adel

endin
/* delayw.orc */

/* delayw.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Keep the score running for 2 seconds.
f 0 2

; Play Instrument #1.
i 1 0.0 0.2
i 1 0.5 0.2
e
/* delayw.sco */

See Also

delay, delay1, delayr

deltap

deltap — Taps a delay line at variable offset times.

237

Chapter 15. Orchestra Opcodes and Operators

Description

Tap a delay line at variable offset times.

Syntax

ar deltap kdlt

Performance

kdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal.

deltap extracts sound by reading the stored samples directly.

This opcode can tap into a delayr/delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past

delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2

ainput1 =
ainput2 =
kdlyt1 =
kdlyt2 =

;Read delayed signal, first delayr instance:
adump delayr 4.0

238

Chapter 15. Orchestra Opcodes and Operators

adly1 deltap kdlyt1 ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 = 0.7 * adly1 + 0.7 * adly2 + ainput1
afdbk2 = -0.7 * adly1 + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbk1

;Feed back signal, associated with second delayr instance:
delayw afdbk2
outs adly1, adly2

See Also

deltap3, deltapi, deltapn

deltap3

deltap — Taps a delay line at variable offset times, uses cubic interpolation.

Description

Taps a delay line at variable offset times, uses cubic interpolation.

Syntax

ar deltap3 xdlt

Performance

xdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal; the xdlt argument in
deltap3 implies that an audio-varying delay is permitted there.

deltap3 is experimental, and uses cubic interpolation. (New in Csound version 3.50.)

This opcode can tap into a delayr/delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

239

Chapter 15. Orchestra Opcodes and Operators

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past

delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2

ainput1 =
ainput2 =
kdlyt1 =
kdlyt2 =

;Read delayed signal, first delayr instance:
adump delayr 4.0
adly1 deltap kdlyt1 ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 = 0.7 * adly1 + 0.7 * adly2 + ainput1
afdbk2 = -0.7 * adly1 + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbk1

;Feed back signal, associated with second delayr instance:
delayw afdbk2
outs adly1, adly2

See Also

deltap, deltapi, deltapn

240

Chapter 15. Orchestra Opcodes and Operators

deltapi

deltapi — Taps a delay line at variable offset times, uses interpolation.

Description

Taps a delay line at variable offset times, uses interpolation.

Syntax

ar deltapi xdlt

Performance

xdlt -- specifies the tapped delay time in seconds. Each can range from 1 control period to the full delay time
of the read/write pair; however, since there is no internal check for adherence to this range, the user is wholly
responsible. Each argument can be a constant, a variable, or a time-varying signal; the xdlt argument in
deltapi implies that an audio-varying delay is permitted there.

deltapi extracts sound by interpolated readout. By interpolating between adjacent stored samples deltapi
represents a particular delay time with more accuracy, but it will take about twice as long to run.

This opcode can tap into a delayr/delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past

delayw asource ; the listener
out amove * ampfac

241

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. deltap example #2

ainput1 =
ainput2 =
kdlyt1 =
kdlyt2 =

;Read delayed signal, first delayr instance:
adump delayr 4.0
adly1 deltap kdlyt1 ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 = 0.7 * adly1 + 0.7 * adly2 + ainput1
afdbk2 = -0.7 * adly1 + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbk1

;Feed back signal, associated with second delayr instance:
delayw afdbk2
outs adly1, adly2

See Also

deltap, deltap3, deltapn

deltapn

deltapn — Taps a delay line at variable offset times.

Description

Tap a delay line at variable offset times.

Syntax

ar deltapn xnumsamps

Performance

xnumsamps -- specifies the tapped delay time in number of samples. Each can range from 1 control period to
the full delay time of the read/write pair; however, since there is no internal check for adherence to this range,
the user is wholly responsible. Each argument can be a constant, a variable, or a time-varying signal.

deltapn is identical to deltapi, except delay time is specified in number of samples, instead of seconds (Hans
Mikelson).

242

Chapter 15. Orchestra Opcodes and Operators

This opcode can tap into a delayr/delayw pair, extracting delayed audio from the idlt seconds of stored
sound. There can be any number of deltap and/or deltapi units between a read/write pair. Each receives an
audio tap with no change of original amplitude.

This opcode can provide multiple delay taps for arbitrary delay path and feedback networks. They can deliver
either constant-time or time-varying taps, and are useful for building chorus effects, harmonizers, and
Doppler shifts. Constant-time delay taps (and some slowly changing ones) do not need interpolated readout;
they are well served by deltap. Medium-paced or fast varying dlt’s, however, will need the extra services of
deltapi.

delayr/delayw pairs may be interleaved. To associate a delay tap unit with a specific delayr unit, it not only
has to be located between that delayr and the appropriate delayw unit, but must also precede any following
delayr units. See Example 2. (This feature added in Csound version 3.57 by Jens Groh and John ffitch).

N.B. k-rate delay times are not internally interpolated, but rather lay down stepped time-shifts of audio
samples; this will be found quite adequate for slowly changing tap times. For medium to fast-paced changes,
however, one should provide a higher resolution audio-rate timeshift as input.

Examples

Example 15-1. deltap example #1

asource buzz 1, 440, 20, 1
atime linseg 1, p3/2,.01, p3/2,1 ; trace a distance in secs
ampfac = 1/atime/atime ; and calc an amp factor
adump delayr 1 ; set maximum distance
amove deltapi atime ; move sound source past

delayw asource ; the listener
out amove * ampfac

Example 15-2. deltap example #2

ainput1 =
ainput2 =
kdlyt1 =
kdlyt2 =

;Read delayed signal, first delayr instance:
adump delayr 4.0
adly1 deltap kdlyt1 ;associated with first delayr instance

;Read delayed signal, second delayr instance:
adump delayr 4.0
adly2 deltap kdlyt2 ; associated with second delayr instance

;Do some cross-coupled manipulation:
afdbk1 = 0.7 * adly1 + 0.7 * adly2 + ainput1
afdbk2 = -0.7 * adly1 + 0.7 * adly2 + ainput2

;Feed back signal, associated with first delayr instance:
delayw afdbk1

;Feed back signal, associated with second delayr instance:
delayw afdbk2
outs adly1, adly2

243

Chapter 15. Orchestra Opcodes and Operators

See Also

deltap, deltap3, deltapi

deltapx

deltapx — Read to or write from a delay line with interpolation.

Description

deltapx is similar to deltapi or deltap3. However, it allows higher quality interpolation. This opcode can read
from and write to a delayr/delayw delay line with interpolation.

Syntax

aout deltapx adel, iwsize

Initialization

iwsize -- interpolation window size in samples. Allowed values are integer multiplies of 4 in the range 4 to
1024. iwsize = 4 uses cubic interpolation. Increasing iwsize improves sound quality at the expense of CPU
usage, and minimum delay time.

Performance

aout -- Output signal

adel -- Delay time in seconds.

a1 delayr idlr
deltapxw a2, adl1, iws1

a3 deltapx adl2, iws2
deltapxw a4, adl3, iws3
delayw a5

Minimum and maximum delay times:

idlr >= 1/kr Delay line length

adl1 >= (iws1/2)/sr Write before read
adl1 <= idlr - (1 + iws1/2)/sr (allows shorter delays)

adl2 >= 1/kr + (iws2/2)/sr Read time
adl2 <= idlr - (1 + iws2/2)/sr
adl2 >= adl1 + (iws1 + iws2) / (2*sr)
adl2 >= 1/kr + adl3 + (iws2 + iws3) / (2*sr)

244

Chapter 15. Orchestra Opcodes and Operators

adl3 >= (iws3/2)/sr Write after read
adl3 <= idlr - (1 + iws3/2)/sr (allows feedback)

Note: Window sizes for opcodes other than deltapx are: deltap, deltapn: 1, deltapi: 2 (linear), deltap3: 4 (cubic)

Examples

a1 phasor 300.0
a1 = a1 - 0.5
a_ delayr 1.0
adel phasor 4.0
adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2

deltapxw a1, adel, 32
adel phasor 2.0
adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2

deltapxw a1, adel, 32
adel = 0.3
a2 deltapx adel, 32
a1 = 0

delayw a1

out a2 * 20000.0

See Also

deltapxw

Credits

Author: Istvan Varga

August 2001

New in version 4.13

deltapxw

deltapxw — Mixes the input signal to a delay line.

245

Chapter 15. Orchestra Opcodes and Operators

Description

deltapxw mixes the input signal to a delay line. This opcode can be mixed with reading units (deltap, deltapn,
deltapi, deltap3, and deltapx) in any order; the actual delay time is the difference of the read and write time.
This opcode can read from and write to a delayr/delayw delay line with interpolation.

Syntax

deltapxw ain, adel, iwsize

Initialization

iwsize -- interpolation window size in samples. Allowed values are integer multiplies of 4 in the range 4 to
1024. iwsize = 4 uses cubic interpolation. Increasing iwsize improves sound quality at the expense of CPU
usage, and minimum delay time.

Performance

ain -- Input signal

adel -- Delay time in seconds.

a1 delayr idlr
deltapxw a2, adl1, iws1

a3 deltapx adl2, iws2
deltapxw a4, adl3, iws3
delayw a5

Minimum and maximum delay times:

idlr >= 1/kr Delay line length

adl1 >= (iws1/2)/sr Write before read
adl1 <= idlr - (1 + iws1/2)/sr (allows shorter delays)

adl2 >= 1/kr + (iws2/2)/sr Read time
adl2 <= idlr - (1 + iws2/2)/sr
adl2 >= adl1 + (iws1 + iws2) / (2*sr)
adl2 >= 1/kr + adl3 + (iws2 + iws3) / (2*sr)

adl3 >= (iws3/2)/sr Write after read
adl3 <= idlr - (1 + iws3/2)/sr (allows feedback)

Note: Window sizes for opcodes other than deltapx are: deltap, deltapn: 1, deltapi: 2 (linear), deltap3: 4 (cubic)

246

Chapter 15. Orchestra Opcodes and Operators

Examples

a1 phasor 300.0
a1 = a1 - 0.5
a_ delayr 1.0
adel phasor 4.0
adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2

deltapxw a1, adel, 32
adel phasor 2.0
adel = sin (2.0 * 3.14159265 * adel) * 0.01 + 0.2

deltapxw a1, adel, 32
adel = 0.3
a2 deltapx adel, 32
a1 = 0

delayw a1

out a2 * 20000.0

See Also

deltapx

Credits

Author: Istvan Varga

August 2001

New in version 4.13

diff

diff — Modify a signal by differentiation.

Description

Modify a signal by differentiation.

Syntax

ar diff asig [, iskip]

kr diff ksig [, iskip]

Initialization

iskip (optional) -- initial disposition of internal save space (see reson). The default value is 0.

247

Chapter 15. Orchestra Opcodes and Operators

Performance

integ and diff perform integration and differentiation on an input control signal or audio signal. Each is the
converse of the other, and applying both will reconstruct the original signal. Since these units are special
cases of low-pass and high-pass filters, they produce a scaled (and phase shifted) output that is
frequency-dependent. Thus diff of a sine produces a cosine, with amplitude 2 * sin(pi * Hz / sr) that of the
original (for each component partial); integ will inversely affect the magnitudes of its component inputs.
With this understanding, these units can provide useful signal modification.

Examples

Here is an example of the diff opcode. It uses the files diff.orc and diff.sco.

Example 15-1. Example of the diff opcode.

/* diff.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 -- a normal instrument.
instr 1

; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

out asrc
endin

; Instrument #2 -- a differentiated instrument.
instr 2

; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

; Emphasize the highs.
a1 diff asrc

out a1
endin
/* diff.orc */

/* diff.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 1 1
e
/* diff.sco */

248

Chapter 15. Orchestra Opcodes and Operators

See Also

downsamp, integ , interp, samphold, upsamp

diskin

diskin — Reads audio data from an external device or stream and can alter its pitch.

Description

Reads audio data from an external device or stream and can alter its pitch.

Syntax

ar1 [,ar2] [, ar3] [, ar4] diskin ifilcod, kpitch [, iskiptim] [, iwraparound] [, iformat]

Initialization

ifilcod -- integer or character-string denoting the source soundfile name. An integer denotes the file
soundin.filcod ; a character-string (in double quotes, spaces permitted) gives the filename itself, optionally a
full pathname. If not a full path, the named file is sought first in the current directory, then in that given by the
environment variable SSDIR (if defined) then by SFDIR. See also GEN01.

iskptim (optional) -- time in seconds of input sound to be skipped. The default value is 0.

iformat (optional) -- specifies the audio data file format:

• 1 = 8-bit signed char (high-order 8 bits of a 16-bit integer)

• 2 = 8-bit A-law bytes

• 3 = 8-bit U-law bytes

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats

iwraparound -- 1 = on, 0 = off (wraps around to end of file either direction)

If iformat = 0 it is taken from the soundfile header, and if no header from the Csound -o command-line flag.
The default value is 0.

Performance

kpitch -- can be any real number. a negative number signifies backwards playback. The given number is a
pitch ratio, where:

• 1 = normal pitch

• 2 = 1 octave higher

• 3 = 12th higher, etc.

• .5 = 1 octave lower

249

Chapter 15. Orchestra Opcodes and Operators

• .25 = 2 octaves lower, etc.

• -1 = normal pitch backwards

• -2 = 1 octave higher backwards, etc.

diskin is identical to soundin except that it can alter the pitch of the sound that is being read.

Note to Windows users
Windows users typically use back-slashes, “\”, when specifying the paths of their files. As an example, a
Windows user might use the path “c:\music\samples\loop001.wav”. This is problematic because back-slashes
are normally used to specify special characters.

To correctly specify this path in Csound, one may alternately:

• Use forward slashes: c:/music/samples/loop001.wav

• Use back-slash special characters, “\\” : c:\\music\\samples\\loop001.wav

Examples

Here is an example of the diskin opcode. It uses the files diskin.orc, diskin.sco, beats.wav.

Example 15-1. Example of the diskin opcode.

/* diskin.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1 - play an audio file.
instr 1

; Play the audio file backwards.
asig diskin "beats.wav", -1
out asig

endin
/* diskin.orc */

/* diskin.sco */
/* Written by Kevin Conder */
; Play Instrument #1, the audio file, for three seconds.
i 1 0 3
e
/* diskin.sco */

See Also

in, inh, ino, inq, ins, soundin

250

Chapter 15. Orchestra Opcodes and Operators

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

Warning to Windows users added by Kevin Conder, April 2002

dispfft

displayfft — Displays the Fourier Transform of an audio or control signal.

Description

These units will print orchestra init-values, or produce graphic display of orchestra control signals and audio
signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ASCII characters.

Syntax

dispfft xsig, iprd, iwsiz [, iwtyp] [, idbout] [, iwtflg]

Initialization

iprd -- the period of display in seconds.

iwsiz -- size of the input window in samples. A window of iwsiz points will produce a Fourier transform of
iwsiz/2 points, spread linearly in frequency from 0 to sr/2. iwsiz must be a power of 2, with a minimum of 16
and a maximum of 4096. The windows are permitted to overlap.

iwtyp (optional, default=0) -- window type. 0 = rectangular, 1 = Hanning. The default value is 0 (rectangular).

idbout (optional, default=0) -- units of output for the Fourier coefficients. 0 = magnitude, 1 = decibels. The
default is 0 (magnitude).

iwtflg (optional, default=0) -- wait flag. If non-zero, each display is held until released by the user. The default
value is 0 (no wait).

Performance

dispfft -- displays the Fourier Transform of an audio or control signal (asig or ksig) every iprd seconds using
the Fast Fourier Transform method.

Examples

Here is an example of the dispfft opcode. It uses the files dispfft.orc, dispfft.sco and beats.wav.

Example 15-1. Example of the dispfft opcode.

/* dispfft.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410

251

Chapter 15. Orchestra Opcodes and Operators

ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

asig soundin "beats.wav"
dispfft asig, 1, 512
out asig

endin
/* dispfft.orc */

/* dispfft.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for three seconds.
i 1 0 3
e
/* dispfft.sco */

See Also

display, print

Credits

Comments about the inprds parameter contributed by Rasmus Ekman.

display

display — Displays the audio or control signals as an amplitude vs. time graph.

Description

These units will print orchestra init-values, or produce graphic display of orchestra control signals and audio
signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ASCII characters.

Syntax

display xsig, iprd [, inprds] [, iwtflg]

Initialization

iprd -- the period of display in seconds.

inprds (optional, default=1) -- Number of display periods retained in each display graph. A value of 2 or more
will provide a larger perspective of the signal motion. The default value is 1 (each graph completely new).

inprds (optional, default=1) -- a scaling factor for the displayed waveform, controlling how many iprd-sized
frames of samples are drawn in the window (the default and minimum value is 1.0). Higher inprds values are
slower to draw (more points to draw) but will show the waveform scrolling through the window, which is
useful with low iprd values.

252

Chapter 15. Orchestra Opcodes and Operators

iwtflg (optional, default=0) -- wait flag. If non-zero, each display is held until released by the user. The default
value is 0 (no wait).

Performance

display -- displays the audio or control signal xsig every iprd seconds, as an amplitude vs. time graph.

Examples

Here is an example of the display opcode. It uses the files display.orc and display.sco.

Example 15-1. Example of the display opcode.

/* display.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Go from 1000 to 0 linearly, over the period defined by p3.
klin line 1000, p3, 0

; Create a new display each second, wait for the user.
display klin, 1, 1, 1

endin
/* display.orc */

/* display.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 5 seconds.
i 1 0 5
e
/* display.sco */

See Also

dispfft , print

Credits

Comments about the inprds parameter contributed by Rasmus Ekman.

distort1

distort1 — Modified hyperbolic tangent distortion.

253

Chapter 15. Orchestra Opcodes and Operators

Description

Implementation of modified hyperbolic tangent distortion. distort1 can be used to generate wave shaping
distortion based on a modification of the tanh function.

exp(asig * (pregain + shape1)) - exp(asig*(pregain+shape2))
aout = ---

exp(asig*pregain) + exp(-asig*pregain)

Syntax

ar distort1 asig [, ipregain] [, ipostgain] [, ishape1] [, ishape2]

Initialization

ipregain (optional, default=1) -- determines the amount of gain applied to the signal before waveshaping. A
value of 1 gives slight distortion.

ipostgain (optional, default=1) -- determines the amount of gain applied to the signal after waveshaping.

ishape1 (optional, default=0) -- determines the shape of the positive part of the curve. A value of 0 gives a flat
clip, small positive values give sloped shaping.

ishape2 (optional, default=0) -- determines the shape of the negative part of the curve.

Performance

asig - is the input signal.

All arguments except asig , were made optional in Csound version 3.52.

Examples

Here is an example of the distort1 opcode. It uses the files distort1.orc and distort1.sco.

Example 15-1. Example of the distort1 opcode.

/* distort1.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

gadist init 0

instr 1
iamp = p4
ifqc = cpspch(p5)
asig pluck iamp, ifqc, ifqc, 0, 1
gadist = gadist + asig

endin

instr 50
ipre = p4

254

Chapter 15. Orchestra Opcodes and Operators

ipost = p5
ishap1 = p6
ishap2 = p7
aout distort1 gadist, ipre, ipost, ishap1, ishap2

outs aout, aout

gadist = 0
endin
/* distort1.orc */

/* distort1.sco */
; Sta Dur Amp Pitch
i1 0.0 3.0 10000 6.00
i1 0.5 2.5 10000 7.00
i1 1.0 2.0 10000 7.07
i1 1.5 1.5 10000 8.00

; Sta Dur PreGain PostGain Shape1 Shape2
i50 0 3 2 1 0 0
e
/* distort1.sco */

Credits

Author: Hans Mikelson

December 1998 (New in Csound version 3.50)

divz

divz — Safely divides two numbers.

Syntax

ar divz xa, xb, ksubst

ir divz ia, ib, isubst

kr divz ka, kb, ksubst

Description

Safely divides two numbers.

Initialization

Whenever b is not zero, set the result to the value a / b; when b is zero, set it to the value of subst instead.

255

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the divz opcode. It uses the files divz.orc and divz.sco.

Example 15-1. Example of the divz opcode.

/* divz.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Define the numbers to be divided.
ka init 200
; Linearly change the value of kb from 200 to 0.
kb line 0, p3, 200
; If a "divide by zero" error occurs, substitute -1.
ksubst init -1

; Safely divide the numbers.
kresults divz ka, kb, ksubst

; Print out the results.
printks "%f / %f = %f\\n", 0.1, ka, kb, kresults

endin
/* divz.orc */

/* divz.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* divz.sco */

Its output should include lines like:

200.000000 / 0.000000 = -1.000000
200.000000 / 19.999887 = 10.000056
200.000000 / 40.000027 = 4.999997

See Also

=, init , tival

downsamp

downsamp — Modify a signal by down-sampling.

256

Chapter 15. Orchestra Opcodes and Operators

Description

Modify a signal by down-sampling.

Syntax

kr downsamp asig [, iwlen]

Initialization

iwlen (optional) -- window length in samples over which the audio signal is averaged to determine a
downsampled value. Maximum length is ksmps; 0 and 1 imply no window averaging. The default value is 0.

Performance

downsamp converts an audio signal to a control signal by downsampling. It produces one kval for each audio
control period. The optional window invokes a simple averaging process to suppress foldover.

Examples

Here is an example of the downsamp opcode. It uses the files downsamp.orc and downsamp.sco.

Example 15-1. Example of the downsamp opcode.

/* downsamp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Create a noise signal at a-rate.
anoise noise 20000, 0.2

; Downsample the noise signal to k-rate.
knoise downsamp anoise

; Use the noise signal at k-rate.
a1 oscil 30000, knoise, 1
out anoise

endin
/* downsamp.orc */

/* downsamp.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* downsamp.sco */

257

Chapter 15. Orchestra Opcodes and Operators

See Also

diff , integ , interp, samphold, upsamp

dripwater

dripwater — Semi-physical model of a water drop.

Description

dripwater is a semi-physical model of a water drop. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar dripwater kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 10.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.996 + (idamp * 0.002)

The default damping_amount is 0.996 which means that the default value of idamp is 0. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 2.0.

The recommended range for idamp is usually below 75% of the maximum value. Rasmus Ekman suggests a
range of 1.4-1.75. He also suggests a maximum value of 1.9 instead of the theoretical limit of 2.0.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 450.

ifreq1 (optional) -- the first resonant frequency. The default value is 600.

ifreq2 (optional) -- the second resonant frequency. The default value is 750.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

258

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the dripwater opcode. It uses the files dripwater.orc and dripwater.sco.

Example 15-1. Example of the dripwater opcode.

/* dripwater.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 01 ;example of a water drip
a1 line 5, p3, 5 ;preset an amplitude boost
a2 dripwater p4, 0.01, 0, .9 ;dripwater needs a little amplitude help at these values
a3 product a1, a2 ;increase amplitude

out a3
endin

/* dripwater.orc */

/* dripwater.sco */
i1 0 1 20000
e
/* dripwater.sco */

See Also

bamboo, guiro, sleighbells, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

dumpk

dumpk — Periodically writes an orchestra control-signal value to an external file.

Description

Periodically writes an orchestra control-signal value to a named external file in a specific format.

259

Chapter 15. Orchestra Opcodes and Operators

Syntax

dumpk ksig, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance

ksig -- a control-rate signal

This opcode allows a generated control signal value to be saved in a named external file. The file contains no
self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk opcodes in an instrument or orchestra but each must write to a
different file.

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk2, dumpk3, dumpk4, readk, readk2, readk3, readk4

260

Chapter 15. Orchestra Opcodes and Operators

dumpk2

dumpk2 — Periodically writes two orchestra control-signal values to an external file.

Description

Periodically writes two orchestra control-signal values to a named external file in a specific format.

Syntax

dumpk2 ksig1, ksig2, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance

ksig1, ksig2 -- control-rate signals.

This opcode allows two generated control signal values to be saved in a named external file. The file contains
no self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk2 opcodes in an instrument or orchestra but each must write to
a different file.

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

261

Chapter 15. Orchestra Opcodes and Operators

See Also

dumpk, dumpk3, dumpk4, readk, readk2, readk3, readk4

dumpk3

dumpk3 — Periodically writes three orchestra control-signal values to an external file.

Description

Periodically writes three orchestra control-signal values to a named external file in a specific format.

Syntax

dumpk3 ksig1, ksig2, ksig3, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

Performance

ksig1, ksig2, ksig3 -- control-rate signals

This opcode allows three generated control signal values to be saved in a named external file. The file
contains no self-defining header information. But it contains a regularly sampled time series, suitable for
later input or analysis. There may be any number of dumpk3 opcodes in an instrument or orchestra but each
must write to a different file.

262

Chapter 15. Orchestra Opcodes and Operators

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpk4, readk, readk2, readk3, readk4

dumpk4

dumpk4 — Periodically writes four orchestra control-signal values to an external file.

Description

Periodically writes four orchestra control-signal values to a named external file in a specific format.

Syntax

dumpk4 ksig1, ksig2, ksig3, ksig4, ifilname, iformat, iprd

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

263

Chapter 15. Orchestra Opcodes and Operators

Performance

ksig1, ksig2, ksig3, ksig4 -- control-rate signals

This opcode allows four generated control signal values to be saved in a named external file. The file contains
no self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of dumpk4 opcodes in an instrument or orchestra but each must write to
a different file.

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpk3, readk, readk2, readk3, readk4

duserrnd

duserrnd — Discrete USER-defined-distribution RaNDom generator.

Description

Discrete USER-defined-distribution RaNDom generator.

Syntax

aout duserrnd ktableNum

iout duserrnd itableNum

kout duserrnd ktableNum

Initialization

itableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

Performance

ktableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

duserrnd (discrete user-defined-distribution random generator) generates random values according to a
discrete random distribution created by the user. The user can create the discrete distribution histogram by

264

Chapter 15. Orchestra Opcodes and Operators

using GEN41. In order to create that table, the user has to define an arbitrary amount of number pairs, the
first number of each pair representing a value and the second representing its probability (see GEN41 for
more details).

When used as a function, the rate of generation depends by the rate type of input variable XtableNum. In this
case it can be embedded into any formula. Table number can be varied at k-rate, allowing to change the
distribution histogram during the performance of a single note. duserrnd is designed be used in algorithmic
music generation.

duserrnd can also be used to generate values following a set of ranges of probabilities by using distribution
functions generated by GEN42 (See GEN42 for more details). In this case, in order to simulate continuous
ranges, the length of table XtableNum should be reasonably big, as duserrnd does not interpolate between
table elements.

For a tutorial about random distribution histograms and functions see:

• D. Lorrain. "A panoply of stochastic cannons". In C. Roads, ed. 1989. Music machine. Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

See Also

cuserrnd, urd

Credits

Author: Gabriel Maldonado

New in Version 4.16

else

else — Executes a block of code when an "if...then" condition is false.

Description

Executes a block of code when an "if...then" condition is false.

Syntax

else

Performance

else is used inside of a block of code between the "if...then" and endif opcodes. It defines which statements
are executed when a "if...then" condition is false. Only one else statement may occur and it must be the last
conditional statement before the endif opcode.

265

Chapter 15. Orchestra Opcodes and Operators

See Also

elseif , endif , goto, if , igoto, kgoto, tigoto, timout

Credits

New in version 4.21

elseif

elseif — Defines another "if...then" condition when a "if...then" condition is false.

Description

Defines another "if...then" condition when a "if...then" condition is false.

Syntax

elseif xa R xb then

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Performance

elseif is used inside of a block of code between the "if...then" and endif opcodes. When a "if...then" condition
is false, it defines another "if...then" condition to be met. Any number of elseif statements are allowed.

See Also

else, endif , goto, if , igoto, kgoto, tigoto, timout

Credits

New in version 4.21

endif

endif — Closes a block of code that begins with an "if...then" statement.

Description

Closes a block of code that begins with an "if...then" statement.

266

Chapter 15. Orchestra Opcodes and Operators

Syntax

endif

Performance

Any block of code that begins with an "if...then" statement must end with an endif statement.

See Also

elseif , else, goto, if , igoto, kgoto, tigoto, timout

Credits

New in version 4.21

endin

endin — Ends the current instrument block.

Description

Ends the current instrument block.

Syntax

endin

Initialization

Ends the current instrument block.

Instruments can be defined in any order (but they will always be both initialized and performed in ascending
instrument number order). Instrument blocks cannot be nested (i.e. one block cannot contain another).

Note: There may be any number of instrument blocks in an orchestra.

Examples

Here is an example of the endin opcode. It uses the files endin.orc and endin.sco.

Example 15-1. Example of the endin opcode.

/* endin.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410

267

Chapter 15. Orchestra Opcodes and Operators

ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

iamp = 10000
icps = 440
iphs = 0

a1 oscils iamp, icps, iphs
out a1

endin
/* endin.orc */

/* endin.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* endin.sco */

See Also

instr

envlpx

envlpx — Applies an envelope consisting of 3 segments.

Description

envlpx -- apply an envelope consisting of 3 segments:

1. stored function rise shape

2. modified exponential pseudo steady state

3. exponential decay

Syntax

ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

kr envlpx kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

268

Chapter 15. Orchestra Opcodes and Operators

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.

idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.

ifn -- function table number of stored rise shape with extended guard point.

iatss -- attenuation factor, by which the last value of the envlpx rise is modified during the note’s pseudo
steady state. A factor greater than 1 causes an exponential growth and a factor less than 1 creates an
exponential decay. A factor of 1 will maintain a true steady state at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sensitive to a note’s duration. However, if iatss is negative
(or if steady state < 4 k-periods) a fixed attenuation rate of abs(iatss) per second will be used. 0 is illegal.

iatdec -- attenuation factor by which the closing steady state value is reduced exponentially over the decay
period. This value must be positive and is normally of the order of .01. A large or excessively small value is apt
to produce a cutoff which is audible. A zero or negative value is illegal.

ixmod (optional, between +- .9 or so) -- exponential curve modifier, influencing the steepness of the
exponential trajectory during the steady state. Values less than zero will cause an accelerated growth or decay
towards the target (e.g. subito piano). Values greater than zero will cause a retarded growth or decay. The
default value is zero (unmodified exponential).

Performance

kamp, xamp -- input amplitude signal.

Rise modifications are applied for the first irise seconds, and decay from time idur - idec. If these periods are
separated in time there will be a steady state during which amp will be modified by the first exponential
pattern. If the rise and decay periods overlap then that will cause a truncated decay. If the overall duration
idur is exceeded in performance, the final decay will continue on in the same direction, tending
asymptotically to zero.

Examples

Here is an example of the envlpx opcode. It uses the files envlpx.orc and envlpx.sco.

Example 15-1. Example of the envlpx opcode.

/* envlpx.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a simple instrument.
instr 1

; Set the amplitude.
kamp init 20000
; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

a1 vco kamp, kcps, 1
out a1

endin

; Instrument #2 - instrument with an amplitude envelope.
instr 2

269

Chapter 15. Orchestra Opcodes and Operators

kamp = 20000
irise = 0.05
idur = p3 - .01
idec = 0.5
ifn = 2
iatss = 1
iatdec = 0.01

; Create an amplitude envelope.
kenv envlpx kamp, irise, idur, idec, ifn, iatss, iatdec

; Get the frequency from the fourth p-field.
kcps = cpspch(p4)

a1 vco kenv, kcps, 1
out a1

endin
/* envlpx.orc */

/* envlpx.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1
; Table #2, a rising envelope.
f 2 0 129 -7 0 128 1

; Set the tempo to 120 beats per minute.
t 0 120

; Make sure the score plays for 33 seconds.
f 0 33

; Play a melody with Instrument #1.
; p4 = frequency in pitch-class notation.
i 1 0 1 8.04
i 1 1 1 8.04
i 1 2 1 8.05
i 1 3 1 8.07
i 1 4 1 8.07
i 1 5 1 8.05
i 1 6 1 8.04
i 1 7 1 8.02
i 1 8 1 8.00
i 1 9 1 8.00
i 1 10 1 8.02
i 1 11 1 8.04
i 1 12 2 8.04
i 1 14 2 8.02

; Repeat the melody with Instrument #2.
; p4 = frequency in pitch-class notation.
i 2 16 1 8.04
i 2 17 1 8.04
i 2 18 1 8.05
i 2 19 1 8.07
i 2 20 1 8.07
i 2 21 1 8.05
i 2 22 1 8.04
i 2 23 1 8.02
i 2 24 1 8.00
i 2 25 1 8.00
i 2 26 1 8.02
i 2 27 1 8.04
i 2 28 2 8.04

270

Chapter 15. Orchestra Opcodes and Operators

i 2 30 2 8.02
e
/* envlpx.sco */

See Also

envlpxr , linen, linenr

Credits

Thanks goes to Luis Jure for pointing out a mistake with iatss.

envlpxr

envlpxr — The envlpx opcode with a final release segment.

Description

envlpxr is the same as envlpx except that the final segment is entered only on sensing a MIDI note release.
The note is then extended by the decay time.

Syntax

ar envlpxr xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

kr envlpxr kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.

idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.

ifn -- function table number of stored rise shape with extended guard point.

iatss -- attenuation factor, by which the last value of the envlpx rise is modified during the note’s pseudo
steady state. A factor greater than 1 causes an exponential growth and a factor less than 1 creates an
exponential decay. A factor of 1 will maintain a true steady state at the last rise value. Note that this
attenuation is not by fixed rate (as in a piano), but is sensitive to a note’s duration. However, if iatss is negative
(or if steady state < 4 k-periods) a fixed attenuation rate of abs(iatss) per second will be used. 0 is illegal.

iatdec -- attenuation factor by which the closing steady state value is reduced exponentially over the decay
period. This value must be positive and is normally of the order of .01. A large or excessively small value is apt
to produce a cutoff which is audible. A zero or negative value is illegal.

ixmod (optional, between +- .9 or so) -- exponential curve modifier, influencing the steepness of the
exponential trajectory during the steady state. Values less than zero will cause an accelerated growth or decay
towards the target (e.g. subito piano). Values greater than zero will cause a retarded growth or decay. The
default value is zero (unmodified exponential).

271

Chapter 15. Orchestra Opcodes and Operators

irind (optional) -- independence flag. If left zero, the release time (idec) will influence the extended life of the
current note following a note-off. If non-zero, the idec time is quite independent of the note extension (see
below). The default value is 0.

Performance

kamp, xamp -- input amplitude signal.

envlpxr is an example of the special Csound “r” units that contain a note-off sensor and release time
extender. When each senses a score event termination or a MIDI noteoff, it will immediately extend the
performance time of the current instrument by idec seconds unless it is made independent by irind. Then it
will begin a decay from wherever it was at the time.

These “r” units can also be modified by MIDI noteoff velocities (see veloffs). If the irind flag is on (non-zero),
the overall performance time is unaffected by note-off and veloff data.

Multiple “r” units. When two or more “r” units occur in the same instrument it is usual to have only one of
them influence the overall note duration. This is normally the master amplitude unit. Other units controlling,
say, filter motion can still be sensitive to note-off commands while not affecting the duration by making them
independent (irind non-zero). Depending on their own idec (release time) values, independent “r” units may
or may not reach their final destinations before the instrument terminates. If they do, they will simply hold
their target values until termination. If two or more “r” units are simultaneously master, note extension is by
the greatest idec.

See Also

envlpx, linen, linenr

Credits

Thanks goes to Luis Jure for pointing out a mistake with iatss.

event

event — Generates a score event from an instrument.

Description

Generates a score event from an instrument.

Syntax

event iscorechar, kinsnum, kwhen, kdur, [, kp4] [, kp5] [, ...]

Initialization

iscorechar -- A string (in double-quotes) representing the first p-field in a score statement. This is usually “e”,
“f”, or “i”.

272

Chapter 15. Orchestra Opcodes and Operators

Performance

kinsnum -- The instrument to use for the event. This corresponds to the first p-field, p1, in a score statement.

kwhen -- When (in seconds) the event will occur. This corresponds to the second p-field, p2, in a score
statement.

kdur -- How long (in seconds) the event will happen. This corresponds to the third p-field, p3, in a score
statement.

kp4, kp5, ... (optional) -- Parameters representing additional p-field in a score statement. It starts with the
fourth p-field, p4.

Examples

Here is an example of the event opcode. It uses the files event.orc and event.sco.

Example 15-1. Example of the event opcode.

/* event.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - an oscillator with a high note.
instr 1

; Create a trigger and set its initial value to 1.
ktrigger init 1

; If the trigger is equal to 0, continue playing.
; If not, schedule another event.
if (ktrigger == 0) goto contin

; kscoreop="i", an i-statement.
; kinsnum=2, play Instrument #2.
; kwhen=1, start at 1 second.
; kdur=0.5, play for a half-second.
event "i", 2, 1, 0.5

; Make sure the event isn’t triggered again.
ktrigger = 0

contin:
a1 oscils 10000, 440, 1
out a1

endin

; Instrument #2 - an oscillator with a low note.
instr 2

a1 oscils 10000, 220, 1
out a1

endin
/* event.orc */

/* event.sco */
/* Written by Kevin Conder */
; Make sure the score plays for two seconds.
f 0 2

; Play Instrument #1 for a half-second.
i 1 0 0.5

273

Chapter 15. Orchestra Opcodes and Operators

e
/* event.sco */

Credits

Author: Kevin Conder

New in version 4.17

Thanks goes to Matt Ingalls for helping me fix my example.

exp

exp — Returns e raised to the x-th power.

Description

Returns e raised to the xth power.

Syntax

exp(x) (no rate restriction)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the exp opcode. It uses the files exp.orc and exp.sco.

Example 15-1. Example of the exp opcode.

/* exp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = exp(8)
print i1

endin
/* exp.orc */

/* exp.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e

274

Chapter 15. Orchestra Opcodes and Operators

/* exp.sco */

Its output should include a line like this:

instr 1: i1 = 2980.958

See Also

abs, frac, int , log , log10, i, sqrt

expon

expon — Trace an exponential curve between specified points.

Description

Trace an exponential curve between specified points.

Syntax

ar expon ia, idur1, ib

kr expon ia, idur1, ib

Initialization

ia -- starting value. Zero is illegal for exponentials.

ib, ic, etc. -- value after dur1 seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idur1 -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Examples

Here is an example of the expon opcode. It uses the files expon.orc and expon.sco.

Example 15-1. Example of the expon opcode.

/* expon.orc */

275

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Define kcps as a frequency value that exponentially declines
; from 880 to 220. It declines over the period set by p3.
kcps expon 880, p3, 220

a1 oscil 20000, kcps, 1
out a1

endin
/* expon.orc */

/* expon.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* expon.sco */

See Also

expseg , expsegr , line, linseg , linsegr

exprand

exprand — Exponential distribution random number generator (positive values only).

Description

Exponential distribution random number generator (positive values only). This is an x-class noise generator.

Syntax

ar exprand krange

ir exprand krange

kr exprand krange

276

Chapter 15. Orchestra Opcodes and Operators

Performance

krange -- the range of the random numbers (0 - krange). Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the exprand opcode. It uses the files exprand.orc and exprand.sco.

Example 15-1. Example of the exprand opcode.

/* exprand.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random between 0 and 1.
; krange = 1

i1 exprand 1

print i1
endin
/* exprand.orc */

/* exprand.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* exprand.sco */

Its output should include a line like this:

instr 1: i1 = 0.174

See Also

betarand, bexprnd, cauchy, gauss, linrand, pcauchy, poisson, trirand, unirand, weibull

277

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

expseg

expseg — Trace a series of exponential segments between specified points.

Description

Trace a series of exponential segments between specified points.

Syntax

ar expseg ia, idur1, ib [, idur2] [, ic] [...]

kr expseg ia, idur1, ib [, idur2] [, ic] [...]

Initialization

ia -- starting value. Zero is illegal for exponentials.

ib, ic, etc. -- value after dur1 seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idur1 -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Note that the expseg opcode does not operate correctly at audio rate when segments are shorter than a
k-period. Try the expsega opcode instead.

Examples

Here is an example of the expseg opcode. It uses the files expseg.orc and expseg.sco.

Example 15-1. Example of the expseg opcode.

/* expseg.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100

278

Chapter 15. Orchestra Opcodes and Operators

kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Create an amplitude envelope.
kenv expseg 0.01, p3*0.25, 1, p3*0.75, 0.01
kamp = kenv * 30000

a1 oscil kamp, kcps, 1
out a1

endin
/* expseg.orc */

/* expseg.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for a half-second, p4=8.00
i 1 0 0.5 8.00
; Play Instrument #1 for a half-second, p4=8.01
i 1 1 0.5 8.01
; Play Instrument #1 for a half-second, p4=8.02
i 1 2 0.5 8.02
; Play Instrument #1 for a half-second, p4=8.03
i 1 3 0.5 8.03
e
/* expseg.sco */

See Also

expon, expsega, expsegr , line, linseg , linsegr

Credits

Author: Gabriel Maldonado

New in Csound 3.57

expsega

expsega — An exponential segment generator operating at a-rate.

279

Chapter 15. Orchestra Opcodes and Operators

Description

An exponential segment generator operating at a-rate. This unit is almost identical to expseg , but more
precise when defining segments with very short durations (i.e., in a percussive attack phase) at audio rate.

Syntax

ar expsega ia, idur1, ib [, idur2] [, ic] [...]

Initialization

ia -- starting value. Zero is illegal.

ib, ic, etc. -- value after idur1 seconds, etc. must be non-zero and must agree in sign with ia.

idur1 -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last defined line or curve to be continued
indefinitely in performance. The default is zero.

Performance

These units generate control or audio signals whose values can pass through two or more specified points.
The sum of dur values may or may not equal the instrument’s performance time. A shorter performance will
truncate the specified pattern, while a longer one will cause the last defined segment to continue on in the
same direction.

Examples

Here is an example of the expsega opcode. It uses the files expsega.orc and expsega.sco.

Example 15-1. Example of the expsega opcode.

/* expsega.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Define a short percussive amplitude envelope that
; goes from 0.01 to 20,000 and back.
aenv expsega 0.01, 0.1, 20000, 0.1, 0.01

a1 oscil aenv, 440, 1
out a1

endin
/* expsega.orc */

/* expsega.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

280

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #1 for one second.
i 1 1 1
; Play Instrument #1 for one second.
i 1 2 1
; Play Instrument #1 for one second.
i 1 3 1
e
/* expsega.sco */

See Also

expseg , expsegr

Credits

Author: Gabriel Maldonado

New in Csound 3.57

expsegr

expsegr — Trace a series of exponential segments between specified points including a release segment.

Description

Trace a series of exponential segments between specified points including a release segment.

Syntax

ar expsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

kr expsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

Initialization

ia -- starting value. Zero is illegal for exponentials.

ib, ic, etc. -- value after dur1 seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idur1 -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

irel, iz -- duration in seconds and final value of a note releasing segment.

281

Chapter 15. Orchestra Opcodes and Operators

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

expsegr is amongst the Csound “r” units that contain a note-off sensor and release time extender. When each
senses an event termination or MIDI noteoff, it immediately extends the performance time of the current
instrument by irel seconds, and sets out to reach the value iz by the end of that period (no matter which
segment the unit is in). “r” units can also be modified by MIDI noteoff velocities. For two or more extenders
in an instrument, extension is by the greatest period.

Examples

Here is an example of the expsegr opcode. It uses the files expsegr.orc and expsegr.sco.

Example 15-1. Example of the expsegr opcode.

/* expsegr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Use an amplitude envelope with second-long release.
kenv expsegr 0.01, p3/2, 1, p3/2, 0.01, 1, 1
kamp = kenv * 30000

a1 oscil kamp, kcps, 1
out a1

endin
/* expsegr.orc */

/* expsegr.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Make sure the score lasts for four seconds.
f 0 4

; p4 = frequency (in pitch-class notation).
; Play Instrument #1 for a half-second, p4=8.00
i 1 0 0.5 8.00
; Play Instrument #1 for a half-second, p4=8.01
i 1 1 0.5 8.01
; Play Instrument #1 for a half-second, p4=8.02
i 1 2 0.5 8.02
; Play Instrument #1 for a half-second, p4=8.03
i 1 3 0.5 8.03
e
/* expsegr.sco */

282

Chapter 15. Orchestra Opcodes and Operators

See Also

expon, expseg , expsega, line, linseg , linsegr

Credits

Author: Barry L. Vercoe

New in Csound 3.47

filelen

filelen — Returns the length of a sound file.

Description

Returns the length of a sound file.

Syntax

ir filelen ifilcod

Initialization

ifilcod -- sound file to be queried

Performance

filelen returns the length of the sound file ifilcod in seconds.

Examples

Here is an example of the filelen opcode. It uses the files filelen.orc, filelen.sco, and mary.wav.

Example 15-1. Example of the filelen opcode.

/* filelen.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the length of the audio file
; "mary.wav" in seconds.

283

Chapter 15. Orchestra Opcodes and Operators

ilen filelen "mary.wav"
print ilen

endin
/* filelen.orc */

/* filelen.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 1 second.
i 1 0 1
e
/* filelen.sco */

The audio file “mary.wav” is 3.5 seconds long. So filelen’s output should include a line like this:

instr 1: ilen = 3.501

See Also

filenchnls, filepeak, filesr

Credits

Author: Matt Ingalls

July, 1999

New in Csound version 3.57

filenchnls

filenchnls — Returns the number of channels in a sound file.

Description

Returns the number of channels in a sound file.

Syntax

ir filenchnls ifilcod

Initialization

ifilcod -- sound file to be queried

284

Chapter 15. Orchestra Opcodes and Operators

Performance

filenchnls returns the number of channels in the sound file ifilcod.

Examples

Here is an example of the filenchnls opcode. It uses the files filenchnls.orc, filenchnls.sco, and mary.wav.

Example 15-1. Example of the filenchnls opcode.

/* filenchnls.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the number of channels in the
; audio file "mary.wav".
ichnls filenchnls "mary.wav"
print ichnls

endin
/* filenchnls.orc */

/* filenchnls.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 1 second.
i 1 0 1
e
/* filenchnls.sco */

The audio file “mary.wav” is monoaural (1 channel). So filenchnls’s output should include a line like this:

instr 1: ichnls = 1.000

See Also

filelen, filepeak, filesr

Credits

Author: Matt Ingalls

July, 1999

New in Csound version 3.57

285

Chapter 15. Orchestra Opcodes and Operators

filepeak

filepeak — Returns the peak absolute value of a sound file.

Description

Returns the peak absolute value of a sound file.

Syntax

ir filepeak ifilcod [, ichnl]

Initialization

ifilcod -- sound file to be queried

ichnl (optional, default=0) -- channel to be used in calculating the peak value. Default is 0.

• ichnl = 0 returns peak value of all channels

• ichnl > 0 returns peak value of ichnl

Performance

filepeak returns the peak absolute value of the sound file ifilcod. Currently, filepeak supports only AIFF-C
float files.

Examples

Here is an example of the filepeak opcode. It uses the files filepeak.orc, filepeak.sco, and mary.wav.

Example 15-1. Example of the filepeak opcode.

/* filepeak.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the peak absolute value of the
; audio file "mary.wav".
ipeak filepeak "mary.wav"
print ipeak

endin
/* filepeak.orc */

/* filepeak.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 1 second.
i 1 0 1
e

286

Chapter 15. Orchestra Opcodes and Operators

/* filepeak.sco */

The peak absolute value of the audio file “mary.wav” is 0.306902. So filepeak’s output should include a line
like this:

instr 1: ipeak = 0.307

See Also

filelen, filenchnls, filesr

Credits

Author: Matt Ingalls

July, 1999

New in Csound version 3.57

filesr

filesr — Returns the sample rate of a sound file.

Description

Returns the sample rate of a sound file.

Syntax

ir filesr ifilcod

Initialization

ifilcod -- sound file to be queried

Performance

filesr returns the sample rate of the sound file ifilcod.

Examples

Here is an example of the filesr opcode. It uses the files filesr.orc, filesr.sco, and mary.wav.

Example 15-1. Example of the filesr opcode.

/* filesr.orc */

287

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the sampling rate of the
; audio file "mary.wav".
isr filesr "mary.wav"
print isr

endin
/* filesr.orc */

/* filesr.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 1 second.
i 1 0 1
e
/* filesr.sco */

The audio file “mary.wav” was sampled at 44.1 KHz. So filesr’s output should include a line like this:

instr 1: isr = 44100.000

See Also

filelen, filenchnls, filepeak

Credits

Author: Matt Ingalls

July, 1999

New in Csound version 3.57

filter2

filter2 — Performs filtering using a transposed form-II digital filter lattice with no time-varying control.

Description

General purpose custom filter with time-varying pole control. The filter coefficients implement the following
difference equation:

(1)*y(n) = b0*x[n] + b1*x[n-1] +...+ bM*x[n-M] - a1*y[n-1] -...- aN*y[n-N]

288

Chapter 15. Orchestra Opcodes and Operators

the system function for which is represented by:

B(Z) b0 + b1*Z-1 + ... + bM*Z-M

H(Z) = ---- = --------------------------
A(Z) 1 + a1*Z-1 + ... + aN*Z-N

Syntax

ar filter2 asig, iM, iN, ib0, ib1, ..., ibM, ia1, ia2, ..., iaN

kr filter2 ksig, iM, iN, ib0, ib1, ..., ibM, ia1, ia2, ..., iaN

Initialization

At initialization the number of zeros and poles of the filter are specified along with the corresponding zero
and pole coefficients. The coefficients must be obtained by an external filter-design application such as
Matlab and specified directly or loaded into a table via GEN01.

Performance

The filter2 opcodes perform filtering using a transposed form-II digital filter lattice with no time-varying
control.

Since filter2 implements generalized recursive filters, it can be used to specify a large range of general DSP
algorithms. For example, a digital waveguide can be implemented for musical instrument modeling using a
pair of delayr and delayw opcodes in conjunction with the filter2 opcode.

Examples

A first-order linear-phase lowpass linear-phase FIR filter operating on a k-rate signal:

k1 filter2 ksig, 2, 0, 0.5, 0.5 ;; k-rate FIR filter

See Also

zfilter2

Credits

Author: Michael A. Casey

M.I.T.

Cambridge, Mass.

1997

289

Chapter 15. Orchestra Opcodes and Operators

fin

fin — Read signals from a file at a-rate.

Description

Read signals from a file at a-rate.

Syntax

fin ifilename, iskipframes, iformat, ain1 [, ain2] [, ain3] [,...]

Initialization

ifilename -- input file name (can be a string or a handle number generated by fiopen)

iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

• 0 - 32 bit floating points without header

• 1 - 16 bit integers without header

Performance

fin (file input) is the complement of fout : it reads a multichannel file to generate audio rate signals. At the
present time no header is supported for the file format. The user must be sure that the number of channels of
the input file is the same as the number of ainX arguments.

See Also

fini, fink

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

fini

fini — Read signals from a file at i-rate.

290

Chapter 15. Orchestra Opcodes and Operators

Description

Read signals from a file at i-rate.

Syntax

fini ifilename, iskipframes, iformat, in1 [, in2] [, in3] [, ...]

Initialization

ifilename -- input file name (can be a string or a handle number generated by fiopen)

iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

• 0 - floating points in text format (loop; see below)

• 1 - floating points in text format (no loop; see below)

• 2 - 32 bit floating points in binary format (no loop)

Performance

fini is the complement of fouti and foutir . It reads the values each time the corresponding instrument note is
activated. When iformat is set to 0 and the end of file is reached, the file pointer is zeroed. This restarts the
scan from the beginning. When iformat is set to 1 or 2, no looping is enabled and at the end of file the
corresponding variables will be filled with zeroes.

See Also

fin, fink

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

fink

fink — Read signals from a file at k-rate.

Description

Read signals from a file at k-rate.

291

Chapter 15. Orchestra Opcodes and Operators

Syntax

fink ifilename, iskipframes, iformat, kin1 [, kin2] [, kin3] [,...]

Initialization

ifilename -- input file name (can be a string or a handle number generated by fiopen)

iskipframes -- number of frames to skip at the start (every frame contains a sample of each channel)

iformat -- a number specifying the input file format.

• 0 - 32 bit floating points without header

• 1 - 16 bit integers without header

Performance

fink is the same as fin but operates at k-rate.

See Also

fin, fini

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

fiopen

fiopen — Opens a file in a specific mode.

Description

fiopen can be used to open a file in one of the specified modes.

Syntax

ihandle fiopen ifilename, imode

292

Chapter 15. Orchestra Opcodes and Operators

Initialization

ihandle -- a number which specifies this file.

ifilename -- the output file’s name (in double-quotes).

imode -- choose the mode of opening the file. imode can be a value chosen among the following:

• 0 - open a text file for writing

• 1 - open a text file for reading

• 2 - open a binary file for writing

• 3 - open a binary file for reading

Performance

fiopen opens a file to be used by the fout family of opcodes. It must be defined in the header section, external
to any instruments. It returns a number, ihandle, which unequivocally refers to the opened file.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir , the target file can be only specified by means of a handle-number.

See Also

fout , fouti, foutir , foutk

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

flanger

flanger — A user controlled flanger.

Description

A user controlled flanger.

Syntax

ar flanger asig, adel, kfeedback [, imaxd]

293

Chapter 15. Orchestra Opcodes and Operators

Initialization

imaxd(optional) -- maximum delay in seconds (needed for inital memory allocation)

Performance

asig -- input signal

adel -- delay in seconds

kfeedback -- feedback amount (in normal tasks this should not exceed 1, even if bigger values are allowed)

This unit is useful for generating choruses and flangers. The delay must be varied at a-rate connecting adel to
an oscillator output. Also the feedback can vary at k-rate. This opcode is implemented to allow kr different
than sr (else delay could not be lower than ksmps) enhancing realtime performance. This unit is very similar
to wguide1, the only difference is flanger does not have the lowpass filter.

Examples

Here is an example of the flanger opcode. It uses the files flanger.orc, flanger.sco, and beats.wav.

Example 15-1. Example of the flanger opcode.

/* flanger.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use the "beat.wav" audio file.
asig soundin "beats.wav"

; Vary the delay amount from 0 to 0.01 seconds.
adel line 0, p3, 0.01
kfeedback = 0.7

; Apply flange to the input signal.
aflang flanger asig, adel, kfeedback

; It can get loud, so clip its amplitude to 30,000.
a1 clip aflang, 1, 30000
out a1

endin
/* flanger.orc */

/* flanger.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* flanger.sco */

294

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.49

flashtxt

flashtxt — Allows text to be displayed from instruments like sliders

Description

Allows text to be displayed from instruments like sliders etc. (only on Unix and Windows at present)

Syntax

flashtxt iwhich, String

Initialization

iwhich -- the number of the window.

String -- the string to be displayed.

Performance

A window is created, identified by the iwhich argument, with the text string displayed. If the text is replaced
by a number then the window id deleted. Note that the text windows are globally numbered so different
instruments can change the text, and the window survives the instance of the instrument.

Examples

Here is an example of the flashtxt opcode. It uses the files flashtxt.orc and flashtxt.sco.

Example 15-1. Example of the flashtxt opcode.

/* flashtxt.orc */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

instr 1
flashtxt 1, "Instr 1 live"
ao oscil 4000, 440, 1
out ao

endin
/* flashtxt.orc */

/* flashtxt.sco */
; Table 1: an ordinary sine wave.

295

Chapter 15. Orchestra Opcodes and Operators

f 1 0 32768 10 1

; Play Instrument #1 for three seconds.
i 1 0 3
e
/* flashtxt.sco */

fmb3

fmb3 — Uses FM synthesis to create a Hammond B3 organ sound.

Description

Uses FM synthesis to create a Hammond B3 organ sound. It comes from a family of FM sounds, all using 4
basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmb3 kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

fmb3 takes 5 tables for initialization. The first 4 are the basic inputs and the last is the low frequency oscillator
(LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

• ifn1 -- sine wave

• ifn2 -- sine wave

• ifn3 -- sine wave

• ifn4 -- sine wave

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kc1, kc2 -- Controls for the synthesizer:

• kc1 -- Total mod index

• kc2 -- Crossfade of two modulators

• Algorithm -- 4

kvdepth -- Vibrator depth

296

Chapter 15. Orchestra Opcodes and Operators

kvrate -- Vibrator rate

Examples

Here is an example of the fmb3 opcode. It uses the files fmb3.orc and fmb3.sco.

Example 15-1. Example of the fmb3 opcode.

/* fmb3.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 15000
kfreq = 440
kc1 = 5
kc2 = 5
kvdepth = 0.005
kvrate = 6
ifn1 = 1
ifn2 = 1
ifn3 = 1
ifn4 = 1
ivfn = 1

a1 fmb3 kamp, kfreq, kc1, kc2, kvdepth, kvrate, \
ifn1, ifn2, ifn3, ifn4, ivfn

out a1
endin
/* fmb3.orc */

/* fmb3.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* fmb3.sco */

See Also

fmbell, fmmetal, fmpercfl, fmrhode, fmwurlie

297

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

fmbell

fmbell — Uses FM synthesis to create a tublar bell sound.

Description

Uses FM synthesis to create a tublar bell sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmbell kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

• ifn1 -- sine wave

• ifn2 -- sine wave

• ifn3 -- sine wave

• ifn4 -- sine wave

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kc1, kc2 -- Controls for the synthesizer:

• kc1 -- Mod index 1

• kc2 -- Crossfade of two outputs

• Algorithm -- 5

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

298

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the fmbell opcode. It uses the files fmbell.orc and fmbell.sco.

Example 15-1. Example of the fmbell opcode.

/* fmbell.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 10000
kfreq = 880
kc1 = 5
kc2 = 5
kvdepth = 0.005
kvrate = 6
ifn1 = 1
ifn2 = 1
ifn3 = 1
ifn4 = 1
ivfn = 1

a1 fmbell kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn
out a1

endin
/* fmbell.orc */

/* fmbell.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for three seconds.
i 1 0 3
e
/* fmbell.sco */

See Also

fmb3, fmmetal, fmpercfl, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

299

Chapter 15. Orchestra Opcodes and Operators

fmmetal

fmmetal — Uses FM synthesis to create a “Heavy Metal” sound.

Description

Uses FM synthesis to create a “Heavy Metal” sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmmetal kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

• ifn1 -- sine wave

• ifn2 -- twopeaks.aiff

• ifn3 -- twopeaks.aiff

• ifn4 -- sine wave

Note: The file “twopeaks.aiff” is also available at ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kc1, kc2 -- Controls for the synthesizer:

• kc1 -- Total mod index

• kc2 -- Crossfade of two modulators

• Algorithm -- 3

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

300

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the fmmetal opcode. It uses the files fmmetal.orc, fmmetal.sco, and twopeaks.aiff .

Example 15-1. Example of the fmmetal opcode.

/* fmmetal.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 10000
kfreq = 440
kc1 = 6
kc2 = 5
kvdepth = 0
kvrate = 0
ifn1 = 1
ifn2 = 2
ifn3 = 2
ifn4 = 1
ivfn = 1

a1 fmmetal kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn
out a1

endin
/* fmmetal.orc */

/* fmmetal.sco */
/* Written by Kevin Conder */
; Table #1, a normal sine wave.
f 1 0 32768 10 1
; Table #2, the "twopeaks.aiff" audio file.
f 2 0 256 1 "twopeaks.aiff" 0 0 0

; Play Instrument #1 for one second.
i 1 0 1
e
/* fmmetal.sco */

See Also

fmb3, fmbell, fmpercfl, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

301

Chapter 15. Orchestra Opcodes and Operators

fmpercfl

fmpercfl — Uses FM synthesis to create a percussive flute sound.

Description

Uses FM synthesis to create a percussive flute sound. It comes from a family of FM sounds, all using 4 basic
oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmpercfl kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

• ifn1 -- sine wave

• ifn2 -- sine wave

• ifn3 -- sine wave

• ifn4 -- sine wave

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kc1, kc2 -- Controls for the synthesizer:

• kc1 -- Total mod index

• kc2 -- Crossfade of two modulators

• Algorithm -- 4

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

302

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the fmpercfl opcode. It uses the files fmpercfl.orc and fmpercfl.sco.

Example 15-1. Example of the fmpercfl opcode.

/* fmpercfl.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000
kfreq = 220
kc1 = 5
kc2 = 5
kvdepth = 0.005
kvrate = 6
ifn1 = 1
ifn2 = 1
ifn3 = 1
ifn4 = 1
ivfn = 1

a1 fmpercfl kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn
out a1

endin
/* fmpercfl.orc */

/* fmpercfl.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* fmpercfl.sco */

See Also

fmb3, fmbell, fmmetal, fmrhode, fmwurlie

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

303

Chapter 15. Orchestra Opcodes and Operators

fmrhode

fmrhode — Uses FM synthesis to create a Fender Rhodes electric piano sound.

Description

Uses FM synthesis to create a Fender Rhodes electric piano sound. It comes from a family of FM sounds, all
using 4 basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmrhode kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

• ifn1 -- sine wave

• ifn2 -- sine wave

• ifn3 -- sine wave

• ifn4 -- fwavblnk.aiff

Note: The file “fwavblnk.aiff” is also available at ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kc1, kc2 -- Controls for the synthesizer:

• kc1 -- Mod index 1

• kc2 -- Crossfade of two outputs

• Algorithm -- 5

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

304

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the fmrhode opcode. It uses the files fmrhode.orc, fmrhode.sco, and fwavblnk.aiff .

Example 15-1. Example of the fmrhode opcode.

/* fmrhode.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000
kfreq = 220
kc1 = 6
kc2 = 0
kvdepth = 0.01
kvrate = 3
ifn1 = 1
ifn2 = 1
ifn3 = 1
ifn4 = 2
ivfn = 1

a1 fmrhode kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn
out a1

endin
/* fmrhode.orc */

/* fmrhode.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 32768 10 1
; Table #2, the "fwavblnk.aiff" audio file.
f 2 0 256 1 "fwavblnk.aiff" 0 0 0

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* fmrhode.sco */

See Also

fmb3, fmbell, fmmetal, fmpercfl, fmwurlie

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

305

Chapter 15. Orchestra Opcodes and Operators

fmvoice

fmvoice — FM Singing Voice Synthesis

Description

FM Singing Voice Synthesis

Syntax

ar fmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1, ifn2, ifn3, ifn4, ivibfn

Initialization

ifn1, ifn2, ifn3,ifn3 -- Tables, usually of sinewaves.

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kvowel -- the vowel being sung, in the range 0-64

ktilt -- the spectral tilt of the sound in the range 0 to 99

kvibamt -- Depth of vibrato

kvibrate -- Rate of vibrato

Examples

Here is an example of the fmvoice opcode. It uses the files fmvoice.orc and fmvoice.sco.

Example 15-1. Example of the fmvoice opcode.

/* fmvoice.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000
kfreq = 110
; Use the fourth p-field for the vowel.
kvowel = p4
ktilt = 0
kvibamt = 0.005
kvibrate = 6
ifn1 = 1
ifn2 = 1
ifn3 = 1

306

Chapter 15. Orchestra Opcodes and Operators

ifn4 = 1
ivibfn = 1

a1 fmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1, ifn2, ifn3, ifn4, ivibfn
out a1

endin
/* fmvoice.orc */

/* fmvoice.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; p4 = vowel (a value from 0 to 64)
; Play Instrument #1 for one second, vowel=1.
i 1 0 1 1
; Play Instrument #1 for one second, vowel=2.
i 1 1 1 2
; Play Instrument #1 for one second, vowel=3.
i 1 2 1 3
; Play Instrument #1 for one second, vowel=4.
i 1 3 1 4
; Play Instrument #1 for one second, vowel=5.
i 1 4 1 5
e
/* fmvoice.sco */

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

fmwurlie

fmwurlie — Uses FM synthesis to create a Wurlitzer electric piano sound.

Description

Uses FM synthesis to create a Wurlitzer electric piano sound. It comes from a family of FM sounds, all using 4
basic oscillators and various architectures, as used in the TX81Z synthesizer.

Syntax

ar fmwurlie kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

307

Chapter 15. Orchestra Opcodes and Operators

Initialization

All these opcodes take 5 tables for initialization. The first 4 are the basic inputs and the last is the low
frequency oscillator (LFO) used for vibrato. The last table should usually be a sine wave.

The initial waves should be:

• ifn1 -- sine wave

• ifn2 -- sine wave

• ifn3 -- sine wave

• ifn4 -- fwavblnk.aiff

Note: The file “fwavblnk.aiff” is also available at ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kc1, kc2 -- Controls for the synthesizer:

• kc1 -- Mod index 1

• kc2 -- Crossfade of two outputs

• Algorithm -- 5

kvdepth -- Vibrator depth

kvrate -- Vibrator rate

Examples

Here is an example of the fmwurlie opcode. It uses the files fmwurlie.orc, fmwurlie.sco, and fwavblnk.aiff .

Example 15-1. Example of the fmwurlie opcode.

/* fmwurlie.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000
kfreq = 440
kc1 = 6
kc2 = 1
kvdepth = 0.005
kvrate = 6
ifn1 = 1

308

Chapter 15. Orchestra Opcodes and Operators

ifn2 = 1
ifn3 = 1
ifn4 = 2
ivfn = 1

a1 fmwurlie kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn
out a1

endin
/* fmwurlie.orc */

/* fmwurlie.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 32768 10 1
; Table #2, the "fwavblnk.aiff" audio file.
f 2 0 256 1 "fwavblnk.aiff" 0 0 0

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* fmwurlie.sco */

See Also

fmb3, fmbell, fmmetal, fmpercfl, fmrhode

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

fof

fof — Produces sinusoid bursts useful for formant and granular synthesis.

Description

Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral peak at xform. For
xfund above 25 Hz these bursts produce a speech-like formant with spectral characteristics determined by
the k-input parameters. For lower fundamentals this generator provides a special form of granular synthesis.

Syntax

ar fof xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, ifmode] [, iskip]

309

Chapter 15. Orchestra Opcodes and Operators

Initialization

iolaps -- number of preallocated spaces needed to hold overlapping burst data. Overlaps are frequency
dependent, and the space required depends on the maximum value of xfund * kdur . Can be over-estimated
at no computation cost. Uses less than 50 bytes of memory per iolap.

ifna, ifnb -- table numbers of two stored functions. The first is a sine table for sineburst synthesis (size of at
least 4096 recommended). The second is a rise shape, used forwards and backwards to shape the sineburst
rise and decay; this may be linear (GEN07) or perhaps a sigmoid (GEN19).

itotdur -- total time during which this fof will be active. Normally set to p3. No new sineburst is created if it
cannot complete its kdur within the remaining itotdur .

iphs (optional, default=0) -- initial phase of the fundamental, expressed as a fraction of a cycle (0 to 1). The
default value is 0.

ifmode (optional, default=0) -- formant frequency mode. If zero, each sineburst keeps the xform frequency it
was launched with. If non-zero, each is influenced by xform continuously. The default value is 0.

iskip (optional, default=0) -- If non-zero, skip initialisation (allows legato use).

Performance

xamp -- peak amplitude of each sineburst, observed at the true end of its rise pattern. The rise may exceed
this value given a large bandwidth (say, Q < 10) and/or when the bursts are overlapping.

xfund -- the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

xform -- the formant frequency, i.e. freq of the sinusoid burst induced by each xfund impulse. This frequency
can be fixed for each burst or can vary continuously (see ifmode).

koct -- octaviation index, normally zero. If greater than zero, lowers the effective xfund frequency by
attenuating odd-numbered sinebursts. Whole numbers are full octaves, fractions transitional.

kband -- the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the rate of
exponential decay throughout the sineburst, before the enveloping described below is applied.

kris, kdur, kdec -- rise, overall duration, and decay times (in seconds) of the sinusoid burst. These values
apply an enveloped duration to each burst, in similar fashion to a Csound linen generator but with rise and
decay shapes derived from the ifnb input. kris inversely determines the skirtwidth (at -40 dB) of the induced
formant region. kdur affects the density of sineburst overlaps, and thus the speed of computation. Typical
values for vocal imitation are .003,.02,.007.

Csound’s fof generator is loosely based on Michael Clarke’s C-coding of IRCAM’s CHANT program (Xavier
Rodet et al.). Each fof produces a single formant, and the output of four or more of these can be summed to
produce a rich vocal imitation. fof synthesis is a special form of granular synthesis, and this implementation
aids transformation between vocal imitation and granular textures. Computation speed depends on kdur,
xfund, and the density of any overlaps.

Examples

Here is an example of the fof opcode. It uses the files fof.orc and fof.sco.

Example 15-1. Example of the fof opcode.

/* fof.orc */
/* Adapted from 1401.orc by Michael Clarke */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

310

Chapter 15. Orchestra Opcodes and Operators

; Instrument #1.
instr 1

; Combine five formants together to create
; an alto-"a" sound.

; Values common to all of the formants.
kfund init 261.659
koct init 0
kris init 0.003
kdur init 0.02
kdec init 0.007
iolaps = 14850
ifna = 1
ifnb = 2
itotdur = p3

; First formant.
k1amp = ampdb(0)
k1form init 800
k1band init 80

; Second formant.
k2amp = ampdb(-4)
k2form init 1150
k2band init 90

; Third formant.
k3amp = ampdb(-20)
k3form init 2800
k3band init 120

; Fourth formant.
k4amp = ampdb(-36)
k4form init 3500
k4band init 130

; Fifth formant.
k5amp = ampdb(-60)
k5form init 4950
k5band init 140

a1 fof k1amp, kfund, k1form, koct, k1band, kris, \
kdur, kdec, iolaps, ifna, ifnb, itotdur

a2 fof k2amp, kfund, k2form, koct, k2band, kris, \
kdur, kdec, iolaps, ifna, ifnb, itotdur

a3 fof k3amp, kfund, k3form, koct, k3band, kris, \
kdur, kdec, iolaps, ifna, ifnb, itotdur

a4 fof k4amp, kfund, k4form, koct, k4band, kris, \
kdur, kdec, iolaps, ifna, ifnb, itotdur

a5 fof k5amp, kfund, k5form, koct, k5band, kris, \
kdur, kdec, iolaps, ifna, ifnb, itotdur

; Combine all of the formants together.
out (a1+a2+a3+a4+a5) * 16384

endin
/* fof.orc */

/* fof.sco */
/* Adapted from 1401.sco by Michael Clarke */
; Table #1, a sine wave.
f 1 0 4096 10 1
; Table #2.
f 2 0 1024 19 0.5 0.5 270 0.5

311

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for three seconds.
i 1 0 3
e
/* fof.sco */

The formant values for the alto-"a" sound were taken from the Formant Values Appendix.

See Also

fof2, Formant Values Appendix

fof2

fof2 — Produces sinusoid bursts including k-rate incremental indexing with each successive burst.

Description

Audio output is a succession of sinusoid bursts initiated at frequency xfund with a spectral peak at xform. For
xfund above 25 Hz these bursts produce a speech-like formant with spectral characteristics determined by
the k-input parameters. For lower fundamentals this generator provides a special form of granular synthesis.

fof2 implements k-rate incremental indexing into ifna function with each successive burst.

Syntax

ar fof2 xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur, kphs, kgliss [, iskip]

Initialization

iolaps -- number of preallocated spaces needed to hold overlapping burst data. Overlaps are frequency
dependent, and the space required depends on the maximum value of xfund * kdur . Can be over-estimated
at no computation cost. Uses less than 50 bytes of memory per iolap.

ifna, ifnb -- table numbers of two stored functions. The first is a sine table for sineburst synthesis (size of at
least 4096 recommended). The second is a rise shape, used forwards and backwards to shape the sineburst
rise and decay; this may be linear (GEN07) or perhaps a sigmoid (GEN19).

itotdur -- total time during which this fof will be active. Normally set to p3. No new sineburst is created if it
cannot complete its kdur within the remaining itotdur .

iskip (optional, default=0) -- If non-zero, skip initialization (allows legato use).

Performance

xamp -- peak amplitude of each sineburst, observed at the true end of its rise pattern. The rise may exceed
this value given a large bandwidth (say, Q < 10) and/or when the bursts are overlapping.

xfund -- the fundamental frequency (in Hertz) of the impulses that create new sinebursts.

xform -- the formant frequency, i.e. freq of the sinusoid burst induced by each xfund impulse. This frequency
can be fixed for each burst or can vary continuously (see ifmode).

koct -- octaviation index, normally zero. If greater than zero, lowers the effective xfund frequency by
attenuating odd-numbered sinebursts. Whole numbers are full octaves, fractions transitional.

312

Chapter 15. Orchestra Opcodes and Operators

kband -- the formant bandwidth (at -6dB), expressed in Hz. The bandwidth determines the rate of
exponential decay throughout the sineburst, before the enveloping described below is applied.

kris, kdur, kdec -- rise, overall duration, and decay times (in seconds) of the sinusoid burst. These values
apply an enveloped duration to each burst, in similar fashion to a Csound linen generator but with rise and
decay shapes derived from the ifnb input. kris inversely determines the skirtwidth (at -40 dB) of the induced
formant region. kdur affects the density of sineburst overlaps, and thus the speed of computation. Typical
values for vocal imitation are .003,.02,.007.

kphs -- allows k-rate indexing of function table ifna with each successive burst, making it suitable for
time-warping applications. Values of for kphs are normalized from 0 to 1, 1 being the end of the function
table ifna.

kgliss -- sets the end pitch of each grain relative to the initial pitch, in octaves. Thus kgliss = 2 means that the
grain ends two octaves above its initial pitch, while kgliss = -5/3 has the grain ending a perfect major sixth
below. Note: There are no optional parameters in fof2

Csound’s fof generator is loosely based on Michael Clarke’s C-coding of IRCAM’s CHANT program (Xavier
Rodet et al.). Each fof produces a single formant, and the output of four or more of these can be summed to
produce a rich vocal imitation. fof synthesis is a special form of granular synthesis, and this implementation
aids transformation between vocal imitation and granular textures. Computation speed depends on kdur,
xfund, and the density of any overlaps.

See Also

fof

Credits

Author: Rasmus Ekman

fof2 is a modification of fof by Rasmus Ekman

New in Csound3.45

fog

fog — Audio output is a succession of grains derived from data in a stored function table

Description

Audio output is a succession of grains derived from data in a stored function table ifna. The local envelope of
these grains and their timing is based on the model of fof synthesis and permits detailed control of the
granular synthesis.

Syntax

ar fog xamp, xdens, xtrans, aspd, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, itmode] [,
iskip]

313

Chapter 15. Orchestra Opcodes and Operators

Initialization

iolaps -- number of pre-located spaces needed to hold overlapping grain data. Overlaps are density
dependent, and the space required depends on the maximum value of xdens * kdur . Can be over-estimated at
no computation cost. Uses less than 50 bytes of memory per iolaps.

ifna, ifnb -- table numbers of two stored functions. The first is the data used for granulation, usually from a
soundfile (GEN01). The second is a rise shape, used forwards and backwards to shape the grain rise and
decay; this is normally a sigmoid (GEN19) but may be linear (GEN05).

itotdur -- total time during which this fog will be active. Normally set to p3. No new grain is created if it
cannot complete its kdur within the remaining itotdur .

iphs (optional) -- initial phase of the fundamental, expressed as a fraction of a cycle (0 to 1). The default value
is 0.

itmode (optional) -- transposition mode. If zero, each grain keeps the xtrans value it was launched with. if
non-zero, each is influenced by xtrans continuously. The default value is 0.

iskip (optional, default=0) -- If non-zero, skip initialization (allows legato use).

Performance

xamp -- amplitude factor. Amplitude is also dependent on the number of overlapping grains, the interaction
of the rise shape (ifnb) and the exponential decay (kband), and the scaling of the grain waveform (ifna). The
actual amplitude may therefore exceed xamp.

xdens -- density. The frequency of grains per second.

xtrans -- transposition factor. The rate at which data from the stored function table ifna is read within each
grain. This has the effect of transposing the original material. A value of 1 produces the original pitch. Higher
values transpose upwards, lower values downwards. Negative values result in the function table being read
backwards.

aspd -- speed. The rate at which successive grains advance through the stored function table ifna. aspd is in
the form of an index (0 to 1) to ifna. This determines the movement of a pointer used as the starting point for
reading data within each grain. (xtrans determines the rate at which data is read starting from this pointer.)

koct -- octaviation index. The operation of this parameter is identical to that in fof .

kband, kris, kdur , kdec -- grain envelope shape. These parameters determine the exponential decay (kband),
and the rise (kris), overall duration (kdur ,) and decay (kdec) times of the grain envelope. Their operation is
identical to that of the local envelope parameters in fof .

The Csound fog generator is by Michael Clarke, extending his earlier work based on IRCAM’s fof algorithm.

Examples

;p4 = transposition factor
;p5 = speed factor
;p6 = function table for grain data
i1 = sr/ftlen(p6) ;scaling to reflect sample rate and table length
a1 phasor i1*p5 ;index for speed
a2 fog 5000, 100, p4, a1, 0, 0, , .01, .02, .01, 2, p6, 1, p3, 0, 1

314

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Michael Clark

Huddersfield

May 1997

The Csound fog generator is by Michael Clarke, extending his earlier work based on IRCAM’s fof algorithm.

Added notes by Rasmus Ekman on September 2002.

New in version 3.46

fold

fold — Adds artificial foldover to an audio signal.

Description

Adds artificial foldover to an audio signal.

Syntax

ar fold asig, kincr

Performance

asig -- input signal

kincr -- amount of foldover expressed in multiple of sampling rate. Must be >= 1

fold is an opcode which creates artificial foldover. For example, when kincr is equal to 1 with sr=44100, no
foldover is added. When kincr is set to 2, the foldover is equivalent to a downsampling to 22050, when it is set
to 4, to 11025 etc. Fractional values of kincr are possible, allowing a continuous variation of foldover amount.
This can be used for a wide range of special effects.

Examples

Here is an example of the fold opcode. It uses the files fold.orc and fold.sco.

Example 15-1. Example of the fold opcode.

/* fold.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use an ordinary sine wave.
asig oscils 30000, 100, 1

; Vary the fold-over amount from 1 to 200.
kincr line 1, p3, 200

315

Chapter 15. Orchestra Opcodes and Operators

a1 fold asig, kincr

out a1
endin
/* fold.orc */

/* fold.sco */
; Play Instrument #1 for four seconds.
i 1 0 4
e
/* fold.sco */

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

follow

follow — Envelope follower unit generator.

Description

Envelope follower unit generator.

Syntax

ar follow asig, idt

Initialization

idt -- This is the period, in seconds, that the average amplitude of asig is reported. If the frequency of asig is
low then idt must be large (more than half the period of asig)

Performance

asig -- This is the signal from which to extract the envelope.

316

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the follow opcode. It uses the files follow.orc, follow.sco, and beats.wav.

Example 15-1. Example of the follow opcode.

/* follow.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - play a WAV file.
instr 1

a1 soundin "beats.wav"
out a1

endin

; Instrument #2 - have another waveform follow the WAV file.
instr 2

; Follow the WAV file.
as soundin "beats.wav"
af follow as, 0.01

; Use a sine waveform.
as oscil 4000, 440, 1
; Have it use the amplitude of the followed WAV file.
a1 balance as, af

out a1
endin
/* follow.orc */

/* follow.sco */
/* Written by Kevin Conder */
; Just generate a nice, ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* follow.sco */

To avoid zipper noise, by discontinuities produced from complex envelope tracking, a lowpass filter could be
used, to smooth the estimated envelope.

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

317

Chapter 15. Orchestra Opcodes and Operators

follow2

follow2 — Another controllable envelope extractor.

Description

A controllable envelope extractor using the algorithm attributed to Jean-Marc Jot.

Syntax

ar follow2 asig, katt, krel

Performance

asig -- the input signal whose envelope is followed

katt -- the attack rate (60dB attack time in seconds)

krel -- the decay rate (60dB decay time in seconds)

The output tracks the amplitude envelope of the input signal. The rate at which the output grows to follow
the signal is controlled by the katt , and the rate at which it decreases in response to a lower amplitude, is
controlled by the krel. This gives a smoother envelope than follow.

Examples

Here is an example of the follow2 opcode. It uses the files follow2.orc, follow2.sco, and beats.wav.

Example 15-1. Example of the follow2 opcode.

/* follow2.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - play a WAV file.
instr 1

a1 soundin "beats.wav"
out a1

endin

; Instrument #2 - have another waveform follow the WAV file.
instr 2

; Follow the WAV file.
as soundin "beats.wav"
af follow2 as, 0.01, 0.1

; Use a noise waveform.
ar rand 44100
; Have it use the amplitude of the followed WAV file.
a1 balance ar, af

out a1
endin
/* follow2.orc */

318

Chapter 15. Orchestra Opcodes and Operators

/* follow2.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* follow2.sco */

Credits

Author: John ffitch

The algorithm for the follow2 is attributed to Jean-Marc Jot.

University of Bath, Codemist Ltd.

Bath, UK

February, 2000

Added notes by Rasmus Ekman on September 2002.

New in Csound version 4.03

foscil

foscil — A basic frequency modulated oscillator.

Description

A basic frequency modulated oscillator.

Syntax

ar foscil xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

Initialization

ifn -- function table number. Requires a wrap-around guard point.

iphs (optional, default=0) -- initial phase of waveform in table ifn, expressed as a fraction of a cycle (0 to 1). A
negative value will cause phase initialization to be skipped. The default value is 0.

Performance

xamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal measured in cycles per second.

xcar -- the carrier frequency.

xmod -- the modulating frequency.

319

Chapter 15. Orchestra Opcodes and Operators

kndx -- the modulation index.

foscil is a composite unit that effectively banks two oscil opcodes in the familiar Chowning FM setup, wherein
the audio-rate output of one generator is used to modulate the frequency input of another (the “carrier”).
Effective carrier frequency = kcps * xcar, and modulating frequency = kcps * xmod. For integral values of xcar
and xmod, the perceived fundamental will be the minimum positive value of kcps * (xcar -- n * xmod), n =
1,1,2,... The input kndx is the index of modulation (usually time-varying and ranging 0 to 4 or so) which
determines the spread of acoustic energy over the partial positions given by n = 0,1,2,.., etc. ifn should point
to a stored sine wave. Previous to version 3.50, xcar and xmod could be k-rate only.

Examples

Here is an example of the foscil opcode. It uses the files foscil.orc and foscil.sco.

Example 15-1. Example of the foscil opcode.

/* foscil.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a basic FM waveform.
instr 1

kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn = 1

a1 foscil kamp, kcps, kcar, kmod, kndx, ifn
out a1

endin
/* foscil.orc */

/* foscil.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* foscil.sco */

foscili

foscili — Basic frequency modulated oscillator with linear interpolation.

320

Chapter 15. Orchestra Opcodes and Operators

Description

Basic frequency modulated oscillator with linear interpolation.

Syntax

ar foscili xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

Initialization

ifn -- function table number. Requires a wrap-around guard point.

iphs (optional, default=0) -- initial phase of waveform in table ifn, expressed as a fraction of a cycle (0 to 1). A
negative value will cause phase initialization to be skipped. The default value is 0.

Performance

xamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal measured in cycles per second.

xcar -- the carrier frequency.

xmod -- the modulating frequency.

kndx -- the modulation index.

foscili differs from foscil in that the standard procedure of using a truncated phase as a sampling index is here
replaced by a process that interpolates between two successive lookups. Interpolating generators will
produce a noticeably cleaner output signal, but they may take as much as twice as long to run. Adequate
accuracy can also be gained without the time cost of interpolation by using large stored function tables of 2K,
4K or 8K points if the space is available.

Examples

Here is an example of the foscili opcode. It uses the files foscili.orc and foscili.sco.

Example 15-1. Example of the foscili opcode.

/* foscili.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a basic FM waveform.
instr 1

kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn = 1

a1 foscil kamp, kcps, kcar, kmod, kndx, ifn
out a1

endin

321

Chapter 15. Orchestra Opcodes and Operators

; Instrument #2 - the basic FM waveform with extra interpolation.
instr 2

kamp = 10000
kcps = 440
kcar = 600
kmod = 210
kndx = 2
ifn = 1

a1 foscili kamp, kcps, kcar, kmod, kndx, ifn
out a1

endin
/* foscili.orc */

/* foscili.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave table with a small amount of data.
f 1 0 4096 10 1

; Play Instrument #1, the basic FM instrument, for
; two seconds. This should sound relatively rough.
i 1 0 2

; Play Instrument #2, the interpolated FM instrument, for
; two seconds. This should sound relatively smooth.
i 2 2 2
e
/* foscili.sco */

fout

fout — Outputs a-rate signals to an arbitrary number of channels.

Description

fout outputs N a-rate signals to a specified file of N channels.

Syntax

fout ifilename, iformat, aout1 [, aout2, aout3,...,aoutN]

Initialization

ifilename -- the output file’s name (in double-quotes).

iformat -- a flag to choose output file format:

• 0 - 32-bit floating point samples without header (binary PCM multichannel file)

• 1 - 16-bit integers without header (binary PCM multichannel file)

322

Chapter 15. Orchestra Opcodes and Operators

• 2 - 16-bit integers with a header. The header type depends on the render format. The default header type is
the IRCAM format. If the user chooses the AIFF format (using the -A flag), the header format will be a AIFF
type. If the user chooses the WAV format (using the -W flag), the header format will be a WAV type.

Performance

aout1,... aoutN -- signals to be written to the file

fout (file output) writes samples of audio signals to a file with any number of channels. Channel number
depends by the number of aoutN variables (i.e. a mono signal with only an a-rate argument, a stereo signal
with two a-rate arguments etc.) Maximum number of channels is fixed to 64. Multiple fout opcodes can be
present in the same instrument, referring to different files.

Notice that, unlike out , outs and outq, fout does not zero the audio variable so you must zero it after calling it.
If polyphony is to be used, you can use vincr and clear opcodes for this task.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir , the target file can be only specified by means of a handle-number.

Examples

Here is an example of the fout opcode. It uses the files fout.orc and fout.sco.

Example 15-1. Example of the fout opcode.

/* fout.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

iamp = 10000
icps = 440
iphs = 0

; Create an audio signal.
asig oscils iamp, icps, iphs

; Write the audio signal to a headerless audio file
; called "fout.raw".
fout "fout.raw", 1, asig

endin
/* fout.orc */

/* fout.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* fout.sco */

323

Chapter 15. Orchestra Opcodes and Operators

See Also

fiopen, fouti, foutir , foutk

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

October 2002. Added a note from Richard Dobson.

fouti

fouti — Outputs i-rate signals of an arbitrary number of channels to a specified file.

Description

fouti output N i-rate signals to a specified file of N channels.

Syntax

fouti ihandle, iformat, iflag, iout1 [, iout2, iout3,....,ioutN]

Initialization

ihandle -- a number which specifies this file.

iformat -- a flag to choose output file format:

• 0 - floating point in text format

• 1 - 32-bit floating point in binary format

iflag -- choose the mode of writing to the ASCII file (valid only in ASCII mode; in binary mode iflag has no
meaning, but it must be present anyway). iflag can be a value chosen among the following:

• 0 - line of text without instrument prefix

• 1 - line of text with instrument prefix (see below)

• 2 - reset the time of instrument prefixes to zero (to be used only in some particular cases. See below)

iout,..., ioutN -- values to be written to the file

324

Chapter 15. Orchestra Opcodes and Operators

Performance

fouti and foutir write i-rate values to a file. The main use of these opcodes is to generate a score file during a
realtime session. For this purpose, the user should set iformat to 0 (text file output) and iflag to 1, which
enable the output of a prefix consisting of the strings inum, actiontime, and duration, before the values of
iout1...ioutN arguments. The arguments in the prefix refer to instrument number, action time and duration
of current note.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir , the target file can be only specified by means of a handle-number.

See Also

fiopen, fout , foutir , foutk

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

foutir

foutir — Outputs i-rate signals from an arbitrary number of channels to a specified file.

Description

foutir output N i-rate signals to a specified file of N channels.

Syntax

foutir ihandle, iformat, iflag, iout1 [, iout2, iout3,....,ioutN]

Initialization

ihandle -- a number which specifies this file.

iformat -- a flag to choose output file format:

• 0 - floating point in text format

• 1 - 32-bit floating point in binary format

iflag -- choose the mode of writing to the ASCII file (valid only in ASCII mode; in binary mode iflag has no
meaning, but it must be present anyway). iflag can be a value chosen among the following:

• 0 - line of text without instrument prefix

• 1 - line of text with instrument prefix (see below)

325

Chapter 15. Orchestra Opcodes and Operators

• 2 - reset the time of instrument prefixes to zero (to be used only in some particular cases. See below)

iout,..., ioutN -- values to be written to the file

Performance

fouti and foutir write i-rate values to a file. The main use of these opcodes is to generate a score file during a
realtime session. For this purpose, the user should set iformat to 0 (text file output) and iflag to 1, which
enable the output of a prefix consisting of the strings inum, actiontime, and duration, before the values of
iout1...ioutN arguments. The arguments in the prefix refer to instrument number, action time and duration
of current note.

The difference between fouti and foutir is that, in the case of fouti, when iflag is set to 1, the duration of the
first opcode is undefined (so it is replaced by a dot). Whereas, foutir is defined at the end of note, so the
corresponding text line is written only at the end of the current note (in order to recognize its duration). The
corresponding file is linked by the ihandle value generated by the fiopen opcode. So fouti and foutir can be
used to generate a Csound score while playing a realtime session.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir , the target file can be only specified by means of a handle-number.

See Also

fiopen, fout , fouti, foutk

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

foutk

foutk — Outputs k-rate signals of an arbitrary number of channels to a specified file.

Description

foutk outputs N a-rate signals to a specified file of N channels.

Syntax

foutk ifilename, iformat, kout1 [, kout2, kout3,....,koutN]

326

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifilename -- the output file’s name (in double-quotes).

iformat -- a flag to choose output file format:

• 0 - 32-bit floating point samples without header (binary PCM multichannel file)

• 1 - 16-bit integers without header (binary PCM multichannel file)

• 2 - 16-bit integers with .wav type header (Microsoft WAV mono or stereo file)

Performance

kout1,...koutN -- control-rate signals to be written to the file

foutk operates in the same way as fout , but with k-rate signals. iformat can be set only to 0 or 1.

Notice that fout and foutk can use either a string containing a file pathname, or a handle-number generated
by fiopen. Whereas, with fouti and foutir , the target file can be only specified by means of a handle-number.

See Also

fiopen, fout , fouti, foutir

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

frac

frac — Returns the fractional part of a decimal number.

Description

Returns the fractional part of x.

Syntax

frac(x) (init-rate or control-rate args only)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

327

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the frac opcode. It uses the files frac.orc and frac.sco.

Example 15-1. Example of the frac opcode.

/* frac.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 16 / 5
i2 = frac(i1)

print i2
endin
/* frac.orc */

/* frac.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* frac.sco */

Its output should include a line like this:

instr 1: i2 = 0.200

See Also

abs, exp, int , log , log10, i, sqrt

ftchnls

ftchnls — Returns the number of channels in a stored function table.

Description

Returns the number of channels in a stored function table.

Syntax

ftchnls(x) (init-rate args only)

328

Chapter 15. Orchestra Opcodes and Operators

Performance

Returns the number of channels of a GEN01 table, determined from the header of the original file. If the
original file has no header or the table was not created by these GEN01, ftchnls returns -1.

Examples

Here is an example of the ftchnls opcode. It uses the files ftchnls.orc, ftchnls.sco, and mary.wav.

Example 15-1. Example of the ftchnls opcode.

/* ftchnls.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the number of channels in Table #1.
ichnls = ftchnls(1)
print ichnls

endin
/* ftchnls.orc */

/* ftchnls.sco */
/* Written by Kevin Conder */
; Table #1: Use an audio file, Csound will determine its size.
f 1 0 0 1 "mary.wav" 0 0 0

; Play Instrument #1 for 1 second.
i 1 0 1
e
/* ftchnls.sco */

Since the audio file “mary.wav” is monophonic (1 channel), its output should include a line like this:

instr 1: ichnls = 1.000

See Also

ftlen, ftlptim, ftsr , nsamp

Credits

Authors: Barry L. Vercoe

MIT

Cambridge, Massachussetts

1997

Gabriel Maldonado (ftsr , nsamp)

329

Chapter 15. Orchestra Opcodes and Operators

Italy

October, 1998

Chris McCormick (ftchnls)

Perth, Australia

December 2001

ftgen

ftgen — Generate a score function table from within the orchestra.

Description

Generate a score function table from within the orchestra.

Syntax

gir ftgen ifn, itime, isize, igen, iarga [, iargb] [...]

Initialization

gir -- either a requested or automatically assigned table number above 100.

ifn -- requested table number If ifn is zero, the number is assigned automatically and the value placed in gir .
Any other value is used as the table number

itime -- is ignored, but otherwise corresponds to p2 in the score f statement .

isize -- table size. Corresponds to p3 of the score f statement .

igen -- function table GEN routine. Corresponds to p4 of the score f statement .

iarga, iargb, ... -- function table arguments. Correspond to p5 through pn of the score f statement .

Performance

This is equivalent to table generation in the score with the f statement .

Warning
Although Csound will not protest if ftgen is used inside instr-endin statements, this is not the intended or
supported use, and must be handled with care as it has global effects. (In particular, a different size usually
leads to relocation of the table, which may cause a crash or otherwise erratic behaviour.

Examples

Here is an example of the ftgen opcode. It uses the files ftgen.orc and ftgen.sco.

Example 15-1. Example of the ftgen opcode.

/* ftgen.orc */

330

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Table #1, a sine wave using the GEN10 routine.
gitemp ftgen 1, 0, 16384, 10, 1

; Instrument #1 - a basic oscillator.
instr 1

kamp = 10000
kcps = 440
; Use Table #1.
ifn = 1

a1 oscil kamp, kcps, ifn
out a1

endin
/* ftgen.orc */

/* ftgen.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* ftgen.sco */

Credits

Author: Barry L. Vercoe

M.I.T., Cambridge, Mass

1997

Added warning April 2002 by Rasmus Ekman

ftlen

ftlen — Returns the size of a stored function table.

Description

Returns the size of a stored function table.

Syntax

ftlen(x) (init-rate args only)

331

Chapter 15. Orchestra Opcodes and Operators

Performance

Returns the size (number of points, excluding guard point) of stored function table, number x. While most
units referencing a stored table will automatically take its size into account (so tables can be of arbitrary
length), this function reports the actual size if that is needed. Note that ftlen will always return a power-of-2
value, i.e. the function table guard point (see f Statement) is not included.As of Csound version 3.53, ftlen
works with deferred function tables (see GEN01).

Examples

Here is an example of the ftlen opcode. It uses the files ftlen.orc, ftlen.sco, and mary.wav.

Example 15-1. Example of the ftlen opcode.

/* ftlen.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the size of Table #1.
; The size will be the number of points excluding the guard point.
ilen = ftlen(1)
print ilen

endin
/* ftlen.orc */

/* ftlen.sco */
/* Written by Kevin Conder */
; Table #1: Use an audio file, Csound will determine its size.
f 1 0 0 1 "mary.wav" 0 0 0

; Play Instrument #1 for 1 second.
i 1 0 1
e
/* ftlen.sco */

The audio file “mary.wav” is 154390 samples long. The ftlen opcode reports it as 154389 samples long because
it reserves 1 point for the guard point. Its output should include a line like this:

instr 1: ilen = 154389.000

See Also

ftchnls, ftlptim, ftsr , nsamp

332

Chapter 15. Orchestra Opcodes and Operators

Credits

Authors: Barry L. Vercoe

MIT

Cambridge, Massachussetts

1997

Gabriel Maldonado (ftsr , nsamp)

Italy

October, 1998

Chris McCormick (ftchnls)

Perth, Australia

December 2001

ftload

ftload — Load a set of previously-allocated tables from a file.

Description

Load a set of previously-allocated tables from a file.

Syntax

ftload "filename", iflag, ifn1 [, ifn2] [...]

Initialization

"filename" -- A quoted string containing the name of the file to load.

iflag -- Type of the file to load/save. (0 = binary file, Non-zero = text file)

ifn1, ifn2, ... -- Numbers of tables to load.

Performance

ftload loads a list of tables from a file. (The tables have to be already allocated though.) The file’s format can
be binary or text.

Warning
The file’s format is not compatible with a WAV-file and is not endian-safe.

Examples

See the example for ftsave.

333

Chapter 15. Orchestra Opcodes and Operators

See Also

ftloadk, ftsavek, ftsave

Credits

Author: Gabriel Maldonado

New in version 4.21

ftloadk

ftloadk — Load a set of previously-allocated tables from a file.

Description

Load a set of previously-allocated tables from a file.

Syntax

ftloadk "filename", ktrig, iflag, ifn1 [, ifn2] [...]

Initialization

"filename" -- A quoted string containing the name of the file to load.

iflag -- Type of the file to load/save. (0 = binary file, Non-zero = text file)

ifn1, ifn2, ... -- Numbers of tables to load.

Performance

ktrig -- The trigger signal. Load the file each time it is non-zero.

ftloadk loads a list of tables from a file. (The tables have to be already allocated though.) The file’s format can
be binary or text. Unlike ftload, the loading operation can be repeated numerous times within the same note
by using a trigger signal.

Warning
The file’s format is not compatible with a WAV-file and is not endian-safe.

See Also

ftload, ftsavek, ftsave

334

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

New in version 4.21

ftlptim

ftlptim — Returns the loop segment start-time of a stored function table number.

Description

Returns the loop segment start-time of a stored function table number.

Syntax

ftlptim(x) (init-rate args only)

Performance

Returns the loop segment start-time (in seconds) of stored function table number x. This reports the duration
of the direct recorded attack and decay parts of a sound sample, prior to its looped segment. Returns zero
(and a warning message) if the sample does not contain loop points.

Examples

Here is an example of the ftlptim opcode. It uses the files ftlptim.orc, ftlptim.sco, and mary.wav.

Example 15-1. Example of the ftlptim opcode.

/* ftlptim.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the loop-segment start time in Table #1.
itim = ftlptim(1)
print itim

endin
/* ftlptim.orc */

/* ftlptim.sco */
/* Written by Kevin Conder */
; Table #1: Use an audio file, Csound will determine its size.
f 1 0 0 1 "mary.wav" 0 0 0

; Play Instrument #1 for 1 second.
i 1 0 1
e

335

Chapter 15. Orchestra Opcodes and Operators

/* ftlptim.sco */

Since the audio file “mary.wav” is non-looping, its output should include lines like this:

WARNING: non-looping sample
instr 1: itim = 0.000

See Also

ftchnls, ftlen, ftsr , nsamp

Credits

Authors: Barry L. Vercoe

MIT

Cambridge, Massachussetts

1997

Gabriel Maldonado (ftsr , nsamp)

Italy

October, 1998

Chris McCormick (ftchnls)

Perth, Australia

December 2001

ftmorf

ftmorf — Morphs between two ftables.

Description

Uses an index into a table of ftable numbers to morph between adjacent tables in the list. This morphed
function is written into iresfn.

Syntax

ftmorf kftndx, iftfn, iresfn

336

Chapter 15. Orchestra Opcodes and Operators

Initialization

iftfn -- The ftable function. The list of values are expected to be pre-existing ftable numbers.

iresfn -- Table number of the morphed function

The length of all the tables in iftfn must equal the length of iresfn.

Performance

kftndx -- the index into the iftfn table.

If iftfn contains (6, 4, 6, 8, 7, 4):

• kftndx=4 will write the contents of f7 into iresfn.

• kftndx=4.5 will write the average of the contents of f7 and f4 into iresfn.

Examples

Here is an example of the ftmorf opcode. It uses the files ftmorf.orc and ftmorf.sco.

Example 15-1. Example of the ftmorf opcode.

/* ftmorf.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
kndx line 0, p3, 7

ftmorf kndx, 1, 2
asig oscili 30000, 440, 2

out asig
endin
/* ftmorf.orc */

/* ftmorf.sco */
f1 0 8 -2 3 4 5 6 7 8 9 10
f2 0 1024 10 1 /*contents of f2 dont matter */
f3 0 1024 10 1
f4 0 1024 10 0 1
f5 0 1024 10 0 0 1
f6 0 1024 10 0 0 0 1
f7 0 1024 10 0 0 0 0 1
f8 0 1024 10 0 0 0 0 0 1
f9 0 1024 10 0 0 0 0 0 0 1
f10 0 1024 10 1 1 1 1 1 1 1

i1 0 10
e
/* ftmorf.sco */

337

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: William “Pete” Moss

University of Texas at Austin

Austin, Texas USA

Jan. 2002

New in version 4.18

ftsave

ftsave — Save a set of previously-allocated tables to a file.

Description

Save a set of previously-allocated tables to a file.

Syntax

ftsave "filename", iflag, ifn1 [, ifn2] [...]

Initialization

"filename" -- A quoted string containing the name of the file to save.

iflag -- Type of the file to save. (0 = binary file, Non-zero = text file)

ifn1, ifn2, ... -- Numbers of tables to save.

Performance

ftsave saves a list of tables to a file. The file’s format can be binary or text.

Warning
The file’s format is not compatible with a WAV-file and is not endian-safe.

Examples

Here is an example of the ftsave opcode. It uses the files ftsave.orc and ftsave.sco.

Example 15-1. Example of the ftsave opcode.

/* ftsave.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

338

Chapter 15. Orchestra Opcodes and Operators

; Table #1, make a sine wave using the GEN10 routine.
gitmp1 ftgen 1, 0, 32768, 10, 1
; Table #2, create an empty table.
gitmp2 ftgen 2, 0, 32768, 7, 0, 32768, 0

; Instrument #1 - a basic oscillator.
instr 1

kamp = 20000
kcps = 440
; Use Table #1.
ifn = 1

a1 oscil kamp, kcps, ifn
out a1

endin

; Instrument #2 - Load Table #1 into Table #2.
instr 2

; Save Table #1 to a file called "table1.ftsave".
ftsave "table1.ftsave", 0, 1

; Load the "table1.ftsave" file into Table #2.
ftload "table1.ftsave", 0, 2

kamp = 20000
kcps = 440
; Use Table #2, it should contain Table #1’s sine wave now.
ifn = 2

a1 oscil kamp, kcps, ifn
out a1

endin
/* ftsave.orc */

/* ftsave.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 1 second.
i 1 0 1
; Play Instrument #2 for 1 second.
i 2 2 1
e
/* ftsave.sco */

See Also

ftloadk, ftload, ftsavek

Credits

Author: Gabriel Maldonado

New in version 4.21

339

Chapter 15. Orchestra Opcodes and Operators

ftsavek

ftsavek — Save a set of previously-allocated tables to a file.

Description

Save a set of previously-allocated tables to a file.

Syntax

ftsavek "filename", ktrig, iflag, ifn1 [, ifn2] [...]

Initialization

"filename" -- A quoted string containing the name of the file to save.

iflag -- Type of the file to save. (0 = binary file, Non-zero = text file)

ifn1, ifn2, ... -- Numbers of tables to save.

Performance

ktrig -- The trigger signal. Save the file each time it is non-zero.

ftsavek saves a list of tables to a file. The file’s format can be binary or text. Unlike ftsave, the saving operation
can be repeated numerous times within the same note by using a trigger signal.

Warning
The file’s format is not compatible with a WAV-file and is not endian-safe.

See Also

ftloadk, ftload, ftsave

Credits

Author: Gabriel Maldonado

New in version 4.21

ftsr

ftsr — Returns the sampling-rate of a stored function table.

Description

Returns the sampling-rate of a stored function table.

340

Chapter 15. Orchestra Opcodes and Operators

Syntax

ftsr(x) (init-rate args only)

Performance

Returns the sampling-rate of a GEN01 generated table. The sampling-rate is determined from the header of
the original file. If the original file has no header or the table was not created by these GEN01, ftsr returns 0.
New in Csound version 3.49.

Examples

Here is an example of the ftsr opcode. It uses the files ftsr.orc, ftsr.sco, and mary.wav.

Example 15-1. Example of the ftsr opcode.

/* ftsr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the sampling rate of Table #1.
isr = ftsr(1)
print isr

endin
/* ftsr.orc */

/* ftsr.sco */
/* Written by Kevin Conder */
; Table #1: Use an audio file.
f 1 0 262144 1 "mary.wav" 0 0 0

; Play Instrument #1 for 1 second.
i 1 0 1
e
/* ftsr.sco */

Since the audio file “mary.wav” uses a 44.1 Khz sampling rate, its output should a line like this:

instr 1: isr = 44100.000

See Also

ftchnls, ftlen, ftlptim, nsamp

341

Chapter 15. Orchestra Opcodes and Operators

Credits

Authors: Barry L. Vercoe

MIT

Cambridge, Massachussetts

1997

Gabriel Maldonado (ftsr , nsamp)

Italy

October, 1998

Chris McCormick (ftchnls)

Perth, Australia

December 2001

gain

gain — Adjusts the amplitude audio signal according to a root-mean-square value.

Description

Adjusts the amplitude audio signal according to a root-mean-square value.

Syntax

ar gain asig, krms [, ihp] [, iskip]

Initialization

ihp (optional, default=10) -- half-power point (in Hz) of a special internal low-pass filter. The default value is
10.

iskip (optional, default=0) -- initial disposition of internal data space (see reson). The default value is 0.

Performance

asig -- input audio signal

gain provides an amplitude modification of asig so that the output ar has rms power equal to krms. rms and
gain used together (and given matching ihp values) will provide the same effect as balance.

Examples

asrc buzz 10000,440, sr/440, 1 ; band-limited pulse train
a1 reson asrc, 1000,100 ; sent through
a2 reson a1,3000,500 ; 2 filters
afin balance a2, asrc ; then balanced with source

342

Chapter 15. Orchestra Opcodes and Operators

See Also

balance, rms

gauss

gauss — Gaussian distribution random number generator.

Description

Gaussian distribution random number generator. This is an x-class noise generator.

Syntax

ar gauss krange

ir gauss krange

kr gauss krange

Performance

krange -- the range of the random numbers (-krange to +krange). Outputs both positive and negative
numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the gauss opcode. It uses the files gauss.orc and gauss.sco.

Example 15-1. Example of the gauss opcode.

/* gauss.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number between -1 and 1.
; krange = 1

343

Chapter 15. Orchestra Opcodes and Operators

i1 gauss 1

print i1
endin
/* gauss.orc */

/* gauss.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* gauss.sco */

Its output should include a line like this:

instr 1: i1 = 0.252

See Also

betarand, bexprnd, cauchy, exprand, linrand, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

gbuzz

gbuzz — Output is a set of harmonically related cosine partials.

Description

Output is a set of harmonically related cosine partials.

Syntax

ar gbuzz xamp, xcps, knh, klh, kmul, ifn [, iphs]

Initialization

ifn -- table number of a stored function containing a cosine wave. A large table of at least 8192 points is
recommended.

iphs (optional, default=0) -- initial phase of the fundamental frequency, expressed as a fraction of a cycle (0 to
1). A negative value will cause phase initialization to be skipped. The default value is zero

344

Chapter 15. Orchestra Opcodes and Operators

Performance

The buzz units generate an additive set of harmonically related cosine partials of fundamental frequency
xcps, and whose amplitudes are scaled so their summation peak equals xamp. The selection and strength of
partials is determined by the following control parameters:

knh -- total number of harmonics requested. New in Csound version 3.57, knh defaults to one. If knh is
negative, the absolute value is used.

klh -- lowest harmonic present. Can be positive, zero or negative. In gbuzz the set of partials can begin at any
partial number and proceeds upwards; if klh is negative, all partials below zero will reflect as positive partials
without phase change (since cosine is an even function), and will add constructively to any positive partials
in the set.

kmul -- specifies the multiplier in the series of amplitude coefficients. This is a power series: if the klhth
partial has a strength coefficient of A, the (klh + n)th partial will have a coefficient of A * (kr ** n), i.e. strength
values trace an exponential curve. kr may be positive, zero or negative, and is not restricted to integers.

buzz and gbuzz are useful as complex sound sources in subtractive synthesis. buzz is a special case of the
more general gbuzz in which klh = kr= 1; it thus produces a set of knh equal-strength harmonic partials,
beginning with the fundamental. (This is a band-limited pulse train; if the partials extend to the Nyquist, i.e.
knh = int (sr / 2 / fundamental freq.), the result is a real pulse train of amplitude xamp.)

Although both knh and klh may be varied during performance, their internal values are necessarily integer
and may cause “pops” due to discontinuities in the output; kr, however, can be varied during performance to
good effect. Both buzz and gbuzz can be amplitude- and/or frequency-modulated by either control or audio
signals.

N.B. These two units have their analogs in GEN11, in which the same set of cosines can be stored in a
function table for sampling by an oscillator. Although computationally more efficient, the stored pulse train
has a fixed spectral content, not a time-varying one as above.

Examples

Here is an example of the gbuzz opcode. It uses the files gbuzz.orc and gbuzz.sco.

Example 15-1. Example of the gbuzz opcode.

/* gbuzz.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 20000
kcps = 440
knh = 5
klh = 2
kmul = 0.7
ifn = 1

a1 gbuzz kamp, kcps, knh, klh, kmul, ifn
out a1

endin
/* gbuzz.orc */

/* gbuzz.sco */
/* Written by Kevin Conder */
; Table #1, a cosine waveform with 5 harmonics.

345

Chapter 15. Orchestra Opcodes and Operators

f 1 0 16384 11 5

; Play Instrument #1 for one second.
i 1 0 1
e
/* gbuzz.sco */

See Also

buzz

gogobel

gogobel — Audio output is a tone related to the striking of a cow bell or similar.

Description

Audio output is a tone related to the striking of a cow bell or similar. The method is a physical model
developed from Perry Cook, but re-coded for Csound.

Syntax

ar gogobel kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivfn

Initialization

ihrd -- the hardness of the stick used in the strike. A range of 0 to 1 is used. 0.5 is a suitable value.

ipos -- where the block is hit, in the range 0 to 1.

imp -- a table of the strike impulses. The file marmstk1.wav is a suitable function from measurements and
can be loaded with a GEN01 table. It is also available at
ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

ivfn -- shape of vibrato, usually a sine table, created by a function.

Performance

A note is played on a cowbell-like instrument, with the arguments as below.

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

346

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the gogobel opcode. It uses the files gogobel.orc, gogobel.sco, and marmstk1.wav,

Example 15-1. Example of the gogobel opcode.

/* gogobel.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; kamp = 31129.60
; kfreq = 440
; ihrd = 0.5
; ipos = 0.561
; imp = 1
; kvibf = 6.0
; kvamp = 0.3
; ivfn = 2

a1 gogobel 31129.60, 440, 0.5, 0.561, 1, 6.0, 0.3, 2
out a1

endin
/* gogobel.orc */

/* gogobel.sco */
; Table #1, the "marmstk1.wav" audio file.
f 1 0 256 1 "marmstk1.wav" 0 0 0
; Table #2, a sine wave for the vibrato.
f 2 0 128 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* gogobel.sco */

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

goto

goto — Transfer control on every pass.

347

Chapter 15. Orchestra Opcodes and Operators

Description

Transfer control to label on every pass. (Combination of igoto and kgoto)

Syntax

goto label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the goto opcode. It uses the files goto.orc and goto.sco.

Example 15-1. Example of the goto opcode.

/* goto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

a1 oscil 10000, 440, 1
goto playit

; The goto will go to the playit label.
; It will skip any code in between like this comment.

playit:
out a1

endin
/* goto.orc */

/* goto.sco */
/* Written by Kevin Conder */
; Table #1: a simple sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* goto.sco */

See Also

cggoto, cigoto, ckgoto, if , igoto, kgoto, tigoto, timout

348

Chapter 15. Orchestra Opcodes and Operators

Credits

Added a note by Jim Aikin.

grain

grain — Generates granular synthesis textures.

Description

Generates granular synthesis textures.

Syntax

ar grain xamp, xpitch, xdens, kampoff, kpitchoff, kgdur, igfn, iwfn, imgdur [, igrnd]

Initialization

igfn -- The ftable number of the grain waveform. This can be just a sine wave or a sampled sound.

iwfn -- Ftable number of the amplitude envelope used for the grains (see also GEN20).

imgdur -- Maximum grain duration in seconds. This the biggest value to be assigned to kgdur .

igrnd (optional) -- if non-zero, turns off grain offset randomness. This means that all grains will begin reading
from the beginning of the igfn table. If zero (the default), grains will start reading from random igfn table
positions.

Performance

xamp -- Amplitude of each grain.

xpitch -- Grain pitch. To use the original frequency of the input sound, use the formula:

sndsr / ftlen(igfn)

where sndsr is the original sample rate of the igfn sound.

xdens -- Density of grains measured in grains per second. If this is constant then the output is synchronous
granular synthesis, very similar to fof . If xdens has a random element (like added noise), then the result is
more like asynchronous granular synthesis.

kampoff -- Maximum amplitude deviation from kamp. This means that the maximum amplitude a grain can
have is kamp + kampoff and the minimum is kamp. If kampoff is set to zero then there is no random
amplitude for each grain.

kpitchoff -- Maximum pitch deviation from kpitch in Hz. Similar to kampoff .

kgdur -- Grain duration in seconds. The maximum value for this should be declared in imgdur . If kgdur at
any point becomes greater than imgdur , it will be truncated to imgdur .

The grain generator is based primarily on work and writings of Barry Truax and Curtis Roads.

349

Chapter 15. Orchestra Opcodes and Operators

Examples

This example generates a texture with gradually shorter grains and wider amp and pitch spread. It uses the
files grain.orc, grain.sco, and mary.wav.

Example 15-1. Example of the grain opcode.

/* grain.orc */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

instr 1
insnd = 10
ibasfrq = 44100 / ftlen(insnd) ; Use original sample rate of insnd file

kamp expseg 220, p3/2, 600, p3/2, 220
kpitch line ibasfrq, p3, ibasfrq * .8
kdens line 600, p3, 200
kaoff line 0, p3, 5000
kpoff line 0, p3, ibasfrq * .5
kgdur line .4, p3, .1
imaxgdur = .5

ar grain kamp, kpitch, kdens, kaoff, kpoff, kgdur, insnd, 5, imaxgdur, 0.0
out ar

endin
/* grain.orc */

/* grain.sco */
f5 0 512 20 2 ; Hanning window
f10 0 262144 1 "mary.wav" 0 0 0
i1 0 6
e
/* grain.sco */

Credits

Author: Paris Smaragdis

MIT

May 1997

grain2

grain2 — Easy-to-use granular synthesis texture generator.

Description

Generate granular synthesis textures. grain2 is simpler to use, but grain3 offers more control.

350

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar grain2 kcps, kfmd, kgdur, iovrlp, kfn, iwfn [, irpow] [, iseed] [, imode]

Initialization

iovrlp -- (fixed) number of overlapping grains.

iwfn -- function table containing window waveform (Use GEN20 to calculate iwfn).

irpow (optional, default=0) -- this value controls the distribution of grain frequency variation. If irpow is
positive, the random distribution (x is in the range -1 to 1) is

abs(x) ˆ ((1 / irpow) - 1)

; for negative irpow values, it is

(1 - abs(x)) ˆ ((-1 / irpow) - 1)

. Setting irpow to -1, 0, or 1 will result in uniform distribution (this is also faster to calculate). The image below
shows some examples for irpow. The default value of irpow is 0.

A graph of distributions for different values of irpow.

iseed (optional, default=0) -- seed value for random number generator (positive integer in the range 1 to
2147483646 (2 ˆ 31 - 2)). Zero or negative value seeds from current time (this is also the default).

imode (optional default=0) -- sum of the following values:

• 8: interpolate window waveform (slower).

• 4: do not interpolate grain waveform (fast, but lower quality).

351

Chapter 15. Orchestra Opcodes and Operators

• 2: grain frequency is continuously modified by kcps and kfmd (by default, each grain keeps the frequency it
was launched with). This may be slower at high control rates.

• 1: skip initialization.

A diagram showing grains with a start time less than zero in red.

Performance

ar -- output signal.

kcps -- grain frequency in Hz.

kfmd -- random variation (bipolar) in grain frequency in Hz.

kgdur -- grain duration in seconds. kgdur also controls the duration of already active grains (actually the
speed at which the window function is read). This behavior does not depend on the imode flags.

kfn -- function table containing grain waveform. Table number can be changed at k-rate (this is useful to
select from a set of band-limited tables generated by GEN30, to avoid aliasing).

Note: grain2 internally uses the same random number generator as rnd31. So reading its documentation is also
recommended.

Examples

Here is an example of the grain2 opcode. It uses the files grain2.orc and grain2.sco.

Example 15-1. Example of the grain2 opcode.

/* grain2.orc */
sr = 48000
kr = 750

352

Chapter 15. Orchestra Opcodes and Operators

ksmps = 64
nchnls = 2

/* square wave */
i_ ftgen 1, 0, 4096, 7, 1, 2048, 1, 0, -1, 2048, -1
/* window */
i_ ftgen 2, 0, 16384, 7, 0, 4096, 1, 4096, 0.3333, 8192, 0
/* sine wave */
i_ ftgen 3, 0, 1024, 10, 1
/* room parameters */
i_ ftgen 7, 0, 64, -2, 4, 50, -1, -1, -1, 11, \

1, 26.833, 0.05, 0.85, 10000, 0.8, 0.5, 2, \
1, 1.753, 0.05, 0.85, 5000, 0.8, 0.5, 2, \
1, 39.451, 0.05, 0.85, 7000, 0.8, 0.5, 2, \
1, 33.503, 0.05, 0.85, 7000, 0.8, 0.5, 2, \
1, 36.151, 0.05, 0.85, 7000, 0.8, 0.5, 2, \
1, 29.633, 0.05, 0.85, 7000, 0.8, 0.5, 2

ga01 init 0

/* generate bandlimited square waves */

i0 = 0
loop1:
imaxh = sr / (2 * 440.0 * exp (log(2.0) * (i0 - 69) / 12))
i_ ftgen i0 + 256, 0, 4096, -30, 1, 1, imaxh
i0 = i0 + 1

if (i0 < 127.5) igoto loop1

instr 1

p3 = p3 + 0.2

/* note velocity */
iamp = 0.0039 + p5 * p5 / 16192
/* vibrato */
kcps oscili 1, 8, 3
kenv linseg 0, 0.05, 0, 0.1, 1, 1, 1
/* frequency */
kcps = (kcps * kenv * 0.01 + 1) * 440 * exp(log(2) * (p4 - 69) / 12)
/* grain ftable */
kfn = int(256 + 69 + 0.5 + 12 * log(kcps / 440) / log(2))
/* grain duration */
kgdur port 100, 0.1, 20
kgdur = kgdur / kcps

a1 grain2 kcps, kcps * 0.02, kgdur, 50, kfn, 2, -0.5, 22, 2
a1 butterlp a1, 3000
a2 grain2 kcps, kcps * 0.02, 4 / kcps, 50, kfn, 2, -0.5, 23, 2
a2 butterbp a2, 12000, 8000
a2 butterbp a2, 12000, 8000
aenv1 linseg 0, 0.01, 1, 1, 1
aenv2 linseg 3, 0.05, 1, 1, 1
aenv3 linseg 1, p3 - 0.2, 1, 0.07, 0, 1, 0

a1 = aenv1 * aenv3 * (a1 + a2 * 0.7 * aenv2)

ga01 = ga01 + a1 * 10000 * iamp

endin

/* output instr */

instr 81

353

Chapter 15. Orchestra Opcodes and Operators

i1 = 0.000001
aLl, aLh, aRl, aRh spat3di ga01 + i1*i1*i1*i1, 3.0, 4.0, 0.0, 0.5, 7, 4
ga01 = 0
aLl butterlp aLl, 800.0
aRl butterlp aRl, 800.0

outs aLl + aLh, aRl + aRh

endin
/* grain2.orc */

/* grain2.sco */
t 0 60

i 1 0.0 1.3 60 127
i 1 2.0 1.3 67 127
i 1 4.0 1.3 64 112
i 1 4.0 1.3 72 112

i 81 0 6.4

e
/* grain2.sco */

See Also

grain3

Credits

Author: Istvan Varga

New in version 4.15

Updated April 2002 by Istvan Varga

grain3

grain3 — Generate granular synthesis textures with more user control.

Description

Generate granular synthesis textures. grain2 is simpler to use but grain3 offers more control.

Syntax

ar grain3 kcps, kphs, kfmd, kpmd, kgdur, kdens, imaxovr, kfn, iwfn, kfrpow, kprpow [, iseed] [, imode]

354

Chapter 15. Orchestra Opcodes and Operators

Initialization

imaxovr -- maximum number of overlapping grains. The number of overlaps can be calculated by (kdens *
kgdur); however, it can be overestimated at no cost in rendering time, and a single overlap uses (depending
on system) 16 to 32 bytes of memory.

iwfn -- function table containing window waveform (Use GEN20 to calculate iwfn).

irpow (optional, default=0) -- this value controls the distribution of grain frequency variation. If irpow is
positive, the random distribution (x is in the range -1 to 1) is

abs(x) ˆ ((1 / irpow) - 1)

; for negative irpow values, it is

(1 - abs(x)) ˆ ((-1 / irpow) - 1)

. Setting irpow to -1, 0, or 1 will result in uniform distribution (this is also faster to calculate). The image below
shows some examples for irpow. The default value of irpow is 0.

A graph of distributions for different values of irpow.

iseed (optional, default=0) -- seed value for random number generator (positive integer in the range 1 to
2147483646 (2 ˆ 31 - 2)). Zero or negative value seeds from current time (this is also the default).

imode (optional, default=0) -- sum of the following values:

• 64: synchronize start phase of grains to kcps.

• 32: start all grains at integer sample location. This may be faster in some cases, however it also makes the
timing of grain envelopes less accurate.

• 16: do not render grains with start time less than zero. (see the image below; this option turns off grains
marked with red on the image).

355

Chapter 15. Orchestra Opcodes and Operators

• 8: interpolate window waveform (slower).

• 4: do not interpolate grain waveform (fast, but lower quality).

• 2: grain frequency is continuously modified by kcps and kfmd (by default, each grain keeps the frequency it
was launched with). This may be slower at high control rates. It also controls phase modulation (kphs).

• 1: skip initialization.

A diagram showing grains with a start time less than zero in red.

Performance

ar -- output signal.

kcps -- grain frequency in Hz.

kphs -- grain phase.

kfmd -- random variation (bipolar) in grain frequency in Hz.

kpmd -- random variation (bipolar) in start phase.

kgdur -- grain duration in seconds. kgdur also controls the duration of already active grains (actually the
speed at which the window function is read). This behavior does not depend on the imode flags.

kdens -- number of grains per second.

kfrpow -- distribution of random frequency variation (see irpow).

kprpow -- distribution of random phase variation (see irpow). Setting kphs and kpmd to 0.5, and kprpow to 0
will emulate grain2.

kfn -- function table containing grain waveform. Table number can be changed at k-rate (this is useful to
select from a set of band-limited tables generated by GEN30, to avoid aliasing).

Note: grain3 internally uses the same random number generator as rnd31. So reading its documentation is also
recommended.

356

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the grain3 opcode. It uses the files grain3.orc and grain3.sco.

Example 15-1. Example of the grain3 opcode.

/* grain3.orc */
sr = 48000
kr = 1000
ksmps = 48
nchnls = 1

/* Bartlett window */
itmp ftgen 1, 0, 16384, 20, 3, 1
/* sawtooth wave */
itmp ftgen 2, 0, 16384, 7, 1, 16384, -1
/* sine */
itmp ftgen 4, 0, 1024, 10, 1
/* window for "soft sync" with 1/32 overlap */
itmp ftgen 5, 0, 16384, 7, 0, 256, 1, 7936, 1, 256, 0, 7936, 0
/* generate bandlimited sawtooth waves */
itmp ftgen 3, 0, 4096, -30, 2, 1, 2048
icnt = 0
loop01:
; 100 tables for 8 octaves from 30 Hz
ifrq = 30 * exp(log(2) * 8 * icnt / 100)
itmp ftgen icnt + 100, 0, 4096, -30, 3, 1, sr / (2 * ifrq)
icnt = icnt + 1

if (icnt < 99.5) igoto loop01
/* convert frequency to table number */
#define FRQ2FNUM(xout’xcps’xbsfn) #

$xout = int(($xbsfn) + 0.5 + (100 / 8) * log(($xcps) / 30) / log(2))
$xout limit $xout, $xbsfn, $xbsfn + 99

#

/* instr 1: pulse width modulated grains */

instr 1

kfrq = 523.25 ; frequency
$FRQ2FNUM(kfnum’kfrq’100) ; table number
kfmd = kfrq * 0.02 ; random variation in frequency
kgdur = 0.2 ; grain duration
kdens = 200 ; density
iseed = 1 ; random seed

kphs oscili 0.45, 1, 4 ; phase

a1 grain3 kfrq, 0, kfmd, 0.5, kgdur, kdens, 100, \
kfnum, 1, -0.5, 0, iseed, 2

a2 grain3 kfrq, 0.5 + kphs, kfmd, 0.5, kgdur, kdens, 100, \
kfnum, 1, -0.5, 0, iseed, 2

; de-click
aenv linseg 0, 0.01, 1, p3 - 0.05, 1, 0.04, 0, 1, 0

out aenv * 2250 * (a1 - a2)

endin

/* instr 2: phase variation */

357

Chapter 15. Orchestra Opcodes and Operators

instr 2

kfrq = 220 ; frequency
$FRQ2FNUM(kfnum’kfrq’100) ; table number
kgdur = 0.2 ; grain duration
kdens = 200 ; density
iseed = 2 ; random seed

kprdst expon 0.5, p3, 0.02 ; distribution

a1 grain3 kfrq, 0.5, 0, 0.5, kgdur, kdens, 100, \
kfnum, 1, 0, -kprdst, iseed, 64

; de-click
aenv linseg 0, 0.01, 1, p3 - 0.05, 1, 0.04, 0, 1, 0

out aenv * 1500 * a1

endin

/* instr 3: "soft sync" */

instr 3

kdens = 130.8 ; base frequency
kgdur = 2 / kdens ; grain duration

kfrq expon 880, p3, 220 ; oscillator frequency
$FRQ2FNUM(kfnum’kfrq’100) ; table number

a1 grain3 kfrq, 0, 0, 0, kgdur, kdens, 3, kfnum, 5, 0, 0, 0, 2
a2 grain3 kfrq, 0.667, 0, 0, kgdur, kdens, 3, kfnum, 5, 0, 0, 0, 2

; de-click
aenv linseg 0, 0.01, 1, p3 - 0.05, 1, 0.04, 0, 1, 0

out aenv * 10000 * (a1 - a2)

endin
/* grain3.orc */

/* grain3.sco */
t 0 60
i 1 0 3
i 2 4 3
i 3 8 3
e
/* grain3.sco */

See Also

grain2

358

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Istvan Varga

New in version 4.15

Updated April 2002 by Istvan Varga

granule

granule — A more complex granular synthesis texture generator.

Description

The granule unit generator is more complex than grain, but does add new possibilities.

granule is a Csound unit generator which employs a wavetable as input to produce granularly synthesized
audio output. Wavetable data may be generated by any of the GEN subroutines such as GEN01 which reads
an audio data file into a wavetable. This enable a sampled sound to be used as the source for the grains. Up to
128 voices are implemented internally. The maximum number of voices can be increased by redefining the
variable MAXVOICE in the grain4.h file. granule has a build-in random number generator to handle all the
random offset parameters. Thresholding is also implemented to scan the source function table at
initialization stage. This facilitates features such as skipping silence passage between sentences.

The characteristics of the synthesis are controlled by 22 parameters. xamp is the amplitude of the output and
it can be either audio rate or control rate variable.

Syntax

ar granule xamp, ivoice, iratio, imode, ithd, ifn, ipshift, igskip, igskip_os, ilength, kgap, igap_os, kgsize,
igsize_os, iatt, idec [, iseed] [, ipitch1] [, ipitch2] [, ipitch3] [, ipitch4] [, ifnenv]

Performance

xamp -- amplitude.

ivoice -- number of voices.

iratio -- ratio of the speed of the gskip pointer relative to output audio sample rate. eg. 0.5 will be half speed.

imode -- +1 grain pointer move forward (same direction of the gskip pointer), -1 backward (oppose direction
to the gskip pointer) or 0 for random.

ithd -- threshold, if the sampled signal in the wavetable is smaller then ithd, it will be skipped.

ifn -- function table number of sound source.

ipshift -- pitch shift control. If ipshift is 0, pitch will be set randomly up and down an octave. If ipshift is 1, 2, 3
or 4, up to four different pitches can be set amount the number of voices defined in ivoice. The optional
parameters ipitch1, ipitch2, ipitch3 and ipitch4 are used to quantify the pitch shifts.

igskip -- initial skip from the beginning of the function table in sec.

igskip_os -- gskip pointer random offset in sec, 0 will be no offset.

ilength -- length of the table to be used starting from igskip in sec.

kgap -- gap between grains in sec.

igap_os -- gap random offset in % of the gap size, 0 gives no offset.

359

Chapter 15. Orchestra Opcodes and Operators

kgsize -- grain size in sec.

igsize_os -- grain size random offset in % of grain size, 0 gives no offset.

iatt -- attack of the grain envelope in % of grain size.

idec -- decade of the grain envelope in % of grain size.

iseed (optional, default=0.5) -- seed for the random number generator.

ipitch1, ipitch2, ipitch3, ipitch4 (optional, default=1) -- pitch shift parameter, used when ipshift is set to 1, 2, 3
or 4. Time scaling technique is used in pitch shift with linear interpolation between data points. Default value
is 1, the original pitch.

ifnenv (optional, default=0) -- function table number to be used to generate the shape of the envelope.

Examples

Here is an example of the granule opcode. It uses the files granule.orc, granule.sco, and mary.wav.

Example 15-1. Example of the granule opcode.

/* granule.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2
instr 1
;
k1 linseg 0,0.5,1,(p3-p2-1),1,0.5,0
a1 granule p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,\

p16,p17,p18,p19,p20,p21,p22,p23,p24
a2 granule p4*k1,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,\

p16,p17,p18,p19, p20+0.17,p21,p22,p23,p24
outs a1,a2
endin
/* granule.orc */

/* granule.sco */
; f statement read sound file sine.aiff in the SFDIR
; directory into f-table 1
f1 0 262144 1 "mary.wav" 0 0 0
i1 0 10 2000 64 0.5 0 0 1 4 0 0.005 5 0.01 50 0.02 50 30 30 0.39 \

1 1.42 0.29 2
e
/* granule.sco */

The above example reads a sound file called mary.wav into wavetable number 1 with 262,144 samples. It
generates 10 seconds of stereo audio output using the wavetable. In the orchestra file, all parameters required
to control the synthesis are passed from the score file. A linseg function generator is used to generate an
envelope with 0.5 second of linear attack and decay. Stereo effect is generated by using different seeds for the
two granule function calls. In the example, 0.17 is added to p20 before passing into the second granule call to
ensure that all of the random offset events are different from the first one.

In the score file, the parameters are interpreted as:

Parameter Interpreted As

p5 (ivoice) the number of voices is set to 64

360

Chapter 15. Orchestra Opcodes and Operators

Parameter Interpreted As

p6 (iratio) set to 0.5, it scans the wavetable at half of the speed of
the audio output rate

p7 (imode) set to 0, the grain pointer only move forward

p8 (ithd) set to 0, skipping the thresholding process

p9 (ifn) set to 1, function table number 1 is used

p10 (ipshift) set to 4, four different pitches are going to be
generated

p11 (igskip) set to 0 and p12 (igskip_os) is set to 0.005, no skipping
into the wavetable and a 5 mSec random offset is
used

p13 (ilength) set to 5, 5 seconds of the wavetable is to be used

p14 (kgap) set to 0.01 and p15 (igap_os) is set to 50, 10 mSec gap
with 50% random offset is to be used

p16 (kgsize) set to 0.02 and p17 (igsize_os) is set to 50, 20 mSec
grain with 50% random offset is used

p18 (iatt) and p19 (idec) set to 30, 30% of linear attack and decade is applied to
the grain

p20 (iseed) seed for the random number generator is set to 0.39

p21 - p24 pitches set to 1 which is the original pitch, 1.42 which
is a 5th up, 0.29 which is a 7th down and finally 2
which is an octave up.

Credits

Author: Allan Lee

Belfast

1996

guiro

guiro — Semi-physical model of a guiro sound.

Description

guiro is a semi-physical model of a guiro sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar guiro kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1]

361

Chapter 15. Orchestra Opcodes and Operators

Initialization

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 128.

idamp (optional) -- the damping factor of the instrument. Not used.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 2500.

ifreq1 (optional) -- the first resonant frequency.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

Examples

Here is an example of the guiro opcode. It uses the files guiro.orc and guiro.sco.

Example 15-1. Example of the guiro opcode.

/* guiro.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 01 ;example of a guiro
a1 guiro p4, 0.01

out a1
endin

/* guiro.orc */

/* guiro.sco */
i1 0 1 20000
e
/* guiro.sco */

See Also

bamboo, dripwater , sleighbells, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

362

Chapter 15. Orchestra Opcodes and Operators

harmon

harmon — Analyze an audio input and generate harmonizing voices in synchrony.

Description

Analyze an audio input and generate harmonizing voices in synchrony.

Syntax

ar harmon asig, kestfrq, kmaxvar, kgenfreq1, kgenfreq2, imode, iminfrq, iprd

Initialization

imode -- interpreting mode for the generating frequency inputs kgenfreq1, kgenfreq2. 0: input values are
ratios with respect to the audio signal analyzed frequency. 1: input values are the actual requested
frequencies in Hz.

iminfrq -- the lowest expected frequency (in Hz) of the audio input. This parameter determines how much of
the input is saved for the running analysis, and sets a lower bound on the internal pitch tracker.

iprd -- period of analysis (in seconds). Since the internal pitch analysis can be time-consuming, the input is
typically analyzed only each 20 to 50 milliseconds.

Performance

kestfrq -- estimated frequency of the input.

kmaxvar -- the maximum variance.

kgenfreq1 -- the first generated frequency.

kgenfreq2 -- the second generated frequency.

This unit is a harmonizer, able to provide up to two additional voices with the same amplitude and spectrum
as the input. The input analysis is assisted by two things: an input estimated frequency kestfrq (in Hz), and a
fractional maximum variance kmaxvar about that estimate which serves to limit the size of the search. Once
the real input frequency is determined, the most recent pulse shape is used to generate the other voices at
their requested frequencies.

The three frequency inputs can be derived in various ways from a score file or MIDI source. The first is the
expected pitch, with a variance parameter allowing for inflections or inaccuracies; if the expected pitch is
zero the harmonizer will be silent. The second and third pitches control the output frequencies; if either is
zero the harmonizer will output only the non-zero request; if both are zero the harmonizer will be silent.
When the requested frequency is higher than the input, the process requires additional computation due to
overlapped output pulses. This is currently limited for efficiency reasons, with the result that only one voice
can be higher than the input at any one time.

This unit is useful for supplying a background chorus effect on demand, or for correcting the pitch of a faulty
input vocal. There is essentially no delay between input and output. Output includes only the generated
parts, and does not include the input.

363

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the harmon opcode. It uses the files harmon.orc and harmon.sco.

Example 15-1. Example of the harmon opcode.

/* harmon.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; The frequency of the base note.
inote = 440

; Generate the base note.
avco vco 20000, inote, 1

kestfrq = inote
kmaxvar = 200

; Calculate frequencies 3 semitones above and
; below the base note.
kgenfreq1 = inote * semitone(3)
kgenfreq2 = inote * semitone(-3)

imode = 1
iminfrq = inote - 200
iprd = 0.1

; Generate the harmony notes.
a1 harmon avco, kestfrq, kmaxvar, kgenfreq1, kgenfreq2, \

imode, iminfrq, iprd

out a1
endin
/* harmon.orc */

/* harmon.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* harmon.sco */

364

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Barry L. Vercoe

M.I.T., Cambridge, Mass

1997

hilbert

hilbert — A Hilbert transformer.

Description

An IIR implementation of a Hilbert transformer.

Syntax

ar1, ar2 hilbert asig

Performance

asig -- input signal

ar1 -- cosine output of asig

ar2 -- sine output of asig

hilbert is an IIR filter based implementation of a broad-band 90 degree phase difference network. The input
to hilbert is an audio signal, with a frequency range from 15 Hz to 15 kHz. The outputs of hilbert have an
identical frequency response to the input (i.e. they sound the same), but the two outputs have a constant
phase difference of 90 degrees, plus or minus some small amount of error, throughout the entire frequency
range. The outputs are in quadrature.

hilbert is useful in the implementation of many digital signal processing techniques that require a signal in
phase quadrature. ar1 corresponds to the cosine output of hilbert , while ar2 corresponds to the sine output.
The two outputs have a constant phase difference throughout the audio range that corresponds to the phase
relationship between cosine and sine waves.

Internally, hilbert is based on two parallel 6th-order allpass filters. Each allpass filter implements a phase lag
that increases with frequency; the difference between the phase lags of the parallel allpass filters at any given
point is approximately 90 degrees.

Unlike an FIR-based Hilbert transformer, the output of hilbert does not have a linear phase response.
However, the IIR structure used in hilbert is far more efficient to compute, and the nonlinear phase response
can be used in the creation of interesting audio effects, as in the second example below.

Examples

The first example implements frequency shifting, or single sideband amplitude modulation. Frequency
shifting is similar to ring modulation, except the upper and lower sidebands are separated into individual
outputs. By using only one of the outputs, the input signal can be "detuned," where the harmonic
components of the signal are shifted out of harmonic alignment with each other, e.g. a signal with harmonics
at 100, 200, 300, 400 and 500 Hz, shifted up by 50 Hz, will have harmonics at 150, 250, 350, 450, and 550 Hz.

Here is the first example of the hilbert opcode. It uses the files hilbert.orc, hilbert.sco, and mary.wav.

365

Chapter 15. Orchestra Opcodes and Operators

Example 15-1. Example of the hilbert opcode implementing frequency shifting.

/* hilbert.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
idur = p3
; Initial amount of frequency shift.
; It can be positive or negative.
ibegshift = p4
; Final amount of frequency shift.
; It can be positive or negative.
iendshift = p5

; A simple envelope for determining the
; amount of frequency shift.
kfreq linseg ibegshift, idur, iendshift

; Use the sound of your choice.
ain soundin "mary.wav"

; Phase quadrature output derived from input signal.
areal, aimag hilbert ain

; Quadrature oscillator.
asin oscili 1, kfreq, 1
acos oscili 1, kfreq, 1, .25

; Use a trigonometric identity.
; See the references for further details.
amod1 = areal * acos
amod2 = aimag * asin

; Both sum and difference frequencies can be
; output at once.
; aupshift corresponds to the sum frequencies.
aupshift = (amod1 + amod2) * 0.7
; adownshift corresponds to the difference frequencies.
adownshift = (amod1 - amod2) * 0.7

; Notice that the adding of the two together is
; identical to the output of ring modulation.

out aupshift
endin
/* hilbert.orc */

/* hilbert.sco */
; Sine table for quadrature oscillator.
f 1 0 16384 10 1

; Starting with no shift, ending with all
; frequencies shifted up by 200 Hz.
i 1 0 2 0 200

; Starting with no shift, ending with all
; frequencies shifted down by 200 Hz.
i 1 2 2 0 -200
e
/* hilbert.sco */

366

Chapter 15. Orchestra Opcodes and Operators

The second example is a variation of the first, but with the output being fed back into the input. With very
small shift amounts (i.e. between 0 and +-6 Hz), the result is a sound that has been described as a “barberpole
phaser” or “Shepard tone phase shifter.” Several notches appear in the spectrum, and are constantly swept in
the direction opposite that of the shift, producing a filtering effect that is reminiscent of Risset’s “endless
glissando”.

Here is the second example of the hilbert opcode. It uses the files hilbert_barberpole.orc,
hilbert_barberpole.sco, and mary.wav.

Example 15-2. Example of the hilbert opcode sounding like a “barberpole phaser”.

/* hilbert_barberpole.orc */
; Initialize the global variables.
sr = 44100
; kr must equal sr for the barberpole effect to work.
kr = 44100
ksmps = 1
nchnls = 2

; Instrument #1
instr 1

idur = p3
ibegshift = p4
iendshift = p5

; sawtooth wave, not bandlimited
asaw phasor 100
; add offset to center phasor amplitude between -.5 and .5
asaw = asaw - .5
; sawtooth wave, with amplitude of 10000
ain = asaw * 20000

; The envelope of the frequency shift.
kfreq linseg ibegshift, idur, iendshift

; Phase quadrature output derived from input signal.
areal, aimag hilbert ain

; The quadrature oscillator.
asin oscili 1, kfreq, 1
acos oscili 1, kfreq, 1, .25

; Based on trignometric identities.
amod1 = areal * acos
amod2 = aimag * asin

; Calculate the up-shift and down-shift.
aupshift = (amod1 + amod2) * 0.7
adownshift = (amod1 - amod2) * 0.7

; Mix in the original signal to achieve the barberpole effect.
amix1 = aupshift + ain
amix2 = aupshift + ain

; Make sure the output doesn’t get louder than the original signal.
aout1 balance amix1, ain
aout2 balance amix2, ain

outs aout1, aout2
endin
/* hilbert_barberpole.orc */

367

Chapter 15. Orchestra Opcodes and Operators

/* hilbert_barberpole.sco */
; Table 1: A sine wave for the quadrature oscillator.
f 1 0 16384 10 1

; The score.
; p4 = frequency shifter, starting frequency.
; p5 = frequency shifter, ending frequency.
i 1 0 6 -10 10
e
/* hilbert_barberpole.sco */

Technical History

The use of phase-difference networks in frequency shifters was pioneered by Harald Bode.1 Bode and Bob
Moog provide an excellent description of the implementation and use of a frequency shifter in the analog
realm in;2 this would be an excellent first source for those that wish to explore the possibilities of single
sideband modulation. Bernie Hutchins provides more applications of the frequency shifter, as well as a
detailed technical analysis.3 A recent paper by Scott Wardle4 describes a digital implementation of a
frequency shifter, as well as some unique applications.

References

1. H. Bode, "Solid State Audio Frequency Spectrum Shifter." AES Preprint No. 395 (1965).

2. H. Bode and R.A. Moog, "A High-Accuracy Frequency Shfiter for Professional Audio Applications."
Journal of the Audio Engineering Society, July/August 1972, vol. 20, no. 6, p. 453.

3. B. Hutchins. Musical Engineer’s Handbook (Ithaca, NY: Electronotes, 1975), ch. 6a.

4. S. Wardle, "A Hilbert-Transformer Frequency Shifter for Audio." Available online at
http://www.iua.upf.es/dafx98/papers/ .

Credits

Author: Sean Costello

Seattle, Washington

1999

New in Csound version 3.55

The examples were updated April 2002. Thanks go to Sean Costello for fixing the barberpole example.

hrtfer

hrtfer — Creates 3D audio for two speakers.

368

Chapter 15. Orchestra Opcodes and Operators

Description

Output is binaural (headphone) 3D audio.

Syntax

aleft, aright hrtfer asig, kaz, kelev, “HRTFcompact”

Initialization

kAz -- azimuth value in degrees. Positive values represent position on the right, negative values are positions
on the left.

kElev -- elevation value in degrees. Positive values represent position above horizontal, negative values are
positions above horizontal.

At present, the only file which can be used with hrtfer is HRTFcompact . It must be passed to the opcode as
the last argument within quotes as shown above.

HRTFcompact may also be obtained via anonymous ftp from:
ftp://ftp.cs.bath.ac.uk/pub/dream/utilities/Analysis/HRTFcompact

Performance

These unit generators place a mono input signal in a virtual 3D space around the listener by convolving the
input with the appropriate HRTF data specified by the opcode’s azimuth and elevation values. hrtfer allows
these values to be k-values, allowing for dynamic spatialization. hrtfer can only place the input at the
requested position because the HRTF is loaded in at i-time (remember that currently, CSound has a limit of
20 files it can hold in memory, otherwise it causes a segmentation fault). The output will need to be scaled
either by using balance or by multiplying the output by some scaling constant.

Note: The sampling rate of the orchestra must be 44.1kHz. This is because 44.1kHz is the sampling rate at which the
HRTFs were measured. In order to be used at a different rate, the HRTFs would need to be re-sampled at the desired
rate.

Examples

Here is an example of the hrtfer opcode. It uses the files hrtfer.orc, hrtfer.sco, HRTFcompact , and beats.wav.

Example 15-1. Example of the hrtfer opcode.

/* hrtfer.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 1
kaz linseg 0, p3, -360 ; move the sound in circle
kel linseg -40, p3, 45 ; around the listener, changing

; elevation as its turning
asrc soundin "beats.wav"
aleft,aright hrtfer asrc, kaz, kel, "HRTFcompact"
aleftscale = aleft * 200
arightscale = aright * 200

369

Chapter 15. Orchestra Opcodes and Operators

outs aleftscale, arightscale
endin
/* hrtfer.orc */

/* hrtfer.sco */
i 1 0 2
e
/* hrtfer.sco */

Credits

Authors: Eli Breder and David MacIntyre

Montreal

1996

Fixed the example thanks to a message from Istvan Varga.

hsboscil

hsboscil — An oscillator which takes tonality and brightness as arguments.

Description

An oscillator which takes tonality and brightness as arguments, relative to a base frequency.

Syntax

ar hsboscil kamp, ktone, kbrite, ibasfreq, iwfn, ioctfn [, ioctcnt] [, iphs]

Initialization

ibasfreq -- base frequency to which tonality and brighness are relative

iwfn -- function table of the waveform, usually a sine

ioctfn -- function table used for weighting the octaves, usually something like:

f1 0 1024 -19 1 0.5 270 0.5

ioctcnt (optional) -- number of octaves used for brightness blending. Must be in the range 2 to 10. Default is 3.

iphs (optional, default=0) -- initial phase of the oscillator. If iphs = -1, initialization is skipped.

370

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp -- amplitude of note

ktone -- cyclic tonality parameter relative to ibasfreq in logarithmic octave, range 0 to 1, values > 1 can be
used, and are internally reduced to frac(ktone).

kbrite -- brightness parameter relative to ibasfreq, achieved by weighting ioctcnt octaves. It is scaled in such a
way, that a value of 0 corresponds to the orignal value of ibasfreq, 1 corresponds to one octave above ibasfreq,
-2 corresponds to two octaves below ibasfreq, etc. kbrite may be fractional.

hsboscil takes tonality and brightness as arguments, relative to a base frequency (ibasfreq). Tonality is a cyclic
parameter in the logarithmic octave, brightness is realized by mixing multiple weighted octaves. It is useful
when tone space is understood in a concept of polar coordinates.

Making ktone a line, and kbrite a constant, produces Risset’s glissando.

Oscillator table iwfn is always read interpolated. Performance time requires about ioctcnt * oscili.

Examples

Here is an example of the hsboscil opcode. It uses the files hsboscil.orc and hsboscil.sco.

Example 15-1. Example of the hsboscil opcode.

/* hsboscil.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; synth waveform
giwave ftgen 1, 0, 1024, 10, 1, 1, 1, 1
; blending window
giblend ftgen 2, 0, 1024, -19, 1, 0.5, 270, 0.5

; Instrument #1 - produces Risset’s glissando.
instr 1

kamp = 10000
kbrite = 0.5
ibasfreq = 200
ioctcnt = 5

; Change ktone linearly from 0 to 1,
; over the period defined by p3.
ktone line 0, p3, 1

a1 hsboscil kamp, ktone, kbrite, ibasfreq, giwave, giblend, ioctcnt
out a1

endin
/* hsboscil.orc */

/* hsboscil.sco */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* hsboscil.sco */

Here is an example of the hsboscil opcode in a MIDI instrument. It uses the files hsboscil_midi.orc and
hsboscil_midi.sco.

371

Chapter 15. Orchestra Opcodes and Operators

Example 15-2. Example of the hsboscil opcode in a MIDI instrument.

/* hsboscil_midi.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; synth waveform
giwave ftgen 1, 0, 1024, 10, 1, 1, 1, 1
; blending window
giblend ftgen 2, 0, 1024, -19, 1, 0.5, 270, 0.5

; Instrument #1 - use hsboscil in a MIDI instrument.
instr 1

ibase = cpsoct(6)
ioctcnt = 5

; all octaves sound alike.
itona octmidi
; velocity is mapped to brightness
ibrite ampmidi 3

; Map an exponential envelope for the amplitude.
kenv expon 20000, 1, 100

asig hsboscil kenv, itona, ibrite, ibase, giwave, giblend, ioctcnt
out asig

endin
/* hsboscil_midi.orc */

/* hsboscil_midi.sco */
; Play Instrument #1 for ten minutes
i 1 0 6000
e
/* hsboscil_midi.sco */

Credits

Author: Peter Neubäcker

Munich, Germany

August, 1999

New in Csound version 3.58

i

i — Returns an init-type equivalent of a k-rate argument.

372

Chapter 15. Orchestra Opcodes and Operators

Description

Returns an init-type equivalent of a k-rate argument.

Syntax

i(x) (control-rate args only)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

See Also

a, abs, exp, frac, int , log , log10, sqrt

ibetarand

ibetarand — Deprecated.

Description

Deprecated as of version 3.49. Use the betarand opcode instead.

ibexprnd

ibexprnd — Deprecated.

Description

Deprecated as of version 3.49. Use the bexprnd opcode instead.

icauchy

icauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the cauchy opcode instead.

373

Chapter 15. Orchestra Opcodes and Operators

ictrl14

ictrl14 — Deprecated.

Description

Deprecated as of version 3.52. Use the ctrl14 opcode instead.

ictrl21

ictrl21 — Deprecated.

Description

Deprecated as of version 3.52. Use the ctrl21 opcode instead.

ictrl7

ictrl7 — Deprecated.

Description

Deprecated as of version 3.52. Use the ctrl7 opcode instead.

iexprand

iexprand — Deprecated.

Description

Deprecated as of version 3.49. Use the exprand opcode instead.

if

if — Branches conditionally at initialization or during performance time.

374

Chapter 15. Orchestra Opcodes and Operators

Description

if...igoto -- conditional branch at initialization time, depending on the truth value of the logical expression ia
R ib. The branch is taken only if the result is true.

if...kgoto -- conditional branch during performance time, depending on the truth value of the logical
expression ka R kb. The branch is taken only if the result is true.

if...goto -- combination of the above. Condition tested on every pass.

if...then -- synthesizes internal labels allowing the ability to specify "if/else/endif" blocks as some traditional
programming languages do. Any block that begins with an "if...then" statement must end with an endif
statement. elseif and else statements are optional. Any number of elseif statements are allowed. Only one else
statement may occur and it must be the last conditional statement before the endif statement. Nested
"if...then" statements are allowed.

Note: Note that if the condition uses a k-rate variable (for instance, “if kval > 0”), the if-test and the goto will be ignored
during the i-time pass, even if the k-rate variable has already been assigned an appropriate value by an earlier init
statement.

Syntax

if ia R ib igoto label

if ka R kb kgoto label

if ia R ib goto label

if xa R xb then

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the if...igoto combination. It uses the files igoto.orc and igoto.sco.

Example 15-1. Example of the if...igoto combination.

/* igoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Get the value of the 4th p-field from the score.
iparam = p4

; If iparam is 1 then play the high note.
; If not then play the low note.
if (iparam == 1) igoto highnote

igoto lownote

highnote:
ifreq = 880
goto playit

375

Chapter 15. Orchestra Opcodes and Operators

lownote:
ifreq = 440
goto playit

playit:
; Print the values of iparam and ifreq.
print iparam
print ifreq

a1 oscil 10000, ifreq, 1
out a1

endin
/* igoto.orc */

/* igoto.sco */
/* Written by Kevin Conder */
; Table #1: a simple sine wave.
f 1 0 32768 10 1

; p4: 1 = high note, anything else = low note
; Play Instrument #1 for one second, a low note.
i 1 0 1 0
; Play a Instrument #1 for one second, a high note.
i 1 1 1 1
e
/* igoto.sco */

Its output should include lines like this:

instr 1: iparam = 0.000
instr 1: ifreq = 440.000
instr 1: iparam = 1.000
instr 1: ifreq = 880.000

Here is an example of the if...kgoto combination. It uses the files kgoto.orc and kgoto.sco.

Example 15-2. Example of the if...kgoto combination.

/* kgoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Change kval linearly from 0 to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

; If kval is greater than or equal to 1 then play the high note.
; If not then play the low note.
if (kval >= 1) kgoto highnote

kgoto lownote

highnote:
kfreq = 880

376

Chapter 15. Orchestra Opcodes and Operators

goto playit

lownote:
kfreq = 440
goto playit

playit:
; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\\n", 1, kval, kfreq

a1 oscil 10000, kfreq, 1
out a1

endin
/* kgoto.orc */

/* kgoto.sco */
/* Written by Kevin Conder */
; Table #1: a simple sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* kgoto.sco */

Its output should include lines like this:

kval = 0.000000, kfreq = 440.000000
kval = 0.999732, kfreq = 440.000000
kval = 1.999639, kfreq = 880.000000

See Also

elseif , else, endif , goto, igoto, kgoto, tigoto, timout

Credits

Added a note by Jim Aikin.

igauss

igauss — Deprecated.

Description

Deprecated as of version 3.49. Use the gauss opcode instead.

377

Chapter 15. Orchestra Opcodes and Operators

igoto

igoto — Transfer control during the i-time pass.

Description

During the i-time pass only, unconditionally transfer control to the statement labeled by label.

Syntax

igoto label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the igoto opcode. It uses the files igoto.orc and igoto.sco.

Example 15-1. Example of the igoto opcode.

/* igoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Get the value of the 4th p-field from the score.
iparam = p4

; If iparam is 1 then play the high note.
; If not then play the low note.
if (iparam == 1) igoto highnote

igoto lownote

highnote:
ifreq = 880
goto playit

lownote:
ifreq = 440
goto playit

playit:
; Print the values of iparam and ifreq.
print iparam
print ifreq

a1 oscil 10000, ifreq, 1
out a1

endin
/* igoto.orc */

/* igoto.sco */
/* Written by Kevin Conder */

378

Chapter 15. Orchestra Opcodes and Operators

; Table #1: a simple sine wave.
f 1 0 32768 10 1

; p4: 1 = high note, anything else = low note
; Play Instrument #1 for one second, a low note.
i 1 0 1 0
; Play a Instrument #1 for one second, a high note.
i 1 1 1 1
e
/* igoto.sco */

Its output should include lines like this:

instr 1: iparam = 0.000
instr 1: ifreq = 440.000
instr 1: iparam = 1.000
instr 1: ifreq = 880.000

See Also

cggoto, cigoto, ckgoto, goto, if , kgoto, rigoto, tigoto, timout

Credits

Added a note by Jim Aikin.

ihold

ihold — Creates a held note.

Description

Causes a finite-duration note to become a “held” note

Syntax

ihold

Performance

ihold -- this i-time statement causes a finite-duration note to become a “held” note. It thus has the same
effect as a negative p3 (see score i Statement), except that p3 here remains positive and the instrument
reclassifies itself to being held indefinitely. The note can be turned off explicitly with turnoff , or its space
taken over by another note of the same instrument number (i.e. it is tied into that note). Effective at i-time
only; no-op during a reinit pass.

379

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the ihold opcode. It uses the files ihold.orc and ihold.sco.

Example 15-1. Example of the ihold opcode.

/* ihold.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; A simple oscillator with its note held indefinitely.
a1 oscil 10000, 440, 1
ihold

; If p4 equals 0, turn the note off.
if (p4 == 0) kgoto offnow

kgoto playit

offnow:
; Turn the note off now.
turnoff

playit:
; Play the note.
out a1

endin
/* ihold.orc */

/* ihold.sco */
/* Written by Kevin Conder */
; Table #1: an ordinary sine wave.
f 1 0 32768 10 1

; p4 = turn the note off (if it is equal to 0).
; Start playing Instrument #1.
i 1 0 1 1
; Turn Instrument #1 off after 3 seconds.
i 1 3 1 0
e
/* ihold.sco */

See Also

i Statement , turnoff

380

Chapter 15. Orchestra Opcodes and Operators

ilinrand

ilinrand — Deprecated.

Description

Deprecated as of version 3.49. Use the linrand opcode instead.

imidic14

imidic14 — Deprecated.

Description

Deprecated as of version 3.52. Use the midic14 opcode instead.

imidic21

imidic21 — Deprecated.

Description

Deprecated as of version 3.52. Use the midic21 opcode instead.

imidic7

imidic7 — Deprecated.

Description

Deprecated as of version 3.52. Use the midic7 opcode instead.

in

in — Reads mono audio data from an external device or stream.

Description

Reads mono audio data from an external device or stream.

381

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar1 in

Performance

Reads mono audio data from an external device or stream. If the command-line -i flag is set, sound is read
continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer. Any number of
these opcodes can read freely from this buffer.

See Also

diskin, inh, ino, inq, ins, soundin

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

in32

in32 — Reads a 32-channel audio signal from an external device or stream.

Description

Reads a 32-channel audio signal from an external device or stream.

Syntax

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8, ar9, ar10, ar11, ar12, ar13, ar14, ar15, ar16, ar17, ar18, ar19, ar20, ar21, ar22,
ar23, ar24, ar25, ar26, ar27, ar28, ar29, ar30, ar31, ar32 in32

Performance

in32 reads a 32-channel audio signal from an external device or stream. If the command-line -i flag is set,
sound is read continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer.

Credits

inch, inx, inz

382

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

inch

inch — Reads from a numbered channel in an external audio signal or stream.

Description

Reads from a numbered channel in an external audio signal or stream.

Syntax

ar1 inch ksig1

Performance

inch reads from a numbered channel determined by ksig1 into a1. If the command-line -i flag is set, sound is
read continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer.

Credits

in32, inx, inz

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

inh

inh — Reads six-channel audio data from an external device or stream.

Description

Reads six-channel audio data from an external device or stream.

383

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar1, ar2, ar3, ar4, ar5, ar6 inh

Performance

Reads six-channel audio data from an external device or stream. If the command-line -i flag is set, sound is
read continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer. Any number
of these opcodes can read freely from this buffer.

See Also

diskin, in, ino, inq, ins, soundin

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

init

init — Puts the value of the i-time expression into a k- or a-rate variable.

Syntax

ar init iarg

ir init iarg

kr init iarg

Description

Put the value of the i-time expression into a k- or a-rate variable.

Initialization

Puts the value of the i-time expression iarg into a k- or a-rate variable, i.e., initialize the result. Note that init
provides the only case of an init-time statement being permitted to write into a perf-time (k- or a-rate) result
cell; the statement has no effect at perf-time.

See Also

=, divz, tival

384

Chapter 15. Orchestra Opcodes and Operators

initc14

initc14 — Initializes the controllers used to create a 14-bit MIDI value.

Description

Initializes the controllers used to create a 14-bit MIDI value.

Syntax

initc14 ichan, ictlno1, ictlno2, ivalue

Initialization

ichan -- MIDI channel (1-16)

ictlno1 -- most significant byte controller number (0-127)

ictlno2 -- least significant byte controller number (0-127)

ivalue -- floating point value (must be within 0 to 1)

Performance

initc14 can be used together with both midic14 and ctrl14 opcodes for initializing the first controller’s value.
ivalue argument must be set with a number within 0 to 1. An error occurs if it is not. Use the following
formula to set ivalue according with midic14 and ctrl14 min and max range:

ivalue = (initial_value - min) / (max - min)

See Also

ctrl7 , ctrl14, ctrl21, ctrlinit , initc7 , initc21, midic7 , midic14, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

initc21

initc21 — Initializes the controllers used to create a 21-bit MIDI value.

385

Chapter 15. Orchestra Opcodes and Operators

Description

Initializes MIDI controller ictlno with ivalue

Syntax

initc21 ichan, ictlno1, ictlno2, ictlno3, ivalue

Initialization

ichan -- MIDI channel (1-16)

ictlno1 -- most significant byte controller number (0-127)

ictlno2 -- medium significant byte controller number (0-127)

ictlno3 -- least significant byte controller number (0-127)

ivalue -- floating point value (must be within 0 to 1)

Performance

initc21 can be used together with both midic21 and ctrl21 opcodes for initializing the first controller’s value.
ivalue argument must be set with a number within 0 to 1. An error occurs if it is not. Use the following
formula to set ivalue according with midic21 and ctrl21 min and max range:

ivalue = (initial_value - min) / (max - min)

See Also

ctrl7 , ctrl14, ctrl21, ctrlinit , initc7 , initc14, midic7 , midic14, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

initc7

initc7 — Initializes the controller used to create a 7-bit MIDI value.

Description

Initializes MIDI controller ictlno with ivalue

386

Chapter 15. Orchestra Opcodes and Operators

Syntax

initc7 ichan, ictlno, ivalue

Initialization

ichan -- MIDI channel (1-16)

ictlno -- controller number (0-127)

ivalue -- floating point value (must be within 0 to 1)

Performance

initc7 can be used together with both midic7 and ctrl7 opcodes for initializing the first controller’s value.
ivalue argument must be set with a number within 0 to 1. An error occurs if it is not. Use the following
formula to set ivalue according with midic7 and ctrl7 min and max range:

ivalue = (initial_value - min) / (max - min)

See Also

ctrl7 , ctrl14, ctrl21, ctrlinit , initc14, initc21, midic7 , midic14, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

ink

ink — Passes k-rate values into a sub-instrument.

Description

Retrieves k-rate input values inside a sub-instrument.

Syntax

k1 [, k2] [...] ink

387

Chapter 15. Orchestra Opcodes and Operators

Performance

k1, k2, etc. -- k-rate values given for the sub-instrument call.

Note: If an instrument containing ink is called as a normal instrument, then the opcode will have no effect.

Examples

Here is an example of the ink opcode. It uses the files ink.orc and ink.sco.

Example 15-1. Example of the ink opcode.

/* ink.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument Name: MyEnvelope
; Output Parameters: one k-rate signal.
; Input Parameters: one k-rate signal.
instr MyEnvelope, k, k

; Store the input parameter in the kinputparam variable.
kinputparam ink

; Fade the signal over time.
kline line 0, p3, 1
kfaded = (kinputparam - kline) * 20000

; Output the new faded k-rate signal.
outk kfaded

endin

; Instrument Name: #1
instr 1

; Create a k-rate signal.
ksig init 1

; Turn the k-rate signal into an amplitude envelope.
kenv MyEnvelope ksig

; Use the amplitude envelope with a basic sine-wave tone.
abasic oscil kenv, 440, 1

out abasic
endin
/* ink.orc */

/* ink.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for five seconds.
i 1 0 5
e
/* ink.sco */

388

Chapter 15. Orchestra Opcodes and Operators

See Also

Calling an Instrument Within an Instrument , outk

Credits

Author: Matt Ingalls

New in version 4.21

ino

ino — Reads eight-channel audio data from an external device or stream.

Description

Reads eight-channel audio data from an external device or stream.

Syntax

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8 ino

Performance

Reads eight-channel audio data from an external device or stream. If the command-line -i flag is set, sound is
read continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer. Any number
of these opcodes can read freely from this buffer.

See Also

diskin, in, inh, inq, ins, soundin

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

inq

inq — Reads quad audio data from an external device or stream.

389

Chapter 15. Orchestra Opcodes and Operators

Description

Reads quad audio data from an external device or stream.

Syntax

ar1, ar2, ar3, a4 inq

Performance

Reads quad audio data from an external device or stream. If the command-line -i flag is set, sound is read
continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer. Any number of
these opcodes can read freely from this buffer.

See Also

diskin, in, inh, ino, ins, soundin

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

ins

ins — Reads stereo audio data from an external device or stream.

Description

Reads stereo audio data from an external device or stream.

Syntax

ar1, ar2 ins

Performance

Reads stereo audio data from an external device or stream. If the command-line -i flag is set, sound is read
continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer. Any number of
these opcodes can read freely from this buffer.

See Also

diskin, in, inh, ino, inq, soundin

390

Chapter 15. Orchestra Opcodes and Operators

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

instimek

instimek — Deprecated.

Description

Deprecated as of version 3.62. Use the timeinstk opcode instead.

Credits

David M. Boothe originally pointed out this deprecated name.

instimes

instimes — Deprecated.

Description

Deprecated as of version 3.62. Use the timeinsts opcode instead.

Credits

David M. Boothe originally pointed out this deprecated name.

instr

instr — Starts an instrument block.

Description

Starts an instrument block.

Syntax

instr i, j, ...

391

Chapter 15. Orchestra Opcodes and Operators

Initialization

Starts an instrument block defining instruments i, j, ...

i, j, ... must be numbers, not expressions. Any positive integer is legal, and in any order, but excessively high
numbers are best avoided.

Note: There may be any number of instrument blocks in an orchestra.

Instruments can be defined in any order (but they will always be both initialized and performed in ascending
instrument number order). Instrument blocks cannot be nested (i.e. one block cannot contain another).

Performance

Calling an Instrument within an Instrument

You can call an instrument within an instrument as if it were an opcode either with the subinstr opcode or by
specifying an instrument with a text name:

instr MyOscil
...
endin

If an instrument is defined with a name, you simply call it directly like an opcode:

asig MyOscil iamp, ipitch, iftable

By default, all output parameters correspond to the called instrument’s output with the signal output
opcodes. All input parameters are mapped to the called instrument’s p-fields starting with the fourth one, p4.
The values of the called instrument’s second and third p-fields, p2 and p3, are automatically set to those of
the calling instrument’s.

A named instrument must be defined before any instrument that calls it.

Advanced Options

You can optionally define an instrument’s interface if you need to pass k-rate values, audio input, or greater
than 8 audio output channels. The output and input types are specified after the instrument name, as a list of
characters (0, a, i, k, or p):

instr name, outputlist, inputlist

For example, this instrument:

instr MyFilter, aak, aaki
...
endin

392

Chapter 15. Orchestra Opcodes and Operators

Specifies an instrument that outputs 2 a-rate signals and 1 k-rate signal. It takes 2 a-rate signals as input
followed by a k-rate signal and an i-rate signal.

A call to this instrument would something like like:

asig1, asig2, k1 MyFilter aleft, aright, kfreq, ibw

The allowable character types are:

Table 15-1. Allowable Character Types

Character Signal Context

0 Specifies no signal passed. Allowed with input and output.
Cannot occur with other types.

a a-rate signal. Allowed with input and output.
Accessed with the signal input and
signal output opcodes.

i i-rate signal mapped to a p-field. Input only.

k k-rate signal. Allowed with input and output.
Accessed with the ink and outk
opcodes.

p k-rate signal mapped to a p-field. Input only.

The i and p character types are mapped to p-fields as they occur in order starting with the fourth p-field, p4.
The a and k character types are mapped in order of channels to be accessed with the signal input and signal
output opcodes.

For example:

instr MyProcess 0, apaki

Defines an instrument with no output, 2 a-rate signal inputs (the first and third input parameters). The
second input ("p") is mapped to p4, which potentially changes every k-pass. The fourth input parameter is
mapped to be retrieved with the ink opcode. The last input signal is mapped to p5, and will stay the same
value during the instrument instance’s performance.

A call to this instrument would look something like:

MyProcess asig, kfreq, arefsig, kamp, imode

Accessing the data passed to the instrument would look something like:

instr MyProcess 0, apaki
imode = p5

asig, arefsig ins
kamp ink

; p4 can change during performance
printk .1, p4

endin

393

Chapter 15. Orchestra Opcodes and Operators

See ink/outk documentation for another example.

Hint: If you use the inch, outc, outch, etc. opcodes, you can create an instrument that will compile and function in any
orchestra of any number of channels.

A nice feature to use with named instruments is the #include feature. You can then define your named instruments in
separate files, using #include when you need to use one.

Examples

Here is an example of the instr opcode. It uses the files instr.orc and instr.sco.

Example 15-1. Example of the instr opcode.

/* instr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

iamp = 10000
icps = 440
iphs = 0

a1 oscils iamp, icps, iphs
out a1

endin
/* instr.orc */

/* instr.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* instr.sco */

See Also

endin, ink, in, outk, out , subinstr

394

Chapter 15. Orchestra Opcodes and Operators

int

int — Extracts an integer from a decimal number.

Description

Returns the integer part of x.

Syntax

int(x) (init-rate or control-rate args only)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the int opcode. It uses the files int.orc and int.sco.

Example 15-1. Example of the int opcode.

/* int.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = 16 / 5
i2 = int(i1)

print i2
endin
/* int.orc */

/* int.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* int.sco */

Its output should include a line like this:

instr 1: i2 = 3.000

395

Chapter 15. Orchestra Opcodes and Operators

See Also

abs, exp, frac, log , log10, i, sqrt

integ

integ — Modify a signal by integration.

Description

Modify a signal by integration.

Syntax

ar integ asig [, iskip]

kr integ ksig [, iskip]

Initialization

iskip (optional) -- initial disposition of internal save space (see reson). The default value is 0.

Performance

integ and diff perform integration and differentiation on an input control signal or audio signal. Each is the
converse of the other, and applying both will reconstruct the original signal. Since these units are special
cases of low-pass and high-pass filters, they produce a scaled (and phase shifted) output that is
frequency-dependent. Thus diff of a sine produces a cosine, with amplitude 2 * sin(pi * Hz / sr) that of the
original (for each component partial); integ will inversely affect the magnitudes of its component inputs.
With this understanding, these units can provide useful signal modification.

Examples

Here is an example of the integ opcode. It uses the files integ.orc and integ.sco.

Example 15-1. Example of the integ opcode.

/* integ.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 -- a differentiated signal.
instr 1

; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

; Differentiate the signal.
adiff diff asrc

396

Chapter 15. Orchestra Opcodes and Operators

out adiff
endin

; Instrument #2 -- a re-integrated signal.
instr 2

; Generate a band-limited pulse train.
asrc buzz 20000, 440, 20, 1

; Differentiate the signal.
adiff diff asrc

; Re-integrate the previously differentiated signal.
a1 integ adiff

out a1
endin
/* integ.orc */

/* integ.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 1 1
e
/* integ.sco */

See Also

diff , downsamp, interp, samphold, upsamp

interp

interp — Converts a control signal to an audio signal using linear interpolation.

Description

Converts a control signal to an audio signal using linear interpolation.

Syntax

ar interp ksig [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal save space (see reson). The default value is 0.

397

Chapter 15. Orchestra Opcodes and Operators

Performance

ksig -- input k-rate signal.

interp converts a control signal to an audio signal. It uses linear interpolation between successive kvals.

Examples

Here is an example of the interp opcode. It uses the files interp.orc and interp.sco.

Example 15-1. Example of the interp opcode.

/* interp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 8000
kr = 8
ksmps = 1000
nchnls = 1

; Instrument #1 - a simple instrument.
instr 1

; Create an amplitude envelope.
kamp linseg 0, p3/2, 20000, p3/2, 0

; The amplitude envelope will sound rough due to
; "stepping" caused by the low k-rate, 8.
a1 oscil kamp, 440, 1
out a1

endin

; Instrument #2 - a smoother sounding instrument.
instr 2

; Create an amplitude envelope.
kamp linseg 0, p3/2, 25000, p3/2, 0
aamp interp kamp

; The amplitude envelope will sound smoother due to
; linear interpolation at the higher a-rate, 8000.
a1 oscil aamp, 440, 1
out a1

endin
/* interp.orc */

/* interp.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 256 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 2 2
e
/* interp.sco */

398

Chapter 15. Orchestra Opcodes and Operators

See Also

diff , downsamp, integ , samphold, upsamp

invalue

invalue — Reads a k-rate signal from a user-defined channel.

Description

Reads a k-rate signal from a user-defined channel.

Syntax

kvalue invalue "channel name"

Performance

kvalue -- The k-rate value that is read from the channel.

"channel name" -- An integer or string (in double-quotes) representing channel.

See Also

outvalue

Credits

New in version 4.21

inx

inx — Reads a 16-channel audio signal from an external device or stream.

Description

Reads a 16-channel audio signal from an external device or stream.

Syntax

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8, ar9, ar10, ar11, ar12, ar13, ar14, ar15, ar16 inx

399

Chapter 15. Orchestra Opcodes and Operators

Performance

inx reads a 16-channel audio signal from an external device or stream. If the command-line -i flag is set,
sound is read continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer.

Credits

in32, inch, inz

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

inz

inz — Reads multi-channel audio samples into a ZAK array from an external device or stream.

Description

Reads multi-channel audio samples into a ZAK array from an external device or stream.

Syntax

inz ksig1

Performance

inz reads audio samples in nchnls into a ZAK array starting at ksig1. If the command-line -i flag is set, sound
is read continuously from the audio input stream (e.g. stdin or a soundfile) into an internal buffer.

Credits

in32, inch, inx

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

400

Chapter 15. Orchestra Opcodes and Operators

ioff

ioff — Deprecated.

Description

Deprecated as of version 3.52. Use the noteoff opcode instead.

ion

ion — Deprecated.

Description

Deprecated as of version 3.52. Use the noteon opcode instead.

iondur

iondur — Deprecated.

Description

Deprecated as of version 3.52. Use the noteondur opcode instead.

iondur2

iondur2 — Deprecated.

Description

Deprecated as of version 3.52. Use the noteondur2 opcode instead.

ioutat

ioutat — Deprecated.

401

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.52. Use the outiat opcode instead.

ioutc

ioutc — Deprecated.

Description

Deprecated as of version 3.52. Use the outic opcode instead.

ioutc14

ioutc14 — Deprecated.

Description

Deprecated as of version 3.52. Use the outic14 opcode instead.

ioutpat

ioutpat — Deprecated.

Description

Deprecated as of version 3.52. Use the outipat opcode instead.

ioutpb

ioutpb — Deprecated.

Description

Deprecated as of version 3.52. Use the outipb opcode instead.

402

Chapter 15. Orchestra Opcodes and Operators

ioutpc

ioutpc — Deprecated.

Description

Deprecated as of version 3.52. Use the outipc opcode instead.

ipcauchy

ipcauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the pcauchy opcode instead.

ipoisson

ipoisson — Deprecated.

Description

Deprecated as of version 3.49. Use the poisson opcode instead.

ipow

ipow — Deprecated.

Description

Deprecated as of version 3.48. Use the pow opcode instead.

is16b14

is16b14 — Deprecated.

403

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.52. Use the s16b14 opcode instead.

is32b14

is32b14 — Deprecated.

Description

Deprecated as of version 3.52. Use the s32b14 opcode instead.

islider16

islider16 — Deprecated.

Description

Deprecated as of version 3.52. Use the slider16 opcode instead.

islider32

islider32 — Deprecated.

Description

Deprecated as of version 3.52. Use the slider32 opcode instead.

islider64

islider64 — Deprecated.

Description

Deprecated as of version 3.52. Use the slider64 opcode instead.

404

Chapter 15. Orchestra Opcodes and Operators

islider8

islider8 — Deprecated.

Description

Deprecated as of version 3.52. Use the slider8 opcode instead.

itablecopy

itablecopy — Deprecated.

Description

Deprecated as of version 3.52. Use the tableicopy opcode instead.

itablegpw

itablegpw — Deprecated.

Description

Deprecated as of version 3.52. Use the tableigpw opcode instead.

itablemix

itablemix — Deprecated.

Description

Deprecated as of version 3.52. Use the tableimix opcode instead.

itablew

itablew — Deprecated.

405

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.52. Use the tableiw opcode instead.

itrirand

itrirand — Deprecated.

Description

Deprecated as of version 3.49. Use the trirand opcode instead.

iunirand

iunirand — Deprecated.

Description

Deprecated as of version 3.49. Use the unirand opcode instead.

iweibull

iweibull — Deprecated.

Description

Deprecated as of version 3.49. Use the weibull opcode instead.

jitter

jitter — Generates a segmented line whose segments are randomly generated.

Description

Generates a segmented line whose segments are randomly generated.

Syntax

kout jitter kamp, kcpsMin, kcpsMax

406

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp -- Amplitude of jitter deviation

kcpsMin -- Minimum speed of random frequency variations (expressed in cps)

kcpsMax -- Maximum speed of random frequency variations (expressed in cps)

jitter generates a segmented line whose segments are randomly generated inside the +kamp and -kamp
interval. Duration of each segment is a random value generated according to kcpsmin and kcpsmax values.

jitter can be used to make more natural and “analog-sounding” some static, dull sound. For best results, it is
suggested to keep its amplitude moderate.

Examples

Here is an example of the jitter opcode. It uses the files jitter.orc and jitter.sco.

Example 15-1. Example of the jitter opcode.

/* jitter.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; Instrument #1 -- plain instrument.
instr 1

aplain vco 20000, 220, 2, 0.83

outs aplain, aplain
endin

; Instrument #2 -- instrument with jitter.
instr 2

; Create a signal modulated the jitter opcode.
kamp init 2
kcpsmin init 4
kcpsmax init 6
kj jitter kamp, kcpsmin, kcpsmax

aplain vco 20000, 220, 2, 0.83
ajitter vco 20000, 220+kj, 2, 0.83

outs aplain, ajitter
endin
/* jitter.orc */

/* jitter.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 3 seconds.
i 1 0 3
; Play Instrument #2 for 3 seconds.
i 2 3 3
e
/* jitter.sco */

407

Chapter 15. Orchestra Opcodes and Operators

See Also

jitter2, vibr , vibrato

Credits

Author: Gabriel Maldonado

New in Version 4.15

jitter2

jitter2 — Generates a segmented line with user-controllable random segments.

Description

Generates a segmented line with user-controllable random segments.

Syntax

kout jitter2 ktotamp, kamp1, kcps1, kamp2, kcps2, kamp3, kcps3

Performance

ktotamp -- Resulting amplitude of jitter2

kamp1 -- Amplitude of the first jitter component

kcps1 -- Speed of random variation of the first jitter component (expressed in cps)

kamp2 -- Amplitude of the second jitter component

kcps2 -- Speed of random variation of the second jitter component (expressed in cps)

kamp3 -- Amplitude of the third jitter component

kcps3 -- Speed of random variation of the third jitter component (expressed in cps)

jitter2 also generates a segmented line such as jitter , but in this case the result is similar to the sum of three
randi opcodes, each one with a different amplitude and frequency value (see randi for more details), that can
be varied at k-rate. Different effects can be obtained by varying the input arguments.

jitter2 can be used to make more natural and “analog-sounding” some static, dull sound. For best results, it is
suggested to keep its amplitude moderate.

Examples

Here is an example of the jitter2 opcode. It uses the files jitter2.orc and jitter2.sco.

Example 15-1. Example of the jitter2 opcode.

/* jitter2.orc */

408

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; Instrument #1 -- plain instrument.
instr 1

aplain vco 20000, 220, 2, 0.83

outs aplain, aplain
endin

; Instrument #2 -- instrument with jitter.
instr 2

; Create a signal modulated with the jitter2 opcode.
ktotamp init 2
kamp1 init 0.66
kcps1 init 3
kamp2 init 0.66
kcps2 init 3
kamp3 init 0.66
kcps3 init 3
kj jitter2 ktotamp, kamp1, kcps1, kamp2, kcps2, \

kamp3, kcps3

aplain vco 20000, 220, 2, 0.83
ajitter vco 20000, 220+kj, 2, 0.83

outs aplain, ajitter
endin
/* jitter2.orc */

/* jitter2.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 3 seconds.
i 1 0 3
; Play Instrument #2 for 3 seconds.
i 2 3 3
e
/* jitter2.sco */

See Also

jitter , vibr , vibrato

Credits

Author: Gabriel Maldonado

New in Version 4.15

409

Chapter 15. Orchestra Opcodes and Operators

jspline

jspline — A jitter-spline generator.

Description

A jitter-spline generator.

Syntax

ar jspline xamp, kcpsMin, kcpsMax

kr jspline kamp, kcpsMin, kcpsMax

Performance

kr, ar -- Output signal

xamp -- Amplitude factor

kcpsMin, kcpsMax -- Range of point-generation rate. Min and max limits are expressed in cps.

jspline (jitter-spline generator) generates a smooth curve based on random points generated at [cpsMin,
cpsMax] rate. This opcode is similar to randomi or randi or jitter, but segments are not straight lines, but
cubic spline curves. Output value range is approximately> -xamp and < xamp. Actually, real range could be a
bit greater, because of interpolating curves beetween each pair of random-points.

At present time generated curves are quite smooth when cpsMin is not too different from cpsMax. When
cpsMin-cpsMax interval is big, some little discontinuity could occurr, but it should not be a problem, in most
cases. Maybe the algorithm will be improved in next versions.

These opcodes are often better than jitter when user wants to “naturalize” or “analogize” digital sounds. They
could be used also in algorithmic composition, to generate smooth random melodic lines when used
together with samphold opcode.

Note that the result is quite different from the one obtained by filtering white noise, and they allow the user to
obtain a much more precise control.

Credits

Author: Gabriel Maldonado

New in Version 4.15

kbetarand

kbetarand — Deprecated.

Description

Deprecated as of version 3.49. Use the betarand opcode instead.

410

Chapter 15. Orchestra Opcodes and Operators

kbexprnd

kbexprnd — Deprecated.

Description

Deprecated as of version 3.49. Use the bexprnd opcode instead.

kcauchy

kcauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the cauchy opcode instead.

kdump

kdump — Deprecated.

Description

Deprecated as of version 3.49. Use the dumpk opcode instead.

kdump2

kdump2 — Deprecated.

Description

Deprecated as of version 3.49. Use the dumpk2 opcode instead.

kdump3

kdump3 — Deprecated.

411

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the dumpk3 opcode instead.

kdump4

kdump4 — Deprecated.

Description

Deprecated as of version 3.49. Use the dumpk4 opcode instead.

kexprand

kexprand — Deprecated.

Description

Deprecated as of version 3.49. Use the exprand opcode instead.

kfilter2

kfilter2 — Deprecated.

Description

Deprecated as of version 3.49. Use the filter2 opcode instead.

kgauss

kgauss — Deprecated.

Description

Deprecated as of version 3.49. Use the gauss opcode instead.

412

Chapter 15. Orchestra Opcodes and Operators

kgoto

kgoto — Transfer control during the p-time passes.

Description

During the p-time passes only, unconditionally transfer control to the statement labeled by label.

Syntax

kgoto label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

Examples

Here is an example of the kgoto opcode. It uses the files kgoto.orc and kgoto.sco.

Example 15-1. Example of the kgoto opcode.

/* kgoto.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Change kval linearly from 0 to 2 over
; the period set by the third p-field.
kval line 0, p3, 2

; If kval is greater than or equal to 1 then play the high note.
; If not then play the low note.
if (kval >= 1) kgoto highnote

kgoto lownote

highnote:
kfreq = 880
goto playit

lownote:
kfreq = 440
goto playit

playit:
; Print the values of kval and kfreq.
printks "kval = %f, kfreq = %f\\n", 1, kval, kfreq

a1 oscil 10000, kfreq, 1
out a1

endin
/* kgoto.orc */

/* kgoto.sco */
/* Written by Kevin Conder */

413

Chapter 15. Orchestra Opcodes and Operators

; Table #1: a simple sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* kgoto.sco */

Its output should include lines like this:

kval = 0.000000, kfreq = 440.000000
kval = 0.999732, kfreq = 440.000000
kval = 1.999639, kfreq = 880.000000

See Also

cggoto, cigoto, ckgoto, goto, if , igoto, tigoto, timout

Credits

Added a note by Jim Aikin.

klinrand

klinrand — Deprecated.

Description

Deprecated as of version 3.49. Use the linrand opcode instead.

kon

kon — Deprecated.

Description

Deprecated as of version 3.49. Use the midion opcode instead.

koutat

koutat — Deprecated.

414

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.52. Use the outkat opcode instead.

koutc

koutc — Deprecated.

Description

Deprecated as of version 3.52. Use the outkc opcode instead.

koutc14

koutc14 — Deprecated.

Description

Deprecated as of version 3.52. Use the outkc14 opcode instead.

koutpat

koutpat — Deprecated.

Description

Deprecated as of version 3.52. Use the outkpat opcode instead.

koutpb

koutpb — Deprecated.

Description

Deprecated as of version 3.52. Use the outkpb opcode instead.

415

Chapter 15. Orchestra Opcodes and Operators

koutpc

koutpc — Deprecated.

Description

Deprecated as of version 3.52. Use the outkpc opcode instead.

kpcauchy

kpcauchy — Deprecated.

Description

Deprecated as of version 3.49. Use the pcauchy opcode instead.

kpoisson

kpoisson — Deprecated.

Description

Deprecated as of version 3.49. Use the poisson opcode instead.

kpow

kpow — Deprecated.

Description

Deprecated as of version 3.48. Use the pow opcode instead.

kr

kr — Sets the control rate.

416

Chapter 15. Orchestra Opcodes and Operators

Description

These statements are global value assignments, made at the beginning of an orchestra, before any instrument
block is defined. Their function is to set certain reserved symbol variables that are required for performance.
Once set, these reserved symbols can be used in expressions anywhere in the orchestra.

Syntax

kr = iarg

Initialization

kr = (optional) -- set control rate to iarg samples per second. The default value is 1000.

In addition, any global variable can be initialized by an init-time assignment anywhere before the first instr
statement . All of the above assignments are run as instrument 0 (i-pass only) at the start of real performance.

Beginning with Csound version 3.46, kr can be omitted. Csound will attempt to calculate the omitted value
from the specified values, but it should evaluate to an integer.

Examples

sr = 10000
kr = 500
ksmps = 20
gi1 = sr/2.
ga init 0
itranspose = octpch(.0l)

See Also

ksmps, nchnls, sr

kread

kread — Deprecated.

Description

Deprecated as of version 3.52. Use the readk opcode instead.

417

Chapter 15. Orchestra Opcodes and Operators

kread2

kread2 — Deprecated.

Description

Deprecated as of version 3.52. Use the readk2 opcode instead.

kread3

kread3 — Deprecated.

Description

Deprecated as of version 3.52. Use the readk3 opcode instead.

kread4

kread4 — Deprecated.

Description

Deprecated as of version 3.52. Use the readk4 opcode instead.

ksmps

ksmps — Sets the number of samples in a control period.

Description

These statements are global value assignments, made at the beginning of an orchestra, before any instrument
block is defined. Their function is to set certain reserved symbol variables that are required for performance.
Once set, these reserved symbols can be used in expressions anywhere in the orchestra.

Syntax

ksmps = iarg

418

Chapter 15. Orchestra Opcodes and Operators

Initialization

ksmps = (optional) -- set the number of samples in a control period. This value must equal sr/kr . The default
value is 10.

In addition, any global variable can be initialized by an init-time assignment anywhere before the first instr
statement . All of the above assignments are run as instrument 0 (i-pass only) at the start of real performance.

Beginning with Csound version 3.46, either ksmps may be omitted. Csound will attempt to calculate the
omitted value from the specified values, but it should evaluate to an integer.

Examples

sr = 10000
kr = 500
ksmps = 20
gi1 = sr/2.
ga init 0
itranspose = octpch(.0l)

See Also

kr , nchnls, sr

ktableseg

ktableseg — Same as the tableseg opcode.

Description

Same as the tableseg opcode.

Syntax

ktableseg ifn1, idur1, ifn2 [, idur2] [, ifn3] [...]

ktrirand

ktrirand — Deprecated.

419

Chapter 15. Orchestra Opcodes and Operators

Description

Deprecated as of version 3.49. Use the trirand opcode instead.

kunirand

kunirand — Deprecated.

Description

Deprecated as of version 3.49. Use the unirand opcode instead.

kweibull

kweibull — Deprecated.

Description

Deprecated as of version 3.49. Use the weibull opcode instead.

lfo

lfo — A low frequency oscillator of various shapes.

Description

A low frequency oscillator of various shapes.

Syntax

kr lfo kamp, kcps [, itype]

ar lfo kamp, kcps [, itype]

Initialization

itype (optional, default=0) -- determine the waveform of the oscillator. Default is 0.

• itype = 0 - sine

• itype = 1 - triangles

• itype = 2 - square (bipolar)

• itype = 3 - square (unipolar)

• itype = 4 - saw-tooth

420

Chapter 15. Orchestra Opcodes and Operators

• itype = 5 - saw-tooth(down)

The sine wave is implemented as a 4096 table and linear interpolation. The others are calculated.

Performance

kamp -- amplitude of output

kcps -- frequency of oscillator

Examples

Here is an example of the lfo opcode. It uses the files lfo.orc and lfo.sco.

Example 15-1. Example of the lfo opcode.

/* lfo.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 10
kcps = 5
itype = 4

k1 lfo kamp, kcps, itype
ar oscil p4, p5+k1, 1
out ar

endin
/* lfo.orc */

/* lfo.sco */
; Table #1: an ordinary sine wave.
f 1 0 32768 10 1

; p4 = amplitude of the output signal.
; p5 = frequency (in cycles per second) of the output signal.
; Play Instrument #1 for two seconds.
i 1 0 2 10000 220
e
/* lfo.sco */

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

November, 1998 (New in Csound version 3.491)

421

Chapter 15. Orchestra Opcodes and Operators

limit

limit — Sets the lower and upper limits of the value it processes.

Description

Sets the lower and upper limits of the value it processes.

Syntax

ar limit asig, klow, khigh

ir limit isig, ilow, ihigh

kr limit ksig, klow, khigh

Initialization

isig -- input signal

ilow -- low threshold

ihigh -- high threshold

Performance

xsig -- input signal

klow -- low threshold

khigh -- high threshold

limit sets the lower and upper limits on the xsig value it processes. If xhigh is lower than xlow, then the
output will be the average of the two - it will not be affected by xsig .

This opcode is useful in several situations, such as table indexing or for clipping and modeling a-rate, i-rate or
k-rate signals.

See Also

mirror, wrap

Credits

Author: Robin Whittle

Australia

New in Csound version 3.46

422

Chapter 15. Orchestra Opcodes and Operators

line

line — Trace a straight line between specified points.

Description

Trace a straight line between specified points.

Syntax

ar line ia, idur1, ib

kr line ia, idur1, ib

Initialization

ia -- starting value. Zero is illegal for exponentials.

ib, ic, etc. -- value after dur1 seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idur1 -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Examples

Here is an example of the line opcode. It uses the files line.orc and line.sco.

Example 15-1. Example of the line opcode.

/* line.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Define kcps as a frequency value that linearly declines
; from 880 to 220. It declines over the period set by p3.
kcps line 880, p3, 220

a1 oscil 20000, kcps, 1
out a1

endin
/* line.orc */

/* line.sco */
/* Written by Kevin Conder */

423

Chapter 15. Orchestra Opcodes and Operators

; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* line.sco */

See Also

expon, expseg , expsegr , linseg , linsegr

linen

linen — Applies a straight line rise and decay pattern to an input amp signal.

Description

linen -- apply a straight line rise and decay pattern to an input amp signal.

Syntax

ar linen xamp, irise, idur, idec

kr linen kamp, irise, idur, idec

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.

idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.

Performance

kamp, xamp -- input amplitude signal.

Rise modifications are applied for the first irise seconds, and decay from time idur - idec. If these periods are
separated in time there will be a steady state during which amp will be unmodified. If linen rise and decay
periods overlap then both modifications will be in effect for that time. If the overall duration idur is exceeded
in performance, the final decay will continue on in the same direction, going negative.

See Also

envlpx, envlpxr , linenr

424

Chapter 15. Orchestra Opcodes and Operators

linenr

linenr — The linen opcode extended with a final release segment.

Description

linenr -- same as linen except that the final segment is entered only on sensing a MIDI note release. The note
is then extended by the decay time.

Syntax

ar linenr xamp, irise, idec, iatdec

kr linenr kamp, irise, idec, iatdec

Initialization

irise -- rise time in seconds. A zero or negative value signifies no rise modification.

idur -- overall duration in seconds. A zero or negative value will cause initialization to be skipped.

idec -- decay time in seconds. Zero means no decay. An idec > idur will cause a truncated decay.

iatdec -- attenuation factor by which the closing steady state value is reduced exponentially over the decay
period. This value must be positive and is normally of the order of .01. A large or excessively small value is apt
to produce a cutoff which is audible. A zero or negative value is illegal.

Performance

kamp, xamp -- input amplitude signal.

linenr is unique within Csound in containing a note-off sensor and release time extender . When it senses
either a score event termination or a MIDI noteoff, it will immediately extend the performance time of the
current instrument by idec seconds, then execute an exponential decay towards the factor iatdec. For two or
more units in an instrument, extension is by the greatest idec.

linenr is an example of the special Csound “r” units that contain a note-off sensor and release time extender.
When each senses a score event termination or a MIDI noteoff, it will immediately extend the performance
time of the current instrument by idec seconds unless made independent by irind. Then it will begin a decay
from wherever it was at the time.

These “r” units can also be modified by MIDI noteoff velocities (see veloffs). If the irind flag is on (non-zero),
the overall performance time is unaffected by note-off and veloff data.

Multiple “r” units. When two or more “r” units occur in the same instrument it is usual to have only one of
them influence the overall note duration. This is normally the master amplitude unit. Other units controlling,
say, filter motion can still be sensitive to note-off commands while not affecting the duration by making them
independent (irind non-zero). Depending on their own idec (release time) values, independent “r” units may
or may not reach their final destinations before the instrument terminates. If they do, they will simply hold
their target values until termination. If two or more “r” units are simultaneously master, note extension is by
the greatest idec.

See Also

envlpx, envlpxr , linen

425

Chapter 15. Orchestra Opcodes and Operators

lineto

lineto — Generate glissandos starting from a control signal.

Description

Generate glissandos starting from a control signal.

Syntax

kr lineto ksig, ktime

Performance

kr -- Output signal.

ksig -- Input signal.

ktime -- Time length of glissando in seconds.

lineto adds glissando (i.e. straight lines) to a stepped input signal (for example, produced by randh or
lpshold). It generates a straight line starting from previous step value, reaching the new step value in ktime
seconds. When the new step value is reached, such value is held until a new step occurs. Be sure that ktime
argument value is smaller than the time elapsed between two consecutive steps of the original signal,
otherwise discontinuities will occur in output signal.

When used together with the output of lpshold it emulates the glissando effect of old analog sequencers.

See Also

tlineto

Credits

Author: Gabriel Maldonado

New in Version 4.13

linrand

linrand — Linear distribution random number generator (positive values only).

Description

Linear distribution random number generator (positive values only). This is an x-class noise generator.

426

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar linrand krange

ir linrand krange

kr linrand krange

Performance

krange -- the range of the random numbers (0 - krange). Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the linrand opcode. It uses the files linrand.orc and linrand.sco.

Example 15-1. Example of the linrand opcode.

/* linrand.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number between 0 and 1.
; krange = 1

i1 linrand 1

print i1
endin
/* linrand.orc */

/* linrand.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* linrand.sco */

Its output should include a line like this:

instr 1: i1 = 0.394

427

Chapter 15. Orchestra Opcodes and Operators

See Also

betarand, bexprnd, cauchy, exprand, gauss, pcauchy, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

linseg

linseg — Trace a series of line segments between specified points.

Description

Trace a series of line segments between specified points.

Syntax

ar linseg ia, idur1, ib [, idur2] [, ic] [...]

kr linseg ia, idur1, ib [, idur2] [, ic] [...]

Initialization

ia -- starting value. Zero is illegal for exponentials.

ib, ic, etc. -- value after dur1 seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idur1 -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

Examples

Here is an example of the linseg opcode. It uses the files linseg.orc and linseg.sco.

Example 15-1. Example of the linseg opcode.

/* linseg.orc */

428

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Create an amplitude envelope.
kenv linseg 0, p3*0.25, 1, p3*0.75, 0
kamp = kenv * 30000

a1 oscil kamp, kcps, 1
out a1

endin
/* linseg.orc */

/* linseg.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for a half-second, p4=8.00
i 1 0 0.5 8.00
; Play Instrument #1 for a half-second, p4=8.01
i 1 1 0.5 8.01
; Play Instrument #1 for a half-second, p4=8.02
i 1 2 0.5 8.02
; Play Instrument #1 for a half-second, p4=8.03
i 1 3 0.5 8.03
e
/* linseg.sco */

See Also

expon, expseg , expsegr , line, linsegr

linsegr

linsegr — Trace a series of line segments between specified points including a release segment.

Description

Trace a series of line segments between specified points including a release segment.

429

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar linsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

kr linsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

Initialization

ia -- starting value. Zero is illegal for exponentials.

ib, ic, etc. -- value after dur1 seconds, etc. For exponentials, must be non-zero and must agree in sign with ia.

idur1 -- duration in seconds of first segment. A zero or negative value will cause all initialization to be
skipped.

idur2, idur3, etc. -- duration in seconds of subsequent segments. A zero or negative value will terminate the
initialization process with the preceding point, permitting the last-defined line or curve to be continued
indefinitely in performance. The default is zero.

irel, iz -- duration in seconds and final value of a note releasing segment.

Performance

These units generate control or audio signals whose values can pass through 2 or more specified points. The
sum of dur values may or may not equal the instrument’s performance time: a shorter performance will
truncate the specified pattern, while a longer one will cause the last-defined segment to continue on in the
same direction.

linsegr is amongst the Csound “r” units that contain a note-off sensor and release time extender. When each
senses an event termination or MIDI noteoff, it immediately extends the performance time of the current
instrument by irel seconds, and sets out to reach the value iz by the end of that period (no matter which
segment the unit is in). “r” units can also be modified by MIDI noteoff velocities. For two or more extenders
in an instrument, extension is by the greatest period.

Examples

Here is an example of the linsegr opcode. It uses the files linsegr.orc and linsegr.sco.

Example 15-1. Example of the linsegr opcode.

/* linsegr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; p4 = frequency in pitch-class notation.
kcps = cpspch(p4)

; Use an amplitude envelope with second-long release.
kenv linsegr 1, p3, 0.25, 1, 0
kamp = kenv * 30000

a1 oscil kamp, kcps, 1
out a1

endin
/* linsegr.orc */

430

Chapter 15. Orchestra Opcodes and Operators

/* linsegr.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Make sure the score lasts for four seconds.
f 0 4

; p4 = frequency (in pitch-class notation).
; Play Instrument #1 for a half-second, p4=8.00
i 1 0 0.5 8.00
; Play Instrument #1 for a half-second, p4=8.01
i 1 1 0.5 8.01
; Play Instrument #1 for a half-second, p4=8.02
i 1 2 0.5 8.02
; Play Instrument #1 for a half-second, p4=8.03
i 1 3 0.5 8.03
e
/* linsegr.sco */

See Also

expon, expseg , expsegr , line, linseg

Credits

Author: Barry L. Vercoe

New in Csound3.47

locsend

locsend — Distributes the audio signals of a previous locsig opcode.

Description

locsend depends upon the existence of a previously defined locsig . The number of output signals must match
the number in the previous locsig . The output signals from locsend are derived from the values given for
distance and reverb in the locsig and are ready to be sent to local or global reverb units (see example below).
The reverb amount and the balance between the 2 or 4 channels are calculated in the same way as described
in the Dodge book (an essential text!).

Syntax

a1, a2 locsend

a1, a2, a3, a4 locsend

431

Chapter 15. Orchestra Opcodes and Operators

Examples

asig some audio signal
kdegree line 0, p3, 360
kdistance line 1, p3, 10
a1, a2, a3, a4 locsig asig, kdegree, kdistance, .1
ar1, ar2, ar3, ar4 locsend
ga1 = ga1+ar1
ga2 = ga2+ar2
ga3 = ga3+ar3
ga4 = ga4+ar4

outq a1, a2, a3, a4
endin

instr 99 ; reverb instrument
a1 reverb2 ga1, 2.5, .5
a2 reverb2 ga2, 2.5, .5
a3 reverb2 ga3, 2.5, .5
a4 reverb2 ga4, 2.5, .5

outq a1, a2, a3, a4
ga1=0
ga2=0
ga3=0
ga4=0

In the above example, the signal, asig , is sent around a complete circle once during the duration of a note
while at the same time it becomes more and more “distant” from the listeners’ location. locsig sends the
appropriate amount of the signal internally to locsend. The outputs of the locsend are added to global
accumulators in a common Csound style and the global signals are used as inputs to the reverb units in a
separate instrument.

locsig is useful for quad and stereo panning as well as fixed placed of sounds anywhere between two
loudspeakers. Below is an example of the fixed placement of sounds in a stereo field.

instr 1
a1, a2 locsig asig, p4, p5, .1
ar1, ar2 locsend
ga1=ga1+ar1
ga2=ga2+ar2

outs a1, a
endin
instr 99

; reverb....
endin

A few notes:

;place the sound in the left speaker and near:
i1 0 1 0 1

;place the sound in the right speaker and far:
i1 1 1 90 25

;place the sound equally between left and right and in the middle ground distance:
i1 2 1 45 12
e

432

Chapter 15. Orchestra Opcodes and Operators

The next example shows a simple intuitive use of the distance value to simulate Doppler shift. The same
value is used to scale the frequency as is used as the distance input to locsig .

kdistance line 1, p3, 10
kfreq = (ifreq * 340) / (340 + kdistance)
asig oscili iamp, kfreq, 1
kdegree line 0, p3, 360
a1, a2, a3, a4 locsig asig, kdegree, kdistance, .1
ar1, ar2, ar3, ar4 locsend

See Also

locsig

Credits

Author: Richard Karpen

Seattle, Wash

1998 (New in Csound version 3.48)

locsig

locsig — Takes and input signal and distributes between 2 or 4 channels.

Description

locsig takes an input signal and distributes it among 2 or 4 channels using values in degrees to calculate the
balance between adjacent channels. It also takes arguments for distance (used to attenuate signals that are to
sound as if they are some distance further than the loudspeaker itself), and for the amount the signal that will
be sent to reverberators. This unit is based upon the example in the Charles Dodge/Thomas Jerse book,
Computer Music, page 320.

Syntax

a1, a2 locsig asig, kdegree, kdistance, kreverbsend

a1, a2, a3, a4 locsig asig, kdegree, kdistance, kreverbsend

Performance

kdegree -- value between 0 and 360 for placement of the signal in a 2 or 4 channel space configured as: a1=0,
a2=90, a3=180, a4=270 (kdegree=45 would balanced the signal equally between a1 and a2). locsig maps
kdegree to sin and cos functions to derive the signal balances (ie.: asig=1, kdegree=45, a1=a2=.707).

433

Chapter 15. Orchestra Opcodes and Operators

kdistance -- value>= 1 used to attenuate the signal and to calculate reverb level to simulate distance cues. As
kdistance gets larger the sound should get softer and somewhat more reverberant (assuming the use of
locsend in this case).

kreverbsend -- the percentage of the direct signal that will be factored along with the distance and degree
values to derive signal amounts that can be sent to a reverb unit such as reverb, or reverb2.

Examples

asig some audio signal
kdegree line 0, p3, 360
kdistance line 1, p3, 10
a1, a2, a3, a4 locsig asig, kdegree, kdistance, .1
ar1, ar2, ar3, ar4 locsend
ga1 = ga1+ar1
ga2 = ga2+ar2
ga3 = ga3+ar3
ga4 = ga4+ar4

outq a1, a2, a3, a4
endin

instr 99 ; reverb instrument
a1 reverb2 ga1, 2.5, .5
a2 reverb2 ga2, 2.5, .5
a3 reverb2 ga3, 2.5, .5
a4 reverb2 ga4, 2.5, .5

outq a1, a2, a3, a4
ga1=0
ga2=0
ga3=0
ga4=0

In the above example, the signal, asig , is sent around a complete circle once during the duration of a note
while at the same time it becomes more and more "distant" from the listeners’ location. locsig sends the
appropriate amount of the signal internally to locsend. The outputs of the locsend are added to global
accumulators in a common Csound style and the global signals are used as inputs to the reverb units in a
separate instrument.

locsig is useful for quad and stereo panning as well as fixed placed of sounds anywhere between two
loudspeakers. Below is an example of the fixed placement of sounds in a stereo field.

instr 1
a1, a2 locsig asig, p4, p5, .1
ar1, ar2 locsend
ga1=ga1+ar1
ga2=ga2+ar2

outs a1, a
endin
instr 99

; reverb....
endin

A few notes:

434

Chapter 15. Orchestra Opcodes and Operators

;place the sound in the left speaker and near:
i1 0 1 0 1

;place the sound in the right speaker and far:
i1 1 1 90 25

;place the sound equally between left and right and in the middle ground distance:
i1 2 1 45 12
e

The next example shows a simple intuitive use of the distance value to simulate Doppler shift. The same
value is used to scale the frequency as is used as the distance input to locsig .

kdistance line 1, p3, 10
kfreq = (ifreq * 340) / (340 + kdistance)
asig oscili iamp, kfreq, 1
kdegree line 0, p3, 360
a1, a2, a3, a4 locsig asig, kdegree, kdistance, .1
ar1, ar2, ar3, ar4 locsend

See Also

locsend

Credits

Author: Richard Karpen

Seattle, Wash

1998 (New in Csound version 3.48)

log

log — Returns a natural log.

Description

Returns the natural log of x (x positive only).

The argument value is restricted for log , log10, and sqrt .

Syntax

log(x) (no rate restriction)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

435

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the log opcode. It uses the files log.orc and log.sco.

Example 15-1. Example of the log opcode.

/* log.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = log(8)
print i1

endin
/* log.orc */

/* log.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* log.sco */

Its output should include a line like this:

instr 1: i1 = 2.079

See Also

abs, exp, frac, int , log10, i, sqrt

log10

log10 — Returns a base 10 log.

Description

Returns the base 10 log of x (x positive only).

The argument value is restricted for log , log10, and sqrt .

436

Chapter 15. Orchestra Opcodes and Operators

Syntax

log10(x) (no rate restriction)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

Examples

Here is an example of the log10 opcode. It uses the files log10.orc and log10.sco.

Example 15-1. Example of the log10 opcode.

/* log10.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = log10(8)
print i1

endin
/* log10.orc */

/* log10.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* log10.sco */

Its output should include a line like this:

instr 1: i1 = 0.903

See Also

abs, exp, frac, int , log , i, sqrt

logbtwo

logbtwo — Performs a logarithmic base two calculation.

Description

Performs a logarithmic base two calculation.

437

Chapter 15. Orchestra Opcodes and Operators

Syntax

logbtwo(x) (init-rate or control-rate args only)

Performance

logbtwo() returns the logarithm base two of x. The range of values admitted as argument is .25 to 4 (i.e. from
-2 octave to +2 octave response). This function is the inverse of powoftwo().

These functions are fast, because they read values stored in tables. Also they are very useful when working
with tuning ratios. They work at i- and k-rate.

Examples

Here is an example of the logbtwo opcode. It uses the files logbtwo.orc and logbtwo.sco.

Example 15-1. Example of the logbtwo opcode.

/* logbtwo.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = logbtwo(3)
print i1

endin
/* logbtwo.orc */

/* logbtwo.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* logbtwo.sco */

Its output should include a line like this:

instr 1: i1 = 1.585

See Also

powoftwo

438

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

June, 1998

Author: John ffitch

University of Bath, Codemist, Ltd.

Bath, UK

July, 1999

New in Csound version 3.57

loopseg

loopseg — Generate control signal consisting of linear segments delimited by two or more specified points.

Description

Generate control signal consisting of linear segments delimited by two or more specified points. The entire
envelope is looped at kfreq rate. Each parameter can be varied at k-rate.

Syntax

ksig loopseg kfreq, ktrig, ktime0, kvalue0 [, ktime1] [, kvalue1] [, ktime2] [, kvalue2] [...]

Performance

ksig -- Output signal

kfreq -- Repeat rate in Hz or fraction of Hz

ktrig -- If non-zero, retriggers the envelope from start (see trigger opcode), before the envelope cycle is
completed.

ktime0...ktimeN -- Times of points; expressed in fraction of a cycle.

kvalue0...kvalueN -- Values of points

loopseg opcode is similar to linseg , but the entire envelope is looped at kfreq rate. Notice that times are not
expressed in seconds but in fraction of a cycle. Actually each duration represent is proportional to the other,
and the entire cycle duration is proportional to the sum of all duration values.

The sum of all duration is then rescaled according to kfreq argument. For example, considering an envelope
made up of 3 segments, each segment having 100 as duration value, their sum will be 300. This value
represents the total duration of the envelope, and is actually divided into 3 equal parts, a part for each
segment.

Actually, the real envelope duration in seconds is determined by kfreq. Again, if the envelope is made up of 3
segments, but this time the first and last segments have a duration of 50, whereas the central segment has a
duration of 100 again, their sum will be 200. This time 200 represent the total duration of the 3 segments, so
the central segment will be twice as long as the other segments.

All parameters can be varied at k-rate. Negative frequency values are allowed, reading the envelope backward.
ktime0 should always be set to 0, except if the user wants some special effect.

439

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the loopseg opcode. It uses the files loopseg.orc and loopseg.sco.

Example 15-1. Example of the loopseg opcode.

/* loopseg.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1
instr 1

kfreq line 1, p3, 20

klp loopseg kfreq, 0, 0, 0, 0.5, 30000, 1, 0

a1 oscil klp, 440, 1
out a1

endin
/* loopseg.orc */

/* loopseg.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for five seconds.
i 1 0 5
e
/* loopseg.sco */

See Also

lpshold

Credits

Author: Gabriel Maldonado

New in Version 4.13

lorenz

lorenz — Implements the Lorenz system of equations.

440

Chapter 15. Orchestra Opcodes and Operators

Description

Implements the Lorenz system of equations. The Lorenz system is a chaotic-dynamic system which was
originally used to simulate the motion of a particle in convection currents and simplified weather systems.
Small differences in initial conditions rapidly lead to diverging values. This is sometimes expressed as the
butterfly effect. If a butterfly flaps its wings in Australia, it will have an effect on the weather in Alaska. This
system is one of the milestones in the development of chaos theory. It is useful as a chaotic audio source or as
a low frequency modulation source.

Syntax

ax, ay, az lorenz ksv, krv, kbv, kh, ix, iy, iz, iskip

Initialization

ix, iy, iz -- the initial coordinates of the particle.

iskip -- used to skip generated values. If iskip is set to 5, only every fifth value generated is output. This is
useful in generating higher pitched tones.

Performance

ksv -- the Prandtl number or sigma

krv -- the Rayleigh number

kbv -- the ratio of the length and width of the box in which the convection currents are generated

kh -- the step size used in approximating the differential equation. This can be used to control the pitch of the
systems. Values of .1-.001 are typical.

The equations are approximated as follows:

x = x + h*(s*(y - x))
y = y + h*(-x*z + r*x - y)
z = z + h*(x*y - b*z)

The historical values of these parameters are:

ks = 10
kr = 28
kb = 8/3

Examples

Here is an example of the lorenz opcode. It uses the files lorenz.orc and lorenz.sco.

Example 15-1. Example of the lorenz opcode.

/* lorenz.orc */
; Initialize the global variables.
sr = 44100

441

Chapter 15. Orchestra Opcodes and Operators

kr = 44100
ksmps = 1
nchnls = 2

; Instrument #1 - a lorenz system in 3D space.
instr 1

; Create a basic tone.
kamp init 25000
kcps init 220
ifn = 1
asnd oscil kamp, kcps, ifn

; Figure out its X, Y, Z coordinates.
ksv init 10
krv init 28
kbv init 2.667
kh init 0.0003
ix = 0.6
iy = 0.6
iz = 0.6
iskip = 1
ax1, ay1, az1 lorenz ksv, krv, kbv, kh, ix, iy, iz, iskip

; Place the basic tone within 3D space.
kx downsamp ax1
ky downsamp ay1
kz downsamp az1
idist = 1
ift = 0
imode = 1
imdel = 1.018853416
iovr = 2
aw2, ax2, ay2, az2 spat3d asnd, kx, ky, kz, idist, \

ift, imode, imdel, iovr

; Convert the 3D sound to stereo.
aleft = aw2 + ay2
aright = aw2 - ay2

outs aleft, aright
endin
/* lorenz.orc */

/* lorenz.sco */
; Table #1 a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 5 seconds.
i 1 0 5
e
/* lorenz.sco */

442

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Hans Mikelson

February 1999 (New in Csound version 3.53)

loscil

loscil — Read sampled sound from a table.

Description

Read sampled sound (mono or stereo) from a table, with optional sustain and release looping.

Syntax

ar [,ar2] loscil xamp, kcps, ifn [, ibas] [, imod1] [, ibeg1] [, iend1] [, imod2,] [, ibeg2] [, iend2]

Initialization

ifn -- function table number, typically denoting an AIFF sampled sound segment with prescribed looping
points. The source file may be mono or stereo.

ibas (optional) -- base frequency in Hz of the recorded sound. This optionally overrides the frequency given
in the AIFF file, but is required if the file did not contain one. The default value is 261.626 Hz, i.e. middle C.
(New in Csound 4.03).

imod1, imod2 (optional, default=-1) -- play modes for the sustain and release loops. A value of 1 denotes
normal looping, 2 denotes forward & backward looping, 0 denotes no looping. The default value (-1) will
defer to the mode and the looping points given in the source file.

ibeg1, iend1, ibeg2, iend2 (optional, dependent on mod1, mod2) -- begin and end points of the sustain and
release loops. These are measured in sample frames from the beginning of the file, so will look the same
whether the sound segment is monaural or stereo.

Performance

ar1, ar2 -- the output at audio-rate. There is just ar1 for mono output. However, there is both ar1 and ar2 for
stereo output.

xamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal in cycles per second.

loscil samples the ftable audio at a-rate determined by kcps, then multiplies the result by xamp. The sampling
increment for kcps is dependent on the table’s base-note frequency ibas, and is automatically adjusted if the
orchestra sr value differs from that at which the source was recorded. In this unit, ftable is always sampled
with interpolation.

If sampling reaches the sustain loop endpoint and looping is in effect, the point of sampling will be modified
and loscil will continue reading from within that loop segment. Once the instrument has received a turnoff
signal (from the score or from a MIDI noteoff event), the next sustain endpoint encountered will be ignored
and sampling will continue towards the release loop end-point, or towards the last sample (henceforth to
zeros).

loscil is the basic unit for building a sampling synthesizer. Given a sufficient set of recorded piano tones, for
example, this unit can resample them to simulate the missing tones. Locating the sound source nearest a

443

Chapter 15. Orchestra Opcodes and Operators

desired pitch can be done via table lookup. Once a sampling instrument has begun, its turnoff point may be
unpredictable and require an external release envelope; this is often done by gating the sampled audio with
linenr , which will extend the duration of a turned-off instrument by a specific period while it implements a
decay.

Note: This is mono loscil:

a1 loscil 10000, 1, 1

...and this is stereo loscil:

a1, a2 loscil 10000, 1, 1

Examples

Here is an example of the loscil opcode. It uses the files loscil.orc, loscil.sco, and beats.aiff .

Example 15-1. Example of the loscil opcode.

/* loscil.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000
kcps = 1000
ifn = 1

a1 loscil kamp, kcps, ifn
out a1

endin
/* loscil.orc */

/* loscil.sco */
/* Written by Kevin Conder */
; Table #1: an audio file.
f 1 0 131072 1 "beats.aiff" 0 4 0

; Play Instrument #1 for 6 seconds.
; This will loop the drum pattern several times.
i 1 0 6
e
/* loscil.sco */

444

Chapter 15. Orchestra Opcodes and Operators

See Also

loscil3

Credits

Note about the mono/stereo difference was contributed by Rasmus Ekman.

loscil3

loscil3 — Read sampled sound from a table using cubic interpolation.

Description

Read sampled sound from a table using cubic interpolation.

Syntax

ar [,ar2] loscil3 xamp, kcps, ifn [, ibas] [, imod1] [, ibeg1] [, iend1] [, imod2] [, ibeg2] [, iend2]

Initialization

ifn -- function table number, typically denoting an AIFF sampled sound segment with prescribed looping
points. The source file may be mono or stereo.

ibas (optional) -- base frequency in Hz of the recorded sound. This optionally overrides the frequency given
in the AIFF file, but is required if the file did not contain one. The default value is 261.626 Hz, i.e. middle C.
(New in Csound 4.03).

imod1, imod2 (optional, default=-1) -- play modes for the sustain and release loops. A value of 1 denotes
normal looping, 2 denotes forward & backward looping, 0 denotes no looping. The default value (-1) will
defer to the mode and the looping points given in the source file.

ibeg1, iend1, ibeg2, iend2 (optional, dependent on mod1, mod2) -- begin and end points of the sustain and
release loops. These are measured in sample frames from the beginning of the file, so will look the same
whether the sound segment is monaural or stereo.

Performance

ar1, ar2 -- the output at audio-rate. There is just ar1 for mono output. However, there is both ar1 and ar2 for
stereo output.

xamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal in cycles per second.

loscil3 is experimental. It is identical to loscil except that it uses cubic interpolation. New in Csound version
3.50.

Note: This is mono loscil3:

a1 loscil3 10000, 1, 1

445

Chapter 15. Orchestra Opcodes and Operators

...and this is stereo loscil3:

a1, a2 loscil3 10000, 1, 1

Examples

Here is an example of the loscil3 opcode. It uses the files loscil3.orc, loscil3.sco, and beats.aiff .

Example 15-1. Example of the loscil3 opcode.

/* loscil3.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000
kcps = 1000
ifn = 1

a1 loscil3 kamp, kcps, ifn
out a1

endin
/* loscil3.orc */

/* loscil3.sco */
/* Written by Kevin Conder */
; Table #1: an audio file.
f 1 0 131072 1 "beats.aiff" 0 4 0

; Play Instrument #1 for 6 seconds.
; This will loop the drum pattern several times.
i 1 0 6
e
/* loscil3.sco */

See Also

loscil

446

Chapter 15. Orchestra Opcodes and Operators

Credits

Note about the mono/stereo difference was contributed by Rasmus Ekman.

lowpass2

lowpass2 — A resonant lowpass filter.

Description

Implementation of a resonant second-order lowpass filter.

Syntax

ar lowpass2 asig, kcf, kq [, iskip]

Initialization

iskip -- initial disposition of internal data space. A zero value will clear the space; a non-zero value will allow
previous information to remain. The default value is 0.

Performance

asig -- input signal to be filtered

kcf -- cutoff or resonant frequency of the filter, measured in Hz

kq -- Q of the filter, defined, for bandpass filters, as bandwidth/cutoff. kq should be between 1 and 500

lowpass2 is a second order IIR lowpass filter, with k-rate controls for cutoff frequency (kcf) and Q (kq). As kq
is increased, a resonant peak forms around the cutoff frequency, transforming the lowpass filter response into
a response that is similar to a bandpass filter, but with more low frequency energy. This corresponds to an
increase in the magnitude and "sharpness" of the resonant peak. For high values of kq, a scaling function
such as balance may be required. In practice, this allows for the simulation of the voltage-controlled filters of
analog synthesizers, or for the creation of a pitch of constant amplitude while filtering white noise.

Examples

Here is an example of the lowpass2 opcode. It uses the files lowpass2.orc and lowpass2.sco.

Example 15-1. Example of the lowpass2 opcode.

/* lowpass.orc */
/* Written by Sean Costello */
; Orchestra file for resonant filter sweep of a sawtooth-like waveform.

sr = 44100
kr = 2205
ksmps = 20
nchnls = 1

instr 1

idur = p3

447

Chapter 15. Orchestra Opcodes and Operators

ifreq = p4
iamp = p5 * .5
iharms = (sr*.4) / ifreq

; Sawtooth-like waveform
asig gbuzz 1, ifreq, iharms, 1, .9, 1

; Envelope to control filter cutoff
kfreq linseg 1, idur * 0.5, 5000, idur * 0.5, 1

afilt lowpass2 asig, kfreq, 30

; Simple amplitude envelope
kenv linseg 0, .1, iamp, idur -.2, iamp, .1, 0

out asig * kenv

endin
/* lowpass.orc */

/* lowpass2.sco */
/* Written by Sean Costello */
f1 0 8192 9 1 1 .25

i1 0 5 100 1000
i1 5 5 200 1000
e
/* lowpass2.sco */

Credits

Author: Sean Costello

Seattle, Washington

August, 1999

New in Csound version 4.0

lowres

lowres — Another resonant lowpass filter.

Description

lowres is a resonant lowpass filter.

Syntax

ar lowres asig, kcutoff, kresonance [, iskip]

448

Chapter 15. Orchestra Opcodes and Operators

Initialization

iskip -- initial disposition of internal data space. A zero value will clear the space; a non-zero value will allow
previous information to remain. The default value is 0.

Performance

asig -- input signal

kcutoff -- filter cutoff frequency point

kresonance -- resonance amount

lowres is a resonant lowpass filter derived from a Hans Mikelson orchestra. This implementation is much
faster than implementing it in Csound language, and it allows kr lower than sr . kcutoff is not in Hz and
kresonance is not in dB, so experiment for the finding best results.

Examples

Here is an example of the lowres opcode. It uses the files lowres.orc, lowres.sco and beats.wav.

Example 15-1. Example of the lowres opcode.

/* lowres.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a nice sawtooth waveform.
asig vco 5000, 440, 1

; Vary the cutoff frequency from 30 to 300 Hz.
kcutoff line 30, p3, 300
kresonance = 10

; Apply the filter.
a1 lowres asig, kcutoff, kresonance

out a1
endin
/* lowres.orc */

/* lowres.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave for the vco opcode.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* lowres.sco */

449

Chapter 15. Orchestra Opcodes and Operators

See Also

lowresx

Credits

Author: Gabriel Maldonado (adapted by John ffitch)

Italy

New in Csound version 3.49

lowresx

lowresx — Simulates layers of serially connected resonant lowpass filters.

Description

lowresx is equivalent to more layers of lowres with the same arguments serially connected.

Syntax

ar lowresx asig, kcutoff, kresonance [, inumlayer] [, iskip]

Initialization

inumlayer -- number of elements in a lowresx stack. Default value is 4. There is no maximum.

iskip -- initial disposition of internal data space. A zero value will clear the space; a non-zero value will allow
previous information to remain. The default value is 0.

Performance

asig -- input signal

kcutoff -- filter cutoff frequency point

kresonance -- resonance amount

lowresx is equivalent to more layer of lowres with the same arguments serially connected. Using a stack of a
larger number of filters allows a sharper cutoff. This is faster than using a larger number of instances of lowres
in a Csound orchestra because only one initialization and k cycle are needed at time and the audio loop falls
entirely inside the cache memory of processor. Based on an orchestra by Hans Mikelson

Examples

Here is an example of the lowresx opcode. It uses the files lowresx.orc, lowresx.sco, and beats.wav.

Example 15-1. Example of the lowresx opcode.

/* lowresx.orc */
/* Written by Kevin Conder */
; Initialize the global variables.

450

Chapter 15. Orchestra Opcodes and Operators

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - play the sawtooth waveform through a
; stack of filters.
instr 1

; Use a nice sawtooth waveform.
asig vco 5000, 440, 1

; Vary the cutoff frequency from 30 to 300 Hz.
kcutoff line 30, p3, 300
kresonance = 3
inumlayer = 2

alr lowresx asig, kcutoff, kresonance, inumlayer

; It gets loud, so clip the output amplitude to 30,000.
a1 clip alr, 1, 30000
out a1

endin
/* lowresx.orc */

/* lowresx.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave for the vco opcode.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* lowresx.sco */

See Also

lowres

Credits

Author: Gabriel Maldonado (adapted by John ffitch)

Italy

New in Csound version 3.49

lpf18

lpf18 — A 3-pole sweepable resonant lowpass filter.

451

Chapter 15. Orchestra Opcodes and Operators

Description

Implementation of a 3 pole sweepable resonant lowpass filter.

Syntax

ar lpf18 asig, kfco, kres, kdist

Performance

kfco -- the filter cutoff frequency in Hz. Should be in the range 0 to sr/2.

kres -- the amount of resonance. Self-oscillation occurs when kres is approximately 1. Shoujld usually be in
the range 0 to 1, however, values slightly greater than 1 are possible for more sustained oscillation and an
“overdrive” effect.

kdist -- amount of distortion. kdist = 0 gives a clean output. kdist > 0 adds tanh() distortion controlled by the
filter parameters, in such a way that both low cutoff and high resonance increase the distortion amount.
Some experimentation is encouraged.

lpf18 is a digital emulation of a 3 pole (18 dB/oct.) lowpass filter capable of self-oscillation with a built-in
distortion unit. It is really a 3-pole version of moogvcf , retuned, recalibrated and with some performance
improvements. The tuning and feedback tables use no more than 6 adds and 6 multiplies per control rate.
The distortion unit, itself, is based on a modified tanh function driven by the filter controls.

Note: This filter requires that the input signal be normalized to one.

Examples

Here is an example of the lpf18 opcode. It uses the files lpf18.orc and lpf18.sco.

Example 15-1. Example of the lpf18 opcode.

/* lpf18.orc */
/* Written by Kevin Conder, with help from Iain Duncan */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a sine waveform.
; Note that its amplitude (kamp) ranges from 0 to 1.
kamp init 1
kcps init 440
knh init 3
ifn = 1
asine buzz kamp, kcps, knh, ifn

; Filter the sine waveform.
; Vary the cutoff frequency (kfco) from 300 to 3,000 Hz.
kfco line 300, p3, 3000
kres init 0.8
kdist init 0.3
aout lpf18 asine, kfco, kres, kdist

452

Chapter 15. Orchestra Opcodes and Operators

out aout * 30000
endin
/* lpf18.orc */

/* lpf18.sco */
/* Written by Kevin Conder, with help from Iain Duncan */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for four seconds.
i 1 0 4
e
/* lpf18.sco */

Credits

Author: Josep M Comajuncosas

Spain

December, 2000

New in Csound version 4.10

Thanks goes to Iain Duncan for helping with the lpf18 example.

lpfreson

lpfreson — Modifies the spectrum of an audio signal with time-varying filter coefficients from a control file
and frequncy ratio.

Description

Modifies the spectrum of an audio signal with time-varying filter coefficients from a control file and frequncy
ratio.

Syntax

ar lpfreson asig, kfrqratio

Performance

asig -- an audio signal to be modified.

kfrqratio -- frequency ratio. Must be greater than 0.

lpread gets its values from the control file according to the input value ktimpnt (in seconds). If ktimpnt
proceeds at the analysis rate, time-normal synthesis will result; proceeding at a faster, slower, or variable rate
will result in time-warped synthesis. At each k-period, lpread interpolates between adjacent frames to more
accurately determine the parameter values (presented as output) and the filter coefficient settings (passed
internally to a subsequent lpfreson).

453

Chapter 15. Orchestra Opcodes and Operators

See Also

lpread, lpreson

lphasor

lphasor — Generates a table index for sample playback

Description

This opcode can be used to generate table index for sample playback (e.g. tablexkt).

Syntax

ar lphasor xtrns [, ilps] [, ilpe] [, imode] [, istrt] [, istor]

Initialization

ilps -- loop start.

ilpe -- loop end (must be greater than ilps to enable looping). The default value of ilps and ilpe is zero.

imode (optional: default = 0) -- loop mode. Allowed values are:

• 0: no loop

• 1: forward loop

• 2: backward loop

• 3: forward-backward loop

istrt (optional: default = 0) -- The initial output value (phase). It must be less than ilpe if looping is enabled,
but is allowed to be greater than ilps (i.e. you can start playback in the middle of the loop).

istor (optional: default = 0) -- skip initialization if set to any non-zero value.

Performance

ar -- phase output. Can be used as index with table opcodes.

xtrns -- transpose. ar is incremented by this value, and wraps around loop points. It is not allowed to be
negative.

Credits

Author: Istvan Varga

January 2002

New in version 4.18

Updated April 2002 by Istvan Varga

454

Chapter 15. Orchestra Opcodes and Operators

lpinterp

lpslot, lpinterp — Computes a new set of poles from the interpolation between two analysis.

Description

Computes a new set of poles from the interpolation between two analysis.

Syntax

lpinterp islot1, islot2, kmix

Initialization

islot1 -- slot where the first analysis was stored

islot2 -- slot where the second analysis was stored

kmix -- mix value between the two analysis. Should be between 0 and 1. 0 means analysis 1 only. 1 means
analysis 2 only. Any value in between will produce interpolation between the filters.

lpinterp computes a new set of poles from the interpolation between two analysis. The poles will be stored in
the current lpslot and used by the next lpreson opcode.

Examples

Here is a typical orc using the opcodes:

ipower init 50000 ; Define sound generator
ifreq init 440
asrc buzz ipower,ifreq,10,1

ktime line 0,p3,p3 ; Define time lin
lpslot 0 ; Read square data poles

krmsr,krmso,kerr,kcps lpread ktime,"square.pol"
lpslot 1 ; Read triangle data poles

krmsr,krmso,kerr,kcps lpread ktime,"triangle.pol"
kmix line 0,p3,1 ; Compute result of mixing

lpinterp 0,1,kmix ; and balance power
ares lpreson asrc
aout balance ares,asrc

out aout

See Also

lpslot

455

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

lposcil

lposcil, lposcil3 — Read sampled sound from a table with optional looping and high precision.

Description

Read sampled sound (mono or stereo) from a table, with optional sustain and release looping, and high
precision.

Syntax

ar lposcil kamp, kfreqratio, kloop, kend, ifn [, iphs]

Initialization

ifn -- function table number

Performance

kamp -- amplitude

kfreqratio -- multiply factor of table frequency (for example: 1 = original frequency, 1.5 = a fifth up , .5 = an
octave down)

kloop -- loop point (in samples)

kend -- end loop point (in samples)

lposcil (looping precise oscillator) allows varying at k-rate, the starting and ending point of a sample
contained in a table (GEN01). This can be useful when reading a sampled loop of a wavetable, where repeat
speed can be varied during the performance.

See Also

lposcil3

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.52

456

Chapter 15. Orchestra Opcodes and Operators

lposcil3

lposcil3 — Read sampled sound from a table with high precision and cubic interpolation.

Description

Read sampled sound (mono or stereo) from a table, with optional sustain and release looping, and high
precision. lposcil3 uses cubic interpolation.

Syntax

ar lposcil3 kamp, kfreqratio, kloop, kend, ifn [, iphs]

Initialization

ifn -- function table number

Performance

kamp -- amplitude

kfreqratio -- multiply factor of table frequency (for example: 1 = original frequency, 1.5 = a fifth up , .5 = an
octave down)

kloop -- loop point (in samples)

kend -- end loop point (in samples)

lposcil (looping precise oscillator) allows varying at k-rate, the starting and ending point of a sample
contained in a table (GEN01). This can be useful when reading a sampled loop of a wavetable, where repeat
speed can be varied during the performance.

See Also

lposcil

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.52

lpread

lpread — Reads a control file of time-ordered information frames.

Description

Reads a control file of time-ordered information frames.

457

Chapter 15. Orchestra Opcodes and Operators

Syntax

krmsr, krmso, kerr, kcps lpread ktimpnt, ifilcod [, inpoles] [, ifrmrate]

Initialization

ifilcod -- integer or character-string denoting a control-file (reflection coefficients and four parameter values)
derived from n-pole linear predictive spectral analysis of a source audio signal. An integer denotes the suffix
of a file lp.m; a character-string (in double quotes) gives a filename, optionally a full pathname. If not
fullpath, the file is sought first in the current directory, then in that of the environment variable SADIR (if
defined). Memory usage depends on the size of the file, which is held entirely in memory during computation
but shared by multiple calls (see also adsyn, pvoc).

inpoles (optional, default=0) -- number of poles in the lpc analysis. It is required only when the control file
does not have a header; it is ignored when a header is detected.

ifrmrate (optional, default=0) -- frame rate per second in the lpc analysis. It is required only when the control
file does not have a header; it is ignored when a header is detected.

Performance

lpread accesses a control file of time-ordered information frames, each containing n-pole filter coefficients
derived from linear predictive analysis of a source signal at fixed time intervals (e.g. 1/100 of a second), plus
four parameter values:

krmsr -- root-mean-square (rms) of the residual of analysis

krmso -- rms of the original signal

kerr -- the normalized error signal

kcps -- pitch in Hz

ktimpnt -- The passage of time, in seconds, through the analysis file. ktimpnt must always be positive, but
can move forwards or backwards in time, be stationary or discontinuous, as a pointer into the analysis file.

lpread gets its values from the control file according to the input value ktimpnt (in seconds). If ktimpnt
proceeds at the analysis rate, time-normal synthesis will result; proceeding at a faster, slower, or variable rate
will result in time-warped synthesis. At each k-period, lpread interpolates between adjacent frames to more
accurately determine the parameter values (presented as output) and the filter coefficient settings (passed
internally to a subsequent lpreson).

See Also

lpfreson, lpreson

lpreson

lpreson — Modifies the spectrum of an audio signal with time-varying filter coefficients from a control file.

Description

Modifies the spectrum of an audio signal with time-varying filter coefficients from a control file.

458

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar lpreson asig

Performance

asig -- an audio signal to be modified.

lpread gets its values from the control file according to the input value ktimpnt (in seconds). If ktimpnt
proceeds at the analysis rate, time-normal synthesis will result; proceeding at a faster, slower, or variable rate
will result in time-warped synthesis. At each k-period, lpread interpolates between adjacent frames to more
accurately determine the parameter values (presented as output) and the filter coefficient settings (passed
internally to a subsequent lpreson).

See Also

lpfreson, lpread

lpshold

lpshold — Generate control signal consisting of held segments.

Description

Generate control signal consisting of held segments delimited by two or more specified points. The entire
envelope is looped at kfreq rate. Each parameter can be varied at k-rate.

Syntax

ksig lpshold kfreq, ktrig, ktime0, kvalue0 [, ktime1] [, kvalue1] [, ktime2] [, kvalue2] [...]

Performance

ksig -- Output signal

kfreq -- Repeat rate in Hz or fraction of Hz

ktrig -- If non-zero, retriggers the envelope from start (see trigger opcode), before the envelope cycle is
completed.

ktime0...ktimeN -- Times of points; expressed in fraction of a cycle

kvalue0...kvalueN -- Values of points

lpshold is similar to loopseg , but can generate only horizontal segments, i.e. holds values for each time
interval placed between ktimeN and ktimeN+1. It can be useful, among other things, for melodic control, like
old analog sequencers.

459

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the lpshold opcode. It uses the files lpshold.orc and lpshold.sco.

Example 15-1. Example of the lpshold opcode.

/* lpshold.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1
instr 1

kfreq line 1, p3, 20

klp lpshold kfreq, 0, 0, 0, p3*0.25, 20000, p3*0.75, 0

a1 oscil klp, 440, 1
out a1

endin
/* lpshold.orc */

/* lpshold.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for five seconds.
i 1 0 5
e
/* lpshold.sco */

See Also

loopseg

Credits

Author: Gabriel Maldonado

New in Version 4.13

lpslot

lpslot — Selects the slot to be use by further lp opcodes.

Description

Selects the slot to be use by further lp opcodes.

460

Chapter 15. Orchestra Opcodes and Operators

Syntax

lpslot islot

Initialization

islot -- number of slot to be selected.

Performance

lpslot selects the slot to be use by further lp opcodes. This is the way to load and reference several analyses at
the same time.

Examples

Here is a typical orc using the opcodes:

ipower init 50000 ; Define sound generator
ifreq init 440
asrc buzz ipower,ifreq,10,1

ktime line 0,p3,p3 ; Define time lin
lpslot 0 ; Read square data poles

krmsr,krmso,kerr,kcps lpread ktime,"square.pol"
lpslot 1 ; Read triangle data poles

krmsr,krmso,kerr,kcps lpread ktime,"triangle.pol"
kmix line 0,p3,1 ; Compute result of mixing

lpinterp 0,1,kmix ; and balance power
ares lpreson asrc
aout balance ares,asrc

out aout

See Also

lpinterp

Credits

Author: Mark Resibois

Brussels

1996

mac

mac — Multiplies and accumulates a- and k-rate signals.

461

Chapter 15. Orchestra Opcodes and Operators

Description

Multiplies and accumulates a- and k-rate signals.

Syntax

ar mac asig1, ksig1 [, asig2] [, ksig2] [, asig3] [, ksig3] [...]

Performance

ksig1, etc. -- k-rate input signals

asig1, etc. -- a-rate input signals

mac multiplies and accumulates a- and k-rate signals. It is equivalent to:

ar = asig1 + ksig1*asig2 + ksig2+asig3 + ...

See Also

maca

Credits

Author: John ffitch

University of Bath, Codemist, Ltd.

Bath, UK

May, 1999

New in Csound version 3.54

maca

maca — Multiply and accumulate a-rate signals only.

Description

Multiply and accumulate a-rate signals only.

Syntax

ar maca asig1 [, asig2] [, asig3] [, asig4] [, asig5] [...]

462

Chapter 15. Orchestra Opcodes and Operators

Performance

asig1, asig2, ... -- a-rate input signals

maca multiplies and accumulates a-rate signals only. It is equivalent to:

ar = asig1 + asig2*asig3 + asig4+asig5 + ...

See Also

mac

Credits

Author: John ffitch

University of Bath, Codemist, Ltd.

Bath, UK

May, 1999

New in Csound version 3.54

madsr

madsr — Calculates the classical ADSR envelope using the linsegr mechanism.

Description

Calculates the classical ADSR envelope using the linsegr mechanism.

Syntax

ar madsr iatt, idec, islev, irel [, idel]

kr madsr iatt, idec, islev, irel [, idel]

Initialization

iatt -- duration of attack phase

idec -- duration of decay

islev -- level for sustain phase

irel -- duration of release phase

idel -- period of zero before the envelope starts

463

Chapter 15. Orchestra Opcodes and Operators

Performance

The envelope is the range 0 to 1 and may need to be scaled further. The envelope may be described as:

Picture of an ADSR envelope.

The length of the sustain is calculated from the length of the note. This means adsr is not suitable for use with
MIDI events. The opcode madsr uses the linsegr mechanism, and so can be used in MIDI applications.

madsr is new in Csound version 3.49.

See Also

adsr , mxadsr , xadsr

mandol

mandol — An emulation of a mandolin.

Description

An emulation of a mandolin.

Syntax

ar mandol kamp, kfreq, kpluck, kdetune, kgain, ksize, ifn [, iminfreq]

Initialization

ifn -- table number containing the pluck wave form. The file mandpluk.aiff is suitable for this. It is also
available at ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

iminfreq (optional, default=0) -- Lowest frequency to be played on the note. If it is omitted it is taken to be the
same as the initial kfreq.

464

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kpluck -- The pluck position, in range 0 to 1. Suggest 0.4.

kdetune -- The proportional detuning between the two strings. Suggested range 0.9 to 1.

kgain -- the loop gain of the model, in the range 0.97 to 1.

ksize -- The size of the body of the mandolin. Range 0 to 2.

Examples

Here is an example of the mandol opcode. It uses the files mandol.orc, mandol.sco, and mandpluk.aiff .

Example 15-1. Example of the mandol opcode.

/* mandol.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; kamp = 30000
; kfreq = 880
; kpluck = 0.4
; kdetune = 0.99
; kgain = 0.99
; ksize = 2
; ifn = 1
; ifreq = 220

a1 mandol 30000, 880, 0.4, 0.99, 0.99, 2, 1, 220

out a1
endin
/* mandol.orc */

/* mandol.sco */
/* Written by Kevin Conder */
; Table #1: the "mandpluk.aiff" audio file
f 1 0 8192 1 "mandpluk.aiff" 0 0 0

; Play Instrument #1 for one second.
i 1 0 1
e
/* mandol.sco */

465

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

marimba

marimba — Physical model related to the striking of a wooden block.

Description

Audio output is a tone related to the striking of a wooden block as found in a marimba. The method is a
physical model developed from Perry Cook but re-coded for Csound.

Syntax

ar marimba kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec [, idoubles] [, itriples]

Initialization

ihrd -- the hardness of the stick used in the strike. A range of 0 to 1 is used. 0.5 is a suitable value.

ipos -- where the block is hit, in the range 0 to 1.

imp -- a table of the strike impulses. The file marmstk1.wav is a suitable function from measurements and
can be loaded with a GEN01 table. It is also available at
ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

ivfn -- shape of vibrato, usually a sine table, created by a function

idec -- time before end of note when damping is introduced

idoubles (optional) -- percentage of double strikes. Default is 40%.

itriples (optional) -- percentage of triple strikes. Default is 20%.

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

466

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the marimba opcode. It uses the files marimba.orc, marimba.sco, and marmstk1.wav.

Example 15-1. Example of the marimba opcode.

/* marimba.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; kamp = 31129.60
; kfreq = 440
; ihrd = 0.5
; ipos = 0.561
; imp = 1
; kvibf = 6.0
; kvamp = 0.05
; ivibfn = 2
; idec = 0.1

a1 marimba 31129.60, 440, 0.5, 0.561, 1, 6.0, 0.05, 2, 0.1

out a1
endin
/* marimba.orc */

/* marimba.sco */
; Table #1, the "marmstk1.wav" audio file.
f 1 0 256 1 "marmstk1.wav" 0 0 0
; Table #2, a sine wave for the vibrato.
f 2 0 128 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* marimba.sco */

See Also

vibes

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

467

Chapter 15. Orchestra Opcodes and Operators

massign

massign — Assigns a MIDI channel number to a Csound instrument.

Description

Assigns a MIDI channel number to a Csound instrument.

Syntax

massign ichnl, insnum

Initialization

ichnl -- MIDI channel number (1-16)

insnum -- Csound orchestra instrument number

Performance

Assigns a MIDI channel number to a Csound instrument.

See Also

ctrlinit

Credits

Author: Barry L. Vercoe - Mike Berry

MIT, Cambridge, Mass.

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

maxalloc

maxalloc — Limits the number of allocations of an instrument.

Description

Limits the number of allocations of an instrument.

Syntax

maxalloc insnum, icount

468

Chapter 15. Orchestra Opcodes and Operators

Initialization

insnum -- instrument number

icount -- number of instrument allocations

Performance

All instances of maxalloc must be defined in the header section, not in the instrument body.

Examples

Here is an example of the maxalloc opcode. It uses the files maxalloc.orc and maxalloc.sco.

Example 15-1. Example of the maxalloc opcode.

/* maxalloc.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Limit Instrument #1 to three instances.
maxalloc 1, 3

; Instrument #1
instr 1

; Generate a waveform, get the cycles per second from the 4th p-field.
a1 oscil 6500, p4, 1
out a1

endin
/* maxalloc.orc */

/* maxalloc.sco */
/* Written by Kevin Conder */
; Just generate a nice, ordinary sine wave.
f 1 0 32768 10 1

; Play five instances of Instrument #1 for one second.
; Note that 4th p-field contains cycles per second.
i 1 0 1 220
i 1 0 1 440
i 1 0 1 880
i 1 0 1 1320
i 1 0 1 1760
e
/* maxalloc.sco */

Its output should contain a message like this:

WARNING: cannot allocate last note because it exceeds instr maxalloc

469

Chapter 15. Orchestra Opcodes and Operators

See Also

cpuprc, prealloc

Credits

Author: Gabriel Maldonado

Italy

July, 1999

New in Csound version 3.57

mclock

mclock — Sends a MIDI CLOCK message.

Description

Sends a MIDI CLOCK message.

Syntax

mclock ifreq

Initialization

ifreq -- clock message frequency rate in Hz

Performance

Sends a MIDI CLOCK message (0xF8) every 1/ifreq seconds. So ifreq is the frequency rate of CLOCK message
in Hz.

See Also

mrtmsg

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

470

Chapter 15. Orchestra Opcodes and Operators

mdelay

mdelay — A MIDI delay opcode.

Description

A MIDI delay opcode.

Syntax

mdelay kstatus, kchan, kd1, kd2, kdelay

Performance

kstatus -- status byte of MIDI message to be delayed

kchan -- MIDI channel (1-16)

kd1 -- first MIDI data byte

kd2 -- second MIDI data byte

kdelay -- delay time in seconds

Each time that kstatus is other than zero, mdelay outputs a MIDI message to the MIDI out port after kdelay
seconds. This opcode is useful in implementing MIDI delays. Several instances of mdelay can be present in
the same instrument with different argument values, so complex and colorful MIDI echoes can be
implemented. Further, the delay time can be changed at k-rate.

Credits

Author: Gabriel Maldonado

Italy

November, 1998 (New in Csound version 3.492)

midic14

midic14 — Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.

Description

Allows a floating-point 14-bit MIDI signal scaled with a minimum and a maximum range.

Syntax

idest midic14 ictlno1, ictlno2, imin, imax [, ifn]

kdest midic14 ictlno1, ictlno2, kmin, kmax [, ifn]

471

Chapter 15. Orchestra Opcodes and Operators

Initialization

idest -- output signal

ictln1o -- most-significant byte controller number (0-127)

ictlno2 -- least-significant byte controller number (0-127)

imin -- user-defined minimum floating-point value of output

imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to imin and imax values.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output

kmax -- user-defined maximum floating-point value of output

midic14 (i- and k-rate 14 bit MIDI control) allows a floating-point 14-bit MIDI signal scaled with a minimum
and a maximum range. The minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires two MIDI controllers as input.

See Also

ctrl7 , ctrl14, ctrl21, initc7 , initc14, initc21, midic7 , midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

midic21

midic21 — Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.

Description

Allows a floating-point 21-bit MIDI signal scaled with a minimum and a maximum range.

Syntax

idest midic21 ictlno1, ictlno2, ictlno3, imin, imax [, ifn]

kdest midic21 ictlno1, ictlno2, ictlno3, kmin, kmax [, ifn]

472

Chapter 15. Orchestra Opcodes and Operators

Initialization

idest -- output signal

ictln1o -- most-significant byte controller number (0-127)

ictlno2 -- mid-significant byte controller number (0-127)

ictlno3 -- least-significant byte controller number (0-127)

imin -- user-defined minimum floating-point value of output

imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to the imin and imax values.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output

kmax -- user-defined maximum floating-point value of output

midic21 (i- and k-rate 21 bit MIDI control) allows a floating-point 21-bit MIDI signal scaled with a minimum
and a maximum range. Minimum and maximum values can be varied at k-rate. It can use optional
interpolated table indexing. It requires three MIDI controllers as input.

See Also

ctrl7 , ctrl14, ctrl21, initc7 , initc14, initc21, midic7 , midic14

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

midic7

midic7 — Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.

Description

Allows a floating-point 7-bit MIDI signal scaled with a minimum and a maximum range.

Syntax

idest midic7 ictlno, imin, imax [, ifn]

kdest midic7 ictlno, kmin, kmax [, ifn]

473

Chapter 15. Orchestra Opcodes and Operators

Initialization

idest -- output signal

ictlno -- MIDI controller number (0-127)

imin -- user-defined minimum floating-point value of output

imax -- user-defined maximum floating-point value of output

ifn (optional) -- table to be read when indexing is required. Table must be normalized. Output is scaled
according to the imin and imax values.

Performance

kdest -- output signal

kmin -- user-defined minimum floating-point value of output

kmax -- user-defined maximum floating-point value of output

midic7 (i- and k-rate 7 bit MIDI control) allows a floating-point 7-bit MIDI signal scaled with a minimum and
a maximum range. It also allows optional non-interpolated table indexing. In midic7 minimum and
maximum values can be varied at k-rate.

See Also

ctrl7 , ctrl14, ctrl21, initc7 , initc14, initc21, midic14, midic21

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

midichannelaftertouch

midichannelaftertouch — Gets a MIDI channel’s aftertouch value.

Description

midichannelaftertouch is designed to simplify writing instruments that can be used interchangeably for
either score or MIDI input, and to make it easier to adapt instruments originally written for score input to
work with MIDI input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

474

Chapter 15. Orchestra Opcodes and Operators

Syntax

midichannelaftertouch xchannelaftertouch [, ilow] [, ihigh]

Initialization

ilow (optional) -- optional low value after rescaling, defaults to 0.

ihigh (optional) -- optional high value after rescaling, defaults to 127.

Performance

xchannelaftertouch -- returns the MIDI channel aftertouch during MIDI activation, remains unchanged
otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the value of xchannelaftertouch with
the corresponding value from MIDI input. If the instrument was NOT activated by MIDI input, the value of
xchannelaftertouch remains unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

Examples

Here is an example of the midichannelaftertouch opcode. It uses the files midichannelaftertouch.orc and
midichannelaftertouch.sco.

Example 15-1. Example of the midichannelaftertouch opcode.

/* midichannelaftertouch.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

475

Chapter 15. Orchestra Opcodes and Operators

kaft init 0
midichannelaftertouch kaft

; Display the aftertouch value when it changes.
printk2 kaft

endin
/* midichannelaftertouch.orc */

/* midichannelaftertouch.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* midichannelaftertouch.sco */

Its output should include lines like:

i1 127.00000
i1 20.00000
i1 44.00000

See Also

midicontrolchange, mididefault , midinoteoff , midinoteoncps, midinoteonkey, midinoteonoct ,
midinoteonpch, midipitchbend, midipolyaftertouch, midiprogramchange

Credits

Author: Michael Gogins

New in version 4.20

midichn

midichn — Returns the MIDI channel number from which the note was activated.

Description

midichn returns the MIDI channel number (1 - 16) from which the note was activated. In the case of score
notes, it returns 0.

Syntax

ichn midichn

476

Chapter 15. Orchestra Opcodes and Operators

Initialization

ichn -- channel number. If the current note was activated from score, it is set to zero.

Examples

Here is an example of the midichn opcode. It uses the files midichn.orc and midichn.sco.

Example 15-1. Example of the midichn opcode.

/* midichn.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 midichn

print i1
endin
/* midichn.orc */

/* midichn.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* midichn.sco */

Here is an advanced example of the midichn opcode. It uses the files midichn_advanced.mid,
midichn_advanced.orc, and midichn_advanced.sco.

Don’t forget that you must include the -F flag when using an external MIDI file like “midichn_advanced.mid”.

Example 15-2. An advanced example of the midichn opcode.

/* midichn_advanced.orc - written by Istvan Varga */
sr = 44100
ksmps = 10
nchnls = 1

massign 1, 1 ; all channels use instr 1
massign 2, 1
massign 3, 1
massign 4, 1
massign 5, 1
massign 6, 1
massign 7, 1
massign 8, 1
massign 9, 1
massign 10, 1
massign 11, 1
massign 12, 1
massign 13, 1
massign 14, 1

477

Chapter 15. Orchestra Opcodes and Operators

massign 15, 1
massign 16, 1

gicnt = 0 ; note counter

instr 1

gicnt = gicnt + 1 ; update note counter
kcnt init gicnt ; copy to local variable
ichn midichn ; get channel number
istime times ; note-on time

if (ichn > 0.5) goto l2 ; MIDI note
printks "note %.0f (time = %.2f) was activated from the score\\n", \

3600, kcnt, istime
goto l1

l2:
printks "note %.0f (time = %.2f) was activated from channel %.0f\\n", \

3600, kcnt, istime, ichn
l1:

endin
/* midichn_advanced.orc - written by Istvan Varga */

/* midichn_advanced.sco - written by Istvan Varga */
t 0 60
f 0 6 2 -2 0
i 1 1 0.5
i 1 4 0.5
e
/* midichn_advanced.sco - written by Istvan Varga */

Its output should include lines like:

note 7 (time = 0.00) was activated from channel 4
note 8 (time = 0.00) was activated from channel 2

See Also

pgmassign

Credits

Author: Istvan Varga

May 2002

New in version 4.20

midicontrolchange

midicontrolchange — Gets a MIDI control change value.

478

Chapter 15. Orchestra Opcodes and Operators

Description

midicontrolchange is designed to simplify writing instruments that can be used interchangeably for either
score or MIDI input, and to make it easier to adapt instruments originally written for score input to work with
MIDI input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

midicontrolchange xcontroller, xcontrollervalue [, ilow] [, ihigh]

Initialization

ilow (optional) -- optional low value after rescaling, defaults to 0.

ihigh (optional) -- optional high value after rescaling, defaults to 127.

Performance

xcontroller -- specifies a MIDI controller number (0-127).

xcontrollervalue -- returns the value of the MIDI controller during MIDI activation, remains unchanged
otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the values of the xcontroller and
xcontrollervalue with the corresponding values from MIDI input. If the instrument was NOT activated by
MIDI input, the values of xcontroller and xcontrollervalue remain unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

479

Chapter 15. Orchestra Opcodes and Operators

See Also

midichannelaftertouch, mididefault , midinoteoff , midinoteoncps, midinoteonkey, midinoteonoct ,
midinoteonpch, midipitchbend, midipolyaftertouch, midiprogramchange

Credits

Author: Michael Gogins

New in version 4.20

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

midictrl

midictrl — Get the current value (0-127) of a specified MIDI controller.

Description

Get the current value (0-127) of a specified MIDI controller.

Syntax

ival midictrl inum [, imin] [, imax]

kval midictrl inum [, imin] [, imax]

Initialization

inum -- MIDI controller number (0-127)

imin, imax -- set minimum and maximum limits on values obtained.

Performance

Get the current value (0-127) of a specified MIDI controller.

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

480

Chapter 15. Orchestra Opcodes and Operators

mididefault

mididefault — Changes values, depending on MIDI activation.

Description

mididefault is designed to simplify writing instruments that can be used interchangeably for either score or
MIDI input, and to make it easier to adapt instruments originally written for score input to work with MIDI
input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

mididefault xdefault, xvalue

Performance

xdefault -- specifies a default value that will be used during MIDI activation.

xvalue -- overwritten by xdefault during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode will overwrite the value of xvalue with the value of
xdefault . If the instrument was NOT activated by MIDI input, xvalue will remain unchanged.

This enables score pfields to receive a default value during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

481

Chapter 15. Orchestra Opcodes and Operators

See Also

midichannelaftertouch, midicontrolchange, midinoteoff , midinoteoncps, midinoteonkey, midinoteonoct ,
midinoteonpch, midipitchbend, midipolyaftertouch, midiprogramchange

Credits

Author: Michael Gogins

New in version 4.20

midiin

midiin — Returns a generic MIDI message received by the MIDI IN port.

Description

Returns a generic MIDI message received by the MIDI IN port

Syntax

kstatus, kchan, kdata1, kdata2 midiin

Performance

kstatus -- the type of MIDI message. Can be:

• 128 (note off)

• 144 (note on)

• 160 (polyphonic aftertouch)

• 176 (control change)

• 192 (program change)

• 208 (channel aftertouch)

• 224 (pitch bend

• 0 if no MIDI message are pending in the MIDI IN buffer

kchan -- MIDI channel (1-16)

kdata1, kdata2 -- message-dependent data values

midiin has no input arguments, because it reads at the MIDI in port implicitly. It works at k-rate. Normally
(i.e., when no messages are pending) kstatus is zero, only when MIDI data are present in the MIDI IN buffer,
is kstatus set to the type of the relevant messages.

482

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

midinoteoff

midinoteoff — Gets a MIDI noteoff value.

Description

midinoteoff is designed to simplify writing instruments that can be used interchangeably for either score or
MIDI input, and to make it easier to adapt instruments originally written for score input to work with MIDI
input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

midinoteoff xkey, xvelocity

Performance

xkey -- returns MIDI key during MIDI activation, remains unchanged otherwise.

xvelocity -- returns MIDI velocity during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the values of the xkey and xvelocity
with the corresponding values from MIDI input. If the instrument was NOT activated by MIDI input, the
values of xkey and xvelocity remain unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

483

Chapter 15. Orchestra Opcodes and Operators

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

Examples

Here is an example of the midinoteoff opcode. It uses the files midinoteoff.orc and midinoteoff.sco.

Example 15-1. Example of the midinoteoff opcode.

/* midinoteoff.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kkey init 0
kvelocity init 0

midinoteoff kkey, kvelocity

; Display the key value when it changes.
printk2 kkey

endin
/* midinoteoff.orc */

/* midinoteoff.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* midinoteoff.sco */

Its output should include lines like:

i1 60.00000
i1 76.00000

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoncps, midinoteonkey, midinoteonoct ,
midinoteonpch, midipitchbend, midipolyaftertouch, midiprogramchange

484

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Michael Gogins

New in version 4.20

midinoteoncps

midinoteoncps — Gets a MIDI note number as a cycles-per-second frequency.

Description

midinoteoncps is designed to simplify writing instruments that can be used interchangeably for either score
or MIDI input, and to make it easier to adapt instruments originally written for score input to work with MIDI
input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

midinoteoncps xcps, xvelocity

Performance

xcps -- returns MIDI key translated to cycles per second during MIDI activation, remains unchanged
otherwise.

xvelocity -- returns MIDI velocity during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the values of xcps and xvelocity with the
corresponding values from MIDI input. If the instrument was NOT activated by MIDI input, the values of
xcps and xvelocity remain unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

485

Chapter 15. Orchestra Opcodes and Operators

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

Examples

Here is an example of the midinoteoncps opcode. It uses the files midinoteoncps.orc and midinoteoncps.sco.

Example 15-1. Example of the midinoteoncps opcode.

/* midinoteoncps.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kcps init 0
kvelocity init 0

midinoteoncps kcps, kvelocity

; Display the cycles-per-second value when it changes.
printk2 kcps

endin
/* midinoteoncps.orc */

/* midinoteoncps.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* midinoteoncps.sco */

Its output should include lines like:

i1 261.62561
i1 440.00006

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoff , midinoteonkey, midinoteonoct ,
midinoteonpch, midipitchbend, midipolyaftertouch, midiprogramchange

486

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Michael Gogins

New in version 4.20

midinoteonkey

midinoteonkey — Gets a MIDI note number value.

Description

midinoteonkey is designed to simplify writing instruments that can be used interchangeably for either score
or MIDI input, and to make it easier to adapt instruments originally written for score input to work with MIDI
input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

midinoteonkey xkey, xvelocity

Performance

xkey -- returns MIDI key during MIDI activation, remains unchanged otherwise.

xvelocity -- returns MIDI velocity during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the values of xkey and xvelocity with
the corresponding values from MIDI input. If the instrument was NOT activated by MIDI input, the values of
xkey and xvelocity remain unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

487

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the midinoteonkey opcode. It uses the files midinoteonkey.orc and midinoteonkey.sco.

Example 15-1. Example of the midinoteonkey opcode.

/* midinoteonkey.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kkey init 0
kvelocity init 0

midinoteonkey kkey, kvelocity

; Display the key value when it changes.
printk2 kkey

endin
/* midinoteonkey.orc */

/* midinoteonkey.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* midinoteonkey.sco */

Its output should include lines like:

i1 60.00000
i1 69.00000

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoff , midinoteoncps, midinoteonoct ,
midinoteonpch, midipitchbend, midipolyaftertouch, midiprogramchange

488

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Michael Gogins

New in version 4.20

midinoteonoct

midinoteonoct — Gets a MIDI note number value as octave-point-decimal value.

Description

midinoteonoct is designed to simplify writing instruments that can be used interchangeably for either score
or MIDI input, and to make it easier to adapt instruments originally written for score input to work with MIDI
input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

midinoteonoct xoct, xvelocity

Performance

xoct -- returns MIDI key translated to linear octaves during MIDI activation, remains unchanged otherwise.

xvelocity -- returns MIDI velocity during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the values of xoct and xvelocity with the
corresponding value from MIDI input. If the instrument was NOT activated by MIDI input, the values of xoct
and xvelocity remain unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

489

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the midinoteonoct opcode. It uses the files midinoteonoct.orc and midinoteonoct.sco.

Example 15-1. Example of the midinoteonoct opcode.

/* midinoteonoct.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

koct init 0
kvelocity init 0

midinoteonoct koct, kvelocity

; Display the octave-point-decimal value when it changes.
printk2 koct

endin
/* midinoteonoct.orc */

/* midinoteonoct.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* midinoteonoct.sco */

Its output should include lines like:

i1 8.00000
i1 9.33333

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoff , midinoteoncps, midinoteonkey,
midinoteonpch, midipitchbend, midipolyaftertouch, midiprogramchange

490

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Michael Gogins

New in version 4.20

midinoteonpch

midinoteonpch — Gets a MIDI note number as a pitch-class value.

Description

midinoteonpch is designed to simplify writing instruments that can be used interchangeably for either score
or MIDI input, and to make it easier to adapt instruments originally written for score input to work with MIDI
input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

midinoteonpch xpch, xvelocity

Performance

xpch -- returns MIDI key translated to octave.pch during MIDI activation, remains unchanged otherwise.

xvelocity -- returns MIDI velocity during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the values of xpch and xvelocity with
the corresponding value from MIDI input. If the instrument was NOT activated by MIDI input, the values of
xpch and xvelocity remain unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

491

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the midinoteonpch opcode. It uses the files midinoteonpch.orc and midinoteonpch.sco.

Example 15-1. Example of the midinoteonpch opcode.

/* midinoteonpch.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kpch init 0
kvelocity init 0

midinoteonpch kpch, kvelocity

; Display the pitch-class value when it changes.
printk2 kpch

endin
/* midinoteonpch.orc */

/* midinoteonpch.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* midinoteonpch.sco */

Its output should include lines like:

i1 8.09000
i1 9.05000

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoff , midinoteoncps, midinoteonkey,
midinoteonoct , midipitchbend, midipolyaftertouch, midiprogramchange

492

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Michael Gogins

New in version 4.20

midion

midion — Plays MIDI notes.

Description

Plays MIDI notes.

Syntax

midion kchn, knum, kvel

Performance

kchn -- MIDI channel number (1-16)

knum -- note number (0-127)

kvel -- velocity (0-127)

midion (k-rate note on) plays MIDI notes with current kchn, knum and kvel. These arguments can be varied
at k-rate. Each time the MIDI converted value of any of these arguments changes, last MIDI note played by
current instance of midion is immediately turned off and a new note with the new argument values is
activated. This opcode, as well as moscil, can generate very complex melodic textures if controlled by
complex k-rate signals.

Any number of midion opcodes can appear in the same Csound instrument, allowing a counterpoint-style
polyphony within a single instrument.

See Also

moscil

Credits

Author: Gabriel Maldonado

Italy

May 1997 (moscil new in Csound version 3.47)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

493

Chapter 15. Orchestra Opcodes and Operators

midion2

midion2 — Sends noteon and noteoff messages to the MIDI OUT port.

Description

Sends noteon and noteoff messages to the MIDI OUT port when triggered by a value different than zero.

Syntax

midion2 kchn, knum, kvel, ktrig

Performance

kchn -- MIDI channel (1-16)

knum -- MIDI note number (0-127)

kvel -- note velocity (0-127)

ktrig -- trigger input signal (normally 0)

Similar to midion, this opcode sends noteon and noteoff messages to the MIDI out port, but only when ktrig
is non-zero. This opcode is can work together with the output of the trigger opcode.

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

midiout

midiout — Sends a generic MIDI message to the MIDI OUT port.

Description

Sends a generic MIDI message to the MIDI OUT port.

Syntax

midiout kstatus, kchan, kdata1, kdata2

494

Chapter 15. Orchestra Opcodes and Operators

Performance

kstatus -- the type of MIDI message. Can be:

• 128 (note off)

• 144 (note on)

• 160 (polyphonic aftertouch)

• 176 (control change)

• 192 (program change)

• 208 (channel aftertouch)

• 224 (pitch bend)

• 0 when no MIDI messages must be sent to the MIDI OUT port

kchan -- MIDI channel (1-16)

kdata1, kdata2 -- message-dependent data values

midiout has no output arguments, because it sends a message to the MIDI OUT port implicitly. It works at
k-rate. It sends a MIDI message only when kstatus is non-zero.

Warning
Warning: Normally kstatus should be set to 0. Only when the user intends to send a MIDI message, can it be
set to the corresponding message type number.

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

midipitchbend

midipitchbend — Gets a MIDI pitchbend value.

Description

midipitchbend is designed to simplify writing instruments that can be used interchangeably for either score
or MIDI input, and to make it easier to adapt instruments originally written for score input to work with MIDI
input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

495

Chapter 15. Orchestra Opcodes and Operators

Syntax

midipitchbend xpitchbend [, ilow] [, ihigh]

Initialization

ilow (optional) -- optional low value after rescaling, defaults to 0.

ihigh (optional) -- optional high value after rescaling, defaults to 127.

Performance

xpitchbend -- returns the MIDI pitch bend during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the value of xpitchbend with the
corresponding value from MIDI input. If the instrument was NOT activated by MIDI input, the value of
xpitchbend remains unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

Examples

Here is an example of the midipitchbend opcode. It uses the files midipitchbend.orc and midipitchbend.sco.

Example 15-1. Example of the midipitchbend opcode.

/* midipitchbend.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kpb init 0

496

Chapter 15. Orchestra Opcodes and Operators

midipitchbend kpb

; Display the pitch-bend value when it changes.
printk2 kpb

endin
/* midipitchbend.orc */

/* midipitchbend.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* midipitchbend.sco */

Its output should include lines like:

i1 0.12695
i1 0.00000
i1 -0.01562

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoff , midinoteoncps, midinoteonkey,
midinoteonoct , midinoteonpch, midipolyaftertouch, midiprogramchange

Credits

Author: Michael Gogins

New in version 4.20

midipolyaftertouch

midipolyaftertouch — Gets a MIDI polyphonic aftertouch value.

Description

midipolyaftertouch is designed to simplify writing instruments that can be used interchangeably for either
score or MIDI input, and to make it easier to adapt instruments originally written for score input to work with
MIDI input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

497

Chapter 15. Orchestra Opcodes and Operators

Syntax

midipolyaftertouch xpolyaftertouch, xcontrollervalue [, ilow] [, ihigh]

Initialization

ilow (optional) -- optional low value after rescaling, defaults to 0.

ihigh (optional) -- optional high value after rescaling, defaults to 127.

Performance

xpolyaftertouch -- returns MIDI polyphonic aftertouch during MIDI activation, remains unchanged
otherwise.

xcontrollervalue -- returns the value of the MIDI controller during MIDI activation, remains unchanged
otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the values of xpolyaftertouch and
xcontrollervalue with the corresponding values from MIDI input. If the instrument was NOT activated by
MIDI input, the values of xpolyaftertouch and xcontrollervalue remain unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoff , midinoteoncps, midinoteonkey,
midinoteonoct , midinoteonpch, midipitchbend, midiprogramchange

Credits

Author: Michael Gogins

New in version 4.20

498

Chapter 15. Orchestra Opcodes and Operators

midiprogramchange

midiprogramchange — Gets a MIDI program change value.

Description

midiprogramchange is designed to simplify writing instruments that can be used interchangeably for either
score or MIDI input, and to make it easier to adapt instruments originally written for score input to work with
MIDI input.

In general, it should be possible to write instrument definitions that work identically with both scores and
MIDI, including both MIDI files and real-time MIDI input, without using any conditional statements, and
that take full advantage of MIDI voice messages.

Note that correlating Csound instruments with MIDI channel numbers is done using the massign opcode for
real-time performance,. For file-driven performance, instrument numbers default to MIDI channel number +
1, but the defaults are overridden by any MIDI program change messages in the file.

Syntax

midiprogramchange xprogram

Performance

xprogram -- returns the MIDI program change value during MIDI activation, remains unchanged otherwise.

If the instrument was activated by MIDI input, the opcode overwrites the value of xprogram with the
corresponding value from MIDI input. If the instrument was NOT activated by MIDI input, the value of
xprogram remains unchanged.

This enables score p-fields to receive MIDI input data during MIDI activation, and score values otherwise.

Adapting a score-activated Csound instrument.: To adapt an ordinary Csound instrument designed for score
activation for score/MIDI interoperability:

• Change all linen, linseg, and expseg opcodes to linenr , linsegr , and expsegr , respectively, except for a de-clicking
or damping envelope. This will not materially change score-driven performance.

• Add the following lines at the beginning of the instrument definition:

; Ensures that a MIDI-activated instrument
; will have a positive p3 field.
mididefault 60, p3
; Puts MIDI key translated to cycles per
; second into p4, and MIDI velocity into p5
midinoteoncps p4, p5

Obviously, midinoteoncps could be changed to midinoteonoct or any of the other options, and the choice of p-fields
is arbitrary.

499

Chapter 15. Orchestra Opcodes and Operators

See Also

midichannelaftertouch, midicontrolchange, mididefault , midinoteoff , midinoteoncps, midinoteonkey,
midinoteonoct , midinoteonpch, midipitchbend, midipolyaftertouch

Credits

Author: Michael Gogins

New in version 4.20

mirror

mirror — Reflects the signal that exceeds the low and high thresholds.

Description

Reflects the signal that exceeds the low and high thresholds.

Syntax

ar mirror asig, klow, khigh

ir mirror isig, ilow, ihigh

kr mirror ksig, klow, khigh

Initialization

isig -- input signal

ilow -- low threshold

ihigh -- high threshold

Performance

xsig -- input signal

klow -- low threshold

khigh -- high threshold

mirror “reflects” the signal that exceeds the low and high thresholds.

This opcode is useful in several situations, such as table indexing or for clipping and modeling a-rate, i-rate or
k-rate signals.

See Also

limit , wrap

500

Chapter 15. Orchestra Opcodes and Operators

Credits

Authors: Gabriel Maldonado

Italy

New in Csound version 3.49

moog

moog— An emulation of a mini-Moog synthesizer.

Description

An emulation of a mini-Moog synthesizer.

Syntax

ar moog kamp, kfreq, kfiltq, kfiltrate, kvibf, kvamp, iafn, iwfn, ivfn

Initialization

iafn, iwfn, ivfn -- three table numbers containing the attack waveform (unlooped), the main looping wave
form, and the vibrato waveform. The files mandpluk.aiff and impuls20.aiff are suitable for the first two, and
a sine wave for the last.

Note: The files “mandpluk.aiff” and “impuls20.aiff” are also available at
ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kfiltq -- Q of the filter, in the range 0.8 to 0.9

kfiltrate -- rate control for the filter in the range 0 to 0.0002

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

Examples

Here is an example of the moog opcode. It uses the files moog.orc, moog.sco, mandpluk.aiff , and
impuls20.aiff .

Example 15-1. Example of the moog opcode.

/* moog.orc */
/* Written by Kevin Conder */
; Initialize the global variables.

501

Chapter 15. Orchestra Opcodes and Operators

sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000
kfreq = 220
kfiltq = 0.81
kfiltrate = 0
kvibf = 1.4
kvamp = 2.22
iafn = 1
iwfn = 2
ivfn = 3

am moog kamp, kfreq, kfiltq, kfiltrate, kvibf, kvamp, iafn, iwfn, ivfn

; It tends to get loud, so clip moog’s amplitude at 30,000.
a1 clip am, 2, 30000
out a1

endin
/* moog.orc */

/* moog.sco */
/* Written by Kevin Conder */
; Table #1: the "mandpluk.aiff" audio file
f 1 0 8192 1 "mandpluk.aiff" 0 0 0
; Table #2: the "impuls20.aiff" audio file
f 2 0 256 1 "impuls20.aiff" 0 0 0
; Table #3: a sine wave
f 3 0 256 10 1

; Play Instrument #1 for three seconds.
i 1 0 3
e
/* moog.sco */

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

moogvcf

moogvcf — A digital emulation of the Moog diode ladder filter configuration.

502

Chapter 15. Orchestra Opcodes and Operators

Description

A digital emulation of the Moog diode ladder filter configuration.

Syntax

ar moogvcf asig, xfco, xres [, iscale]

Initialization

iscale (optional, default=1) -- internal scaling factor. Use if asig is not in the range +/-1. Input is first divided
by iscale, then output is mutliplied iscale. Default value is 1. (New in Csound version 3.50)

Performance

asig -- input signal

xfco -- filter cut-off frequency in Hz. As of version 3.50, may i-,k-, or a-rate.

xres -- amount of resonance. Self-oscillation occurs when xres is approximately one. As of version 3.50, may
a-rate, i-rate, or k-rate.

moogvcf is a digital emulation of the Moog diode ladder filter configuration. This emulation is based loosely
on the paper “Analyzing the Moog VCF with Considerations for Digital Implemnetation” by Stilson and Smith
(CCRMA). This version was originally coded in Csound by Josep Comajuncosas. Some modifications and
conversion to C were done by Hans Mikelson

Note: This filter requires that the input signal be normalized to one.

Examples

Here is an example of the moogvcf opcode. It uses the files moogvcf.orc and moogvcf.sco.

Example 15-1. Example of the moogvcf opcode.

/* moogvcf.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a nice sawtooth waveform.
asig vco 32000, 220, 1

; Vary the filter-cutoff frequency from .2 to 2 KHz.
kfco line 200, p3, 2000

; Set the resonance amount to one.
krez init 1

; Scale the amplitude to 32768.
iscale = 32768

a1 moogvcf asig, kfco, krez, iscale

503

Chapter 15. Orchestra Opcodes and Operators

out a1
endin
/* moogvcf.orc */

/* moogvcf.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave for the vco opcode.
f 1 0 16384 10 1

; Play Instrument #1 for three seconds.
i 1 0 3
e
/* moogvcf.sco */

See Also

biquad, rezzy

Credits

Author: Hans Mikelson

October 1998

New in Csound version 3.49

moscil

moscil — Sends a stream of the MIDI notes.

Description

Sends a stream of the MIDI notes.

Syntax

moscil kchn, knum, kvel, kdur, kpause

Performance

kchn -- MIDI channel number (1-16)

knum -- note number (0-127)

kvel -- velocity (0-127)

kdur -- note duration in seconds

kpause -- pause duration after each noteoff and before new note in seconds

moscil and midion are the most powerful MIDI OUT opcodes. moscil (MIDI oscil) plays a stream of notes of
kdur duration. Channel, pitch, velocity, duration and pause can be controlled at k-rate, allowing very

504

Chapter 15. Orchestra Opcodes and Operators

complex algorithmically generated melodic lines. When current instrument is deactivated, the note played by
current instance of moscil is forcedly truncated.

Any number of moscil opcodes can appear in the same Csound instrument, allowing a counterpoint-style
polyphony within a single instrument.

See Also

midion

Credits

Author: Gabriel Maldonado

Italy

May 1997 (moscil new in Csound version 3.47)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

mpulse

mpulse — Generates a set of impulses.

Description

Generates a set of impulses of amplitude kamp at frequency kfreq. The first impulse is after a delay of ioffset
seconds. The value of kfreq is read only after an impulse, so it is the interval to the next impulse at the time of
an impulse.

Syntax

ar mpulse kamp, kfreq [, ioffset]

Initialization

ioffset (optional, default=0) -- the delay before the first impulse. If it is negative, the value is taken as the
number of samples, otherwise it is in seconds. Default is zero.

Performance

kamp -- amplitude of the impulses generated

kfreq -- frequency of the impulse train

After the initial delay, an impulse of kamp amplitude is generated as a single sample. Immediately after
generating the impulse, the time of the next one is calculated. If kfreq is zero, there is an infinite wait to the
next impulse. If kfreq is negative, the frequency is counted in samples rather than seconds.

505

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the mpulse opcode. It uses the files mpulse.orc and mpulse.sco.

Example 15-1. Example of the mpulse opcode.

/* mpulse.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate an impulse every 1/10th of a second.
kamp = 30000
kfreq = 0.1

a1 mpulse kamp, kfreq
out a1

endin
/* mpulse.orc */

/* mpulse.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* mpulse.sco */

mrtmsg

mrtmsg — Send system real-time messages to the MIDI OUT port.

Description

Send system real-time messages to the MIDI OUT port.

Syntax

mrtmsg imsgtype

Initialization

imsgtype -- type of real-time message:

• 1 sends a START message (0xFA);

• 2 sends a CONTINUE message (0xFB);

506

Chapter 15. Orchestra Opcodes and Operators

• 0 sends a STOP message (0xFC);

• -1 sends a SYSTEM RESET message (0xFF);

• -2 sends an ACTIVE SENSING message (0xFE)

Performance

Sends a real-time message once, in init stage of current instrument. imsgtype parameter is a flag to indicate
the message type.

See Also

mclock

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

multitap

multitap — Multitap delay line implementation.

Description

Multitap delay line implementation.

Syntax

ar multitap asig [, itime1] [, igain1] [, itime2] [, igain2] [...]

Initialization

The arguments itime and igain set the position and gain of each tap.

The delay line is fed by asig .

Examples

a1 oscil 1000, 100, 1
a2 multitap a1, 1.2, .5, 1.4, .2

out a2

507

Chapter 15. Orchestra Opcodes and Operators

This results in two delays, one with length of 1.2 and gain of .5, and one with length of 1.4 and gain of .2.

Credits

Author: Paris Smaragdis

MIT, Cambridge

1996

mxadsr

mxadsr — Calculates the classical ADSR envelope using the expsegr mechanism.

Description

Calculates the classical ADSR envelope using the expsegr mechanism.

Syntax

ar mxadsr iatt, idec, islev, irel [, idel]

kr mxadsr iatt, idec, islev, irel [, idel]

Initialization

iatt -- duration of attack phase

idec -- duration of decay

islev -- level for sustain phase

irel -- duration of release phase

idel -- period of zero before the envelope starts

508

Chapter 15. Orchestra Opcodes and Operators

Performance

The envelope is the range 0 to 1 and may need to be scaled further. The envelope may be described as:

Picture of an ADSR envelope.

The length of the sustain is calculated from the length of the note. This means adsr is not suitable for use with
MIDI events. The opcode madsr uses the linsegr mechanism, and so can be used in MIDI applications. The
opcode mxadsr is identical to madsr except it uses exponential, rather than linear, line segments.

mxadsr is new in Csound version 3.51.

See Also

adsr , madsr , xadsr

nchnls

nchnls — Sets the number of channels of audio output.

Description

These statements are global value assignments, made at the beginning of an orchestra, before any instrument
block is defined. Their function is to set certain reserved symbol variables that are required for performance.
Once set, these reserved symbols can be used in expressions anywhere in the orchestra.

Syntax

nchnls = iarg

Initialization

nchnls = (optional) -- set number of channels of audio output to iarg . (1 = mono, 2 = stereo, 4 =
quadraphonic.) The default value is 1 (mono).

509

Chapter 15. Orchestra Opcodes and Operators

In addition, any global variable can be initialized by an init-time assignment anywhere before the first instr
statement . All of the above assignments are run as instrument 0 (i-pass only) at the start of real performance.

See Also

kr , ksmps, sr

nestedap

nestedap — Three different nested all-pass filters.

Description

Three different nested all-pass filters, useful for implementing reverbs.

Syntax

ar nestedap asig, imode, imaxdel, idel1, igain1 [, idel2] [, igain2] [, idel3] [, igain3] [, istor]

Initialization

imode -- operating mode of the filter:

• 1 = simple all-pass filter

• 2 = single nested all-pass filter

• 3 = double nested all-pass filter

idel1, idel2, idel3 -- delay times of the filter stages. Delay times are in seconds and must be greater than zero.
idel1 must be greater than the sum of idel2 and idel3.

igain1, igain2, igain3 -- gain of the filter stages.

imaxdel -- will be necessary if k-rate delays are implemented. Not currently used.

istor -- Skip initialization if non-zero (default: 0).

Performance

asig -- input signal

If imode = 1, the filter takes the form:

510

Chapter 15. Orchestra Opcodes and Operators

Picture of imode 1 filter.

If imode = 2, the filter takes the form:

Picture of imode 2 filter.

If imode = 3, the filter takes the form:

Picture of imode 3 filter.

511

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the nestedap opcode. It uses the files nestedap.orc, nestedap.sco, and beats.wav.

Example 15-1. Example of the nestedap opcode.

/* nestedap.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 5
insnd = p4
gasig diskin insnd, 1

endin

instr 10
imax = 1
idel1 = p4/1000
igain1 = p5
idel2 = p6/1000
igain2 = p7
idel3 = p8/1000
igain3 = p9
idel4 = p10/1000
igain4 = p11
idel5 = p12/1000
igain5 = p13
idel6 = p14/1000
igain6 = p15

afdbk init 0

aout1 nestedap gasig+afdbk*.4, 3, imax, idel1, igain1, idel2, igain2, idel3, igain3

aout2 nestedap aout1, 2, imax, idel4, igain4, idel5, igain5

aout nestedap aout2, 1, imax, idel6, igain6

afdbk butterlp aout, 1000

outs gasig+(aout+aout1)/2, gasig-(aout+aout1)/2

gasig = 0
endin
/* nestedap.orc */

/* nestedap.sco */
f1 0 8192 10 1

; Diskin
; Sta Dur Soundin
i5 0 3 "beats.wav"

; Reverb
; St Dur Del1 Gn1 Del2 Gn2 Del3 Gn3 Del4 Gn4 Del5 Gn5 Del6 Gn6
i10 0 4 97 .11 23 .07 43 .09 72 .2 53 .2 119 .3
e
/* nestedap.sco */

512

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Hans Mikelson

February 1999

New in Csound version 3.53

The example was updated May 2002, thanks to Hans Mikelson

nlfilt

nlfilt — A filter with a non-linear effect.

Description

Implements the filter:

Y{n} =a Y{n-1} + b Y{n-2} + d Y^2{n-L} + X{n} - C

described in Dobson and Fitch (ICMC’96)

Syntax

ar nlfilt ain, ka, kb, kd, kC, kL

Performance

1. Non-linear effect. The range of parameters are:

a = b = 0
d = 0.8, 0.9, 0.7
C = 0.4, 0.5, 0.6
L = 20

This affects the lower register most but there are audible effects over the whole range. We suggest that it
may be useful for coloring drums, and for adding arbitrary highlights to notes.

2. Low Pass with non-linear. The range of parameters are:

a = 0.4
b = 0.2
d = 0.7
C = 0.11
L = 20, ... 200

There are instability problems with this variant but the effect is more pronounced of the lower register,
but is otherwise much like the pure comb. Short values of L can add attack to a sound.

3. High Pass with non-linear. The range of parameters are:

a = 0.35
b = -0.3
d = 0.95

513

Chapter 15. Orchestra Opcodes and Operators

C = 0,2, ... 0.4
L = 200

4. High Pass with non-linear. The range of parameters are:

a = 0.7
b = -0.2, ... 0.5
d = 0.9
C = 0.12, ... 0.24
L = 500, 10

The high pass version is less likely to oscillate. It adds scintillation to medium-high registers. With a large
delay L it is a little like a reverberation, while with small values there appear to be formant-like regions.
There are arbitrary color changes and resonances as the pitch changes. Works well with individual notes.

Warning
The "useful" ranges of parameters are not yet mapped.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

1997

noise

noise — A white noise generator with an IIR lowpass filter.

Description

A white noise generator with an IIR lowpass filter.

Syntax

ar noise xamp, kbeta

Initialization

ioffset -- the delay before the first impulse. If it is negative, the value is taken as the number of samples,
otherwise it is in seconds. Default is zero.

514

Chapter 15. Orchestra Opcodes and Operators

Performance

xamp -- amplitude of final output

kbeta -- beta of the lowpass filter. Should be in the range of 0 to 1.

The filter equation is:

y_n = sqrt(1-beta^2) * x_n + beta Y_(n-1)

where x_n is white noise.

Examples

Here is an example of the noise opcode. It uses the files noise.orc and noise.sco.

Example 15-1. Example of the noise opcode.

/* noise.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 30000

; Change the beta value linearly from 0 to 1.
kbeta line 0, p3, 1

a1 noise kamp, kbeta
out a1

endin
/* noise.orc */

/* noise.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* noise.sco */

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

December, 2000

New in Csound version 4.10

515

Chapter 15. Orchestra Opcodes and Operators

noteoff

noteoff — Send a noteoff message to the MIDI OUT port.

Description

Send a noteoff message to the MIDI OUT port.

Syntax

noteoff ichn, inum, ivel

Initialization

ichn -- MIDI channel number (1-16)

inum -- note number (0-127)

ivel -- velocity (0-127)

Performance

noteon (i-rate note on) and noteoff (i-rate note off) are the simplest MIDI OUT opcodes. noteon sends a MIDI
noteon message to MIDI OUT port, and noteoff sends a noteoff message. A noteon opcode must always be
followed by an noteoff with the same channel and number inside the same instrument, otherwise the note
will play endlessly.

These noteon and noteoff opcodes are useful only when introducing a timout statement to play a non-zero
duration MIDI note. For most purposes, it is better to use noteondur and noteondur2.

See Also

noteon, noteondur , noteondur2

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

noteon

noteon — Send a noteon message to the MIDI OUT port.

516

Chapter 15. Orchestra Opcodes and Operators

Description

Send a noteon message to the MIDI OUT port.

Syntax

noteon ichn, inum, ivel

Initialization

ichn -- MIDI channel number (1-16)

inum -- note number (0-127)

ivel -- velocity (0-127)

Performance

noteon (i-rate note on) and noteoff (i-rate note off) are the simplest MIDI OUT opcodes. noteon sends a MIDI
noteon message to MIDI OUT port, and noteoff sends a noteoff message. A noteon opcode must always be
followed by an noteoff with the same channel and number inside the same instrument, otherwise the note
will play endlessly.

These noteon and noteoff opcodes are useful only when introducing a timout statement to play a non-zero
duration MIDI note. For most purposes, it is better to use noteondur and noteondur2.

See Also

noteoff , noteondur , noteondur2

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

noteondur

noteondur — Sends a noteon and a noteoff MIDI message both with the same channel, number and
velocity.

Description

Sends a noteon and a noteoff MIDI message both with the same channel, number and velocity.

517

Chapter 15. Orchestra Opcodes and Operators

Syntax

noteondur ichn, inum, ivel, idur

Initialization

ichn -- MIDI channel number (1-16)

inum -- note number (0-127)

ivel -- velocity (0-127)

idur -- how long, in seconds, this note should last.

Performance

noteondur (i-rate note on with duration) sends a noteon and a noteoff MIDI message both with the same
channel, number and velocity. Noteoff message is sent after idur seconds are elapsed by the time noteondur
was active.

noteondur differs from noteondur2 in that noteondur truncates note duration when current instrument is
deactivated by score or by real-time playing, while noteondur2 will extend performance time of current
instrument until idur seconds have elapsed. In real-time playing, it is suggested to use noteondur also for
undefined durations, giving a large idur value.

Any number of noteondur opcodes can appear in the same Csound instrument, allowing chords to be played
by a single instrument.

See Also

noteoff , noteon, noteondur2

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

noteondur2

noteondur2 — Sends a noteon and a noteoff MIDI message both with the same channel, number and
velocity.

Description

Sends a noteon and a noteoff MIDI message both with the same channel, number and velocity.

518

Chapter 15. Orchestra Opcodes and Operators

Syntax

noteondur2 ichn, inum, ivel, idur

Initialization

ichn -- MIDI channel number (1-16)

inum -- note number (0-127)

ivel -- velocity (0-127)

idur -- how long, in seconds, this note should last.

Performance

noteondur2 (i-rate note on with duration) sends a noteon and a noteoff MIDI message both with the same
channel, number and velocity. Noteoff message is sent after idur seconds are elapsed by the time noteondur2
was active.

noteondur differs from noteondur2 in that noteondur truncates note duration when current instrument is
deactivated by score or by real-time playing, while noteondur2 will extend performance time of current
instrument until idur seconds have elapsed. In real-time playing, it is suggested to use noteondur also for
undefined durations, giving a large idur value.

Any number of noteondur2 opcodes can appear in the same Csound instrument, allowing chords to be
played by a single instrument.

See Also

noteoff , noteon, noteondur

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

notnum

notnum — Get a note number from a MIDI event.

Description

Get a note number from a MIDI event.

Syntax

ival notnum

519

Chapter 15. Orchestra Opcodes and Operators

Performance

Get the MIDI byte value (0 - 127) denoting the note number of the current event.

Examples

Here is an example of the notnum opcode. It uses the files notnum.orc and notnum.sco.

Example 15-1. Example of the notnum opcode.

/* notnum.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 notnum

print i1
endin
/* notnum.orc */

/* notnum.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* notnum.sco */

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, midictrl, octmidi, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

nreverb

nreverb — A reverberator consisting of 6 parallel comb-lowpass filters.

520

Chapter 15. Orchestra Opcodes and Operators

Description

This is a reverberator consisting of 6 parallel comb-lowpass filters being fed into a series of 5 allpass filters.
nreverb replaces reverb2 (version 3.48) and so both opcodes are identical.

Syntax

ar nreverb asig, ktime, khdif [, iskip] [,inumCombs] [, ifnCombs] [, inumAlpas] [, ifnAlpas]

Initialization

iskip (optional, default=0) -- Skip initialization if present and non-zero.

inumCombs (optional) -- number of filter constants in comb filter. If omitted, the values default to the
nreverb constants. New in Csound version 4.09.

ifnCombs - function table with inumCombs comb filter time values, followed the same number of gain values.
The ftable should not be rescaled (use negative fgen number). Positive time values are in seconds. The time
values are converted internally into number of samples, then set to the next greater prime number. If the time
is negative, it is interpreted directly as time in sample frames, and no processing is done (except negation).
New in Csound version 4.09.

inumAlpas, ifnAlpas (optional) -- same as inumCombs/ifnCombs, for allpass filter. New in Csound 4.09.

Performance

The input signal asig is reverberated for ktime seconds. The parameter khdif controls the high frequency
diffusion amount. The values of khdif should be from 0 to 1. If khdif is set to 0 the all the frequencies decay
with the same speed. If khdif is 1, high frequencies decay faster than lower ones. If ktime is inadvertently set
to a non-positive number, ktime will be reset automatically to 0.01. (New in Csound version 4.07.)

As of Csound version 4.09, nreverb may read any number of comb and allpass filter from an ftable.

Examples

Here is a simple example of the nreverb opcode. It uses the files nreverb.orc and nreverb.sco.

Example 15-1. Simple example of the nreverb opcode.

/* nreverb.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
a1 oscil 10000, 440, 1
a2 nreverb a1, 2.5, .3
out a1 + a2 * .2

endin
/* nreverb.orc */

/* nreverb.sco */
; Table 1: an ordinary sine wave.
f 1 0 32768 10 1

i 1 0.0 0.5
i 1 1.0 0.5

521

Chapter 15. Orchestra Opcodes and Operators

i 1 2.0 0.5
i 1 3.0 0.5
i 1 4.0 0.5
e
/* nreverb.sco */

Here is an example of the nreverb opcode using an ftable for filter constants. It uses the files
nreverb_ftable.orc, nreverb_ftable.sco, and beats.wav.

Example 15-2. An example of the nreverb opcode using an ftable for filter constants.

/* nreverb_ftable.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
a1 soundin "beats.wav"
a2 nreverb a1, 1.5, .75, 0, 8, 71, 4, 72
out a1 + a2 * .4

endin
/* nreverb_ftable.orc */

/* nreverb_ftable.sco */
; freeverb time constants, as direct (negative) sample, with arbitrary gains
f71 0 16 -2 -1116 -1188 -1277 -1356 -1422 -1491 -1557 -1617 0.8 0.79 0.78 0.77 0.76 0.75 0.74 0.73

f72 0 16 -2 -556 -441 -341 -225 0.7 0.72 0.74 0.76

i1 0 3
e
/* nreverb_ftable.sco */

Credits

Authors: Paris Smaragdis (reverb2)

MIT, Cambridge

1995

Richard Karpen (nreverb)

Seattle, Wash

1998

nrpn

nrpn — Sends a Non-Registered Parameter Number to the MIDI OUT port.

522

Chapter 15. Orchestra Opcodes and Operators

Description

Sends a NPRN (Non-Registered Parameter Number) message to the MIDI OUT port each time one of the
input arguments changes.

Syntax

nrpn kchan, kparmnum, kparmvalue

Performance

kchan -- MIDI channel (1-16)

kparmnum -- number of NRPN parameter

kparmvalue -- value of NRPN parameter

This opcode sends new message when the MIDI translated value of one of the input arguments changes. It
operates at k-rate. Useful with the MIDI instruments that recognize NRPNs (for example with the newest
sound-cards with internal MIDI synthesizer such as SB AWE32, AWE64, GUS etc. in which each patch
parameter can be changed during the performance via NRPN)

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.492)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

nsamp

nsamp — Returns the number of samples loaded into a stored function table number.

Description

Returns the number of samples loaded into a stored function table number.

Syntax

nsamp(x) (init-rate args only)

Performance

Returns the number of samples loaded into stored function table number x by GEN01. This is useful when a
sample is shorter than the power-of-two function table that holds it. New in Csound version 3.49.

523

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the nsamp opcode. It uses the files nsamp.orc, nsamp.sco, and mary.wav.

Example 15-1. Example of the nsamp opcode.

/* nsamp.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the size (in samples) of Table #1.
isz = nsamp(1)
print isz

endin
/* nsamp.orc */

/* nsamp.sco */
/* Written by Kevin Conder */
; Table #1: Use an audio file.
f 1 0 262144 1 "mary.wav" 0 0 0

; Play Instrument #1 for 1 second.
i 1 0 1
e
/* nsamp.sco */

Since the audio file “mary.wav” has 154390 samples, its output should include a line like this:

instr 1: isz = 154390.000

See Also

ftchnls, ftlen, ftlptim, ftsr

Credits

Authors: Barry L. Vercoe

MIT

Cambridge, Massachussetts

1997

Gabriel Maldonado (ftsr , nsamp)

Italy

October, 1998

Chris McCormick (ftchnls)

Perth, Australia

524

Chapter 15. Orchestra Opcodes and Operators

December 2001

ntrpol

ntrpol — Calculates the weighted mean value of two input signals.

Description

Calculates the weighted mean value (i.e. linear interpolation) of two input signals

Syntax

ar ntrpol asig1, asig2, kpoint [, imin] [, imax]

ir ntrpol isig1, isig2, ipoint [, imin] [, imax]

kr ntrpol ksig1, ksig2, kpoint [, imin] [, imax]

Initialization

imin -- minimum xpoint value (optional, default 0)

imax -- maximum xpoint value (optional, default 1)

Performance

xsig1, xsig2 -- input signals

xpoint -- interpolation point between the two values

ntrpol opcode outputs the linear interpolation between two input values. xpoint is the distance of evaluation
point from the first value. With the default values of imin and imax, (0 and 1) a zero value indicates no
distance from the first value and the maximum distance from the second one. With a 0.5 value, ntrpol will
output the mean value of the two inputs, indicating the exact half point between xsig1 and xsig2. A 1 value
indicates the maximum distance from the first value and no distance from the second one. The range of
xpoint can be also defined with imin and imax to make its management easier.

These opcodes are useful for crossfading two signals.

Credits

Author: Gabriel Maldonado

Italy

October, 1998 (New in Csound version 3.49)

octave

octave — Calculates a factor to raise/lower a frequency by a given amount of octaves.

525

Chapter 15. Orchestra Opcodes and Operators

Description

Calculates a factor to raise/lower a frequency by a given amount of octaves.

Syntax

octave(x)

This function works at a-rate, i-rate, and k-rate.

Initialization

x -- a value expressed in octaves.

Performance

The value returned by the octave function is a factor. You can multiply a frequency by this factor to
raise/lower it by the given amount of octaves.

Examples

Here is an example of the octave opcode. It uses the files octave.orc and octave.sco.

Example 15-1. Example of the octave opcode.

/* octave.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; The root note is A above middle-C (440 Hz)
iroot = 440

; Raise the root note by two octaves.
ioctaves = 2

; Calculate the new note.
ifactor = octave(ioctaves)
inew = iroot * ifactor

; Print out of all of the values.
print iroot
print ifactor
print inew

endin
/* octave.orc */

/* octave.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* octave.sco */

526

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like:

instr 1: iroot = 440.000
instr 1: ifactor = 4.000
instr 1: inew = 1760.149

See Also

cent , db, semitone

Credits

Author: Kevin Conder

New in version 4.16

octcps

octcps — Converts a cycles-per-second value to octave-point-decimal.

Description

Converts a cycles-per-second value to octave-point-decimal.

Syntax

octcps (cps) (init- or control-rate args only)

where the argument within the parentheses may be a further expression.

Performance

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

Table 15-1. Pitch and Frequency Values

Name Abbreviation

octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct , the fraction is interpreted as a true decimal

527

Chapter 15. Orchestra Opcodes and Operators

fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which k1 varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples

Here is an example of the octcps opcode. It uses the files octcps.orc and octcps.sco.

Example 15-1. Example of the octcps opcode.

/* octcps.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Convert a cycles-per-second value into an
; octave value.
icps = 440
ioct = octcps(icps)

print ioct
endin
/* octcps.orc */

/* octcps.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* octcps.sco */

Its output should include a line like this:

instr 1: ioct = 8.750

528

Chapter 15. Orchestra Opcodes and Operators

See Also

cpsoct , cpspch, octpch, pchoct

octmidi

octmidi — Get the note number, in octave-point-decimal units, of the current MIDI event.

Description

Get the note number, in octave-point-decimal units, of the current MIDI event.

Syntax

ioct octmidi

Performance

Get the note number of the current MIDI event, expressed in octave-point-decimal units, for local processing.

Examples

Here is an example of the octmidi opcode. It uses the files octmidi.orc and octmidi.sco.

Example 15-1. Example of the octmidi opcode.

/* octmidi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 octmidi

print i1
endin
/* octmidi.orc */

/* octmidi.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* octmidi.sco */

529

Chapter 15. Orchestra Opcodes and Operators

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidib, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

octmidib

octmidib — Get the note number of the current MIDI event and modify it by the current pitch-bend value,
express it in octave-point-decimal.

Description

Get the note number of the current MIDI event and modify it by the current pitch-bend value, express it in
octave-point-decimal.

Syntax

ioct octmidib [irange]

koct octmidib [irange]

Initialization

irange (optional) -- the pitch bend range in semitones

Performance

Get the note number of the current MIDI event, modify it by the current pitch-bend value, and express the
result in octave-point-decimal units. Available as an i-time value or as a continuous k-rate value.

Examples

Here is an example of the octmidib opcode. It uses the files octmidib.orc and octmidib.sco.

Example 15-1. Example of the octmidib opcode.

/* octmidib.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

530

Chapter 15. Orchestra Opcodes and Operators

instr 1
i1 octmidib

print i1
endin
/* octmidib.orc */

/* octmidib.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* octmidib.sco */

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, pchbend, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

octpch

octpch — Converts a pitch-class value to octave-point-decimal.

Description

Converts a pitch-class value to octave-point-decimal.

Syntax

octpch (pch) (init- or control-rate args only)

where the argument within the parentheses may be a further expression.

Performance

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

531

Chapter 15. Orchestra Opcodes and Operators

Name Abbreviation

Table 15-1. Pitch and Frequency Values

Name Abbreviation

octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct , the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which k1 varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples

Here is an example of the octpch opcode. It uses the files octpch.orc and octpch.sco.

Example 15-1. Example of the octpch opcode.

/* octpch.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Convert a pitch-class value into an
; octave-point-decimal value.
ipch = 8.09
ioct = octpch(ipch)

print ioct
endin
/* octpch.orc */

/* octpch.sco */

532

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* octpch.sco */

Its output should include a line like this:

instr 1: ioct = 8.750

See Also

cpsoct , cpspch, octcps, pchoct

oscbnk

oscbnk — Mixes the output of any number of oscillators.

Description

This unit generator mixes the output of any number of oscillators. The frequency, phase, and amplitude of
each oscillator can be modulated by two LFOs (all oscillators have a separate set of LFOs, with different phase
and frequency); additionally, the output of each oscillator can be filtered through an optional parametric
equalizer (also controlled by the LFOs). This opcode is most useful for rendering ensemble (strings, choir,
etc.) instruments.

Although the LFOs run at k-rate, amplitude, phase and filter modulation are interpolated internally, so it is
possible (and recommended in most cases) to use this unit at low (~1000 Hz) control rates without audible
quality degradation.

The start phase and frequency of all oscillators and LFOs can be set by a built-in seedable 31-bit random
number generator, or specified manually in a function table (GEN2).

Syntax

ar oscbnk kcps, kamd, kfmd, kpmd, iovrlap, iseed, kl1minf, kl1maxf, kl2minf, kl2maxf, ilfomode, keqminf,
keqmaxf, keqminl, keqmaxl, keqminq, keqmaxq, ieqmode, kfn [, il1fn] [, il2fn] [, ieqffn] [, ieqlfn] [, ieqqfn] [,
itabl] [, ioutfn]

Initialization

iovrlap -- Number of oscillator units.

iseed -- Seed value for random number generator (positive integer in the range 1 to 2147483646 (2 ˆ 31 - 2)).
iseed <= seeds 0 from the current time.

ieqmode -- Parametric equalizer mode

• -1: disable EQ (faster)

533

Chapter 15. Orchestra Opcodes and Operators

• 0: peak

• 1: low shelf

• 2: high shelf

• 3: peak (filter interpolation disabled)

• 4: low shelf (interpolation disabled)

• 5: high shelf (interpolation disabled)

The non-interpolated modes are faster, and in some cases (e.g. high shelf filter at low cutoff frequencies) also
more stable; however, interpolation is useful for avoiding “zipper noise” at low control rates.

ilfomode -- LFO modulation mode, sum of:

• 128: LFO1 to frequency

• 64: LFO1 to amplitude

• 32: LFO1 to phase

• 16: LFO1 to EQ

• 8: LFO2 to frequency

• 4: LFO2 to amplitude

• 2: LFO2 to phase

• 1: LFO2 to EQ

If an LFO does not modulate anything, it is not calculated, and the ftable number (il1fn or il2fn) can be
omitted.

il1fn (optional: default=0) -- LFO1 function table number. The waveform in this table has to be normalized
(absolute value<= 1), and is read with linear interpolation.

il2fn (optional: default=0) -- LFO2 function table number. The waveform in this table has to be normalized,
and is read with linear interpolation.

ieqffn, ieqlfn, ieqqfn (optional: default=0) -- Lookup tables for EQ frequency, level, and Q (optional if EQ is
disabled). Table read position is 0 if the modulator signal is less than, or equal to -1, (table length / 2) if the
modulator signal is zero, and the guard point if the modulator signal is greater than, or equal to 1. These
tables have to be normalized to the range 0 - 1, and have an extended guard point (table length = power of
two + 1). All tables are read with linear interpolation.

itabl (optional: default=0) -- Function table storing phase and frequency values for all oscillators (optional).
The values in this table are in the following order (5 for each oscillator unit):

oscillator phase, lfo1 phase, lfo1 frequency, lfo2 phase, lfo2 frequency, ...

All values are in the range 0 to 1; if the specified number is greater than 1, it is wrapped (phase) or limited
(frequency) to the allowed range. A negative value (or end of table) will use the output of the random number
generator. The random seed is always updated (even if no random number was used), so switching one value
between random and fixed will not change others.

ioutfn (optional: default=0) -- Function table to write phase and frequency values (optional). The format is
the same as in the case of itabl. This table is useful when experimenting with random numbers to record the
best values.

The two optional tables (itabl and ioutfn) are accessed only at i-time. This is useful to know, as the tables can
be safely overwritten after opcode initialization, which allows precalculating parameters at i-time and storing
in a temporary table before oscbnk initialization.

534

Chapter 15. Orchestra Opcodes and Operators

Performance

ar -- Output signal.

kcps -- Oscillator frequency in Hz.

kamd -- AM depth (0 - 1).

(AM output) = (AM input) * ((1 - (AM depth)) + (AM depth) * (modulator))

If ilfomode isn’t set to modulate the amplitude, then (AM output) = (AM input) regardless of the value of
kamd. That means that kamd will have no effect.

Note: Amplitude modulation is applied before the parametric equalizer.

kfmd -- FM depth (in Hz).

kpmd -- Phase modulation depth.

kl1minf, kl1maxf -- LFO1 minimum and maximum frequency in Hz.

kl2minf, kl2maxf -- LFO2 minimum and maximum frequency in Hz. (Note: oscillator and LFO frequencies
are allowed to be zero or negative.)

keqminf, keqmaxf -- Parametric equalizer minimum and maximum frequency in Hz.

keqminl, keqmaxl -- Parametric equalizer minimum and maximum level.

keqminq, keqmaxq -- Parametric equalizer minimum and maximum Q.

kfn -- Oscillator waveform table. Table number can be changed at k-rate (this is useful to select from a set of
band-limited tables generated by GEN30, to avoid aliasing). The table is read with linear interpolation.

Note: oscbnk uses the same random number generator as rnd31. So reading its documentation is also recommended.

Examples

Here is an example of oscbnk opcode. It uses the files oscbnk.orc and oscbnk.sco.

Example 15-1. Example of the oscbnk opcode.

/* oscbnk.orc */
/* Written by Istvan Varga */
sr = 48000
kr = 750
ksmps = 64
nchnls = 2

ga01 init 0
ga02 init 0

/* sawtooth wave */
i_ ftgen 1, 0, 16384, 7, 1, 16384, -1
/* FM waveform */
i_ ftgen 3, 0, 4096, 7, 0, 512, 0.25, 512, 1, 512, 0.25, 512, \

0, 512, -0.25, 512, -1, 512, -0.25, 512, 0
/* AM waveform */
i_ ftgen 4, 0, 4096, 5, 1, 4096, 0.01
/* FM to EQ */
i_ ftgen 5, 0, 1024, 5, 1, 512, 32, 512, 1
/* sine wave */
i_ ftgen 6, 0, 1024, 10, 1

535

Chapter 15. Orchestra Opcodes and Operators

/* room parameters */
i_ ftgen 7, 0, 64, -2, 4, 50, -1, -1, -1, 11, \

1, 26.833, 0.05, 0.85, 10000, 0.8, 0.5, 2, \
1, 1.753, 0.05, 0.85, 5000, 0.8, 0.5, 2, \
1, 39.451, 0.05, 0.85, 7000, 0.8, 0.5, 2, \
1, 33.503, 0.05, 0.85, 7000, 0.8, 0.5, 2, \
1, 36.151, 0.05, 0.85, 7000, 0.8, 0.5, 2, \
1, 29.633, 0.05, 0.85, 7000, 0.8, 0.5, 2

/* generate bandlimited sawtooth waves */

i0 = 0
loop1:
imaxh = sr / (2 * 440.0 * exp (log(2.0) * (i0 - 69) / 12))
i_ ftgen i0 + 256, 0, 4096, -30, 1, 1, imaxh
i0 = i0 + 1

if (i0 < 127.5) igoto loop1

instr 1

p3 = p3 + 0.4

; note frequency
kcps = 440.0 * exp (log(2.0) * (p4 - 69) / 12)
; lowpass max. frequency
klpmaxf limit 64 * kcps, 1000.0, 12000.0
; FM depth in Hz
kfmd1 = 0.02 * kcps
; AM frequency
kamfr = kcps * 0.02
kamfr2 = kcps * 0.1
; table number
kfnum = (256 + 69 + 0.5 + 12 * log(kcps / 440.0) / log(2.0))
; amp. envelope
aenv linseg 0, 0.1, 1.0, p3 - 0.5, 1.0, 0.1, 0.5, 0.2, 0, 1.0, 0

/* oscillator / left */

a1 oscbnk kcps, 0.0, kfmd1, 0.0, 40, 200, 0.1, 0.2, 0, 0, 144, \
0.0, klpmaxf, 0.0, 0.0, 1.5, 1.5, 2, \
kfnum, 3, 0, 5, 5, 5

a2 oscbnk kcps, 1.0, kfmd1, 0.0, 40, 201, 0.1, 0.2, kamfr, kamfr2, 148, \
0, 0, 0, 0, 0, 0, -1, \
kfnum, 3, 4

a2 pareq a2, kcps * 8, 0.0, 0.7071, 2
a0 = a1 + a2 * 0.12
/* delay */
adel = 0.001
a01 vdelayx a0, adel, 0.01, 16
a_ oscili 1.0, 0.25, 6, 0.0
adel = adel + 1.0 / (exp(log(2.0) * a_) * 8000)
a02 vdelayx a0, adel, 0.01, 16
a0 = a01 + a02

ga01 = ga01 + a0 * aenv * 2500

/* oscillator / right */

; lowpass max. frequency

a1 oscbnk kcps, 0.0, kfmd1, 0.0, 40, 202, 0.1, 0.2, 0, 0, 144, \
0.0, klpmaxf, 0.0, 0.0, 1.0, 1.0, 2, \
kfnum, 3, 0, 5, 5, 5

a2 oscbnk kcps, 1.0, kfmd1, 0.0, 40, 203, 0.1, 0.2, kamfr, kamfr2, 148, \

536

Chapter 15. Orchestra Opcodes and Operators

0, 0, 0, 0, 0, 0, -1, \
kfnum, 3, 4

a2 pareq a2, kcps * 8, 0.0, 0.7071, 2
a0 = a1 + a2 * 0.12
/* delay */
adel = 0.001
a01 vdelayx a0, adel, 0.01, 16
a_ oscili 1.0, 0.25, 6, 0.25
adel = adel + 1.0 / (exp(log(2.0) * a_) * 8000)
a02 vdelayx a0, adel, 0.01, 16
a0 = a01 + a02

ga02 = ga02 + a0 * aenv * 2500

endin

/* output / left */

instr 81

i1 = 0.000001
aLl, aLh, aRl, aRh spat3di ga01 + i1*i1*i1*i1, -8.0, 4.0, 0.0, 0.3, 7, 4
ga01 = 0
aLl butterlp aLl, 800.0
aRl butterlp aRl, 800.0

outs aLl + aLh, aRl + aRh

endin

/* output / right */

instr 82

i1 = 0.000001
aLl, aLh, aRl, aRh spat3di ga02 + i1*i1*i1*i1, 8.0, 4.0, 0.0, 0.3, 7, 4
ga02 = 0
aLl butterlp aLl, 800.0
aRl butterlp aRl, 800.0

outs aLl + aLh, aRl + aRh

endin
/* oscbnk.orc */

/* oscbnk.sco */
/* Written by Istvan Varga */
t 0 60

i 1 0 4 41
i 1 0 4 60
i 1 0 4 65
i 1 0 4 69

i 81 0 5.5
i 82 0 5.5
e
/* oscbnk.sco */

537

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Istvan Varga

2001

New in version 4.15

Updated April 2002 by Istvan Varga

oscil

oscil — A simple oscillator.

Description

Table ifn is incrementally sampled modulo the table length and the value obtained is multiplied by amp.

Syntax

ar oscil xamp, xcps, ifn [, iphs]

kr oscil kamp, kcps, ifn [, iphs]

Initialization

ifn -- function table number. Requires a wrap-around guard point.

iphs (optional, default=0) -- initial phase of sampling, expressed as a fraction of a cycle (0 to 1). A negative
value will cause phase initialization to be skipped. The default value is 0.

Performance

kamp, xamp -- amplitude

kcps, xcps -- frequency in cycles per second.

The oscil opcode generates periodic control (or audio) signals consisting of the value of kamp(xamp)times
the value returned from control rate (audio rate) sampling of a stored function table. The internal phase is
simultaneously advanced in accordance with the kcps or xcps input value.

Examples

Here is an example of the oscil opcode. It uses the files oscil.orc and oscil.sco.

Example 15-1. Example of the oscil opcode.

/* oscil.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

538

Chapter 15. Orchestra Opcodes and Operators

; Instrument #1 - a basic oscillator.
instr 1

kamp = 10000
kcps = 440
ifn = 1

a1 oscil kamp, kcps, ifn
out a1

endin
/* oscil.orc */

/* oscil.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* oscil.sco */

See Also

oscili, oscil3

oscil1

oscil1 — Accesses table values by incremental sampling.

Description

Accesses table values by incremental sampling.

Syntax

kr oscil1 idel, kamp, idur, ifn

Initialization

idel -- delay in seconds before oscil1 incremental sampling begins.

idur -- duration in seconds to sample through the oscil1 table just once. A zero or negative value will cause all
initialization to be skipped.

ifn -- function table number. tablei, oscil1i require the extended guard point.

539

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp -- amplitude factor.

oscil1 accesses values by sampling once through the function table at a rate determined by idur . For the first
idel seconds, the point of scan will reside at the first location of the table; it will then begin moving through
the table at a constant rate, reaching the end in another idur seconds; from that time on (i.e. after idel + idur
seconds) it will remain pointing at the last location. Each value obtained from sampling is then multiplied by
an amplitude factor kamp before being written into the result.

See Also

table, tablei, table3, oscil1i, osciln

oscil1i

oscil1i — Accesses table values by incremental sampling with linear interpolation.

Description

Accesses table values by incremental sampling with linear interpolation.

Syntax

kr oscil1i idel, kamp, idur, ifn

Initialization

idel -- delay in seconds before oscil1 incremental sampling begins.

idur -- duration in seconds to sample through the oscil1 table just once. A zero or negative value will cause all
initialization to be skipped.

ifn -- function table number. oscil1i requires the extended guard point.

Performance

kamp -- amplitude factor

oscil1i is an interpolating unit in which the fractional part of index is used to interpolate between adjacent
table entries. The smoothness gained by interpolation is at some small cost in execution time (see also oscili,
etc.), but the interpolating and non-interpolating units are otherwise interchangeable.

See Also

table, tablei, table3, oscil1, osciln

540

Chapter 15. Orchestra Opcodes and Operators

oscil3

oscil3 — A simple oscillator with cubic interpolation.

Description

Table ifn is incrementally sampled modulo the table length and the value obtained is multiplied by amp.

Syntax

ar oscil3 xamp, xcps, ifn [, iphs]

kr oscil3 kamp, kcps, ifn [, iphs]

Initialization

ifn -- function table number. Requires a wrap-around guard point.

iphs (optional) -- initial phase of sampling, expressed as a fraction of a cycle (0 to 1). A negative value will
cause phase initialization to be skipped. The default value is 0.

Performance

kamp, xamp -- amplitude

kcps, xcps -- frequency in cycles per second.

oscil3 is experimental, and is identical to oscili, except that it uses cubic interpolation. (New in Csound
version 3.50.)

Examples

Here is an example of the oscil3 opcode. It uses the files oscil3.orc and oscil3.sco.

Example 15-1. Example of the oscil3 opcode.

/* oscil3.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a basic oscillator.
instr 1

kamp = 10000
kcps = 220
ifn = 1

a1 oscil kamp, kcps, ifn
out a1

endin

; Instrument #2 - the basic oscillator with cubic interpolation.
instr 2

kamp = 10000
kcps = 220

541

Chapter 15. Orchestra Opcodes and Operators

ifn = 1

a1 oscil3 kamp, kcps, ifn
out a1

endin
/* oscil3.orc */

/* oscil3.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave table with a small amount of data.
f 1 0 32 10 0 1

; Play Instrument #1, the basic oscillator, for
; two seconds. This should sound relatively rough.
i 1 0 2

; Play Instrument #2, the cubic interpolated oscillator, for
; two seconds. This should sound relatively smooth.
i 2 2 2
e
/* oscil3.sco */

See Also

oscil, oscili

oscili

oscili — A simple oscillator with linear interpolation.

Description

Table ifn is incrementally sampled modulo the table length and the value obtained is multiplied by amp.

Syntax

ar oscili xamp, xcps, ifn [, iphs]

kr oscili kamp, kcps, ifn [, iphs]

Initialization

ifn -- function table number. Requires a wrap-around guard point.

iphs (optional) -- initial phase of sampling, expressed as a fraction of a cycle (0 to 1). A negative value will
cause phase initialization to be skipped. The default value is 0.

542

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp, xamp -- amplitude

kcps, xcps -- frequency in cycles per second.

oscili differs from oscil in that the standard procedure of using a truncated phase as a sampling index is here
replaced by a process that interpolates between two successive lookups. Interpolating generators will
produce a noticeably cleaner output signal, but they may take as much as twice as long to run. Adequate
accuracy can also be gained without the time cost of interpolation by using large stored function tables of 2K,
4K or 8K points if the space is available.

Examples

Here is an example of the oscili opcode. It uses the files oscili.orc and oscili.sco.

Example 15-1. Example of the oscili opcode.

/* oscili.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a basic oscillator.
instr 1

kamp = 10000
kcps = 220
ifn = 1

a1 oscil kamp, kcps, ifn
out a1

endin

; Instrument #2 - the basic oscillator with extra interpolation.
instr 2

kamp = 10000
kcps = 220
ifn = 1

a1 oscili kamp, kcps, ifn
out a1

endin
/* oscili.orc */

/* oscili.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave table with a small amount of data.
f 1 0 32 10 0 1

; Play Instrument #1, the basic oscillator, for
; two seconds. This should sound relatively rough.
i 1 0 2

; Play Instrument #2, the interpolated oscillator, for
; two seconds. This should sound relatively smooth.
i 2 2 2
e
/* oscili.sco */

543

Chapter 15. Orchestra Opcodes and Operators

See Also

oscil, oscil3

osciln

osciln — Accesses table values at a user-defined frequency.

Description

Accesses table values at a user-defined frequency. This opcode can also be written as oscilx.

Syntax

ar osciln kamp, ifrq, ifn, itimes

Initialization

ifrq, itimes -- rate and number of times through the stored table.

ifn -- function table number.

Performance

kamp -- amplitude factor

osciln will sample several times through the stored table at a rate of ifrq times per second, after which it will
output zeros. Generates audio signals only, with output values scaled by kamp.

See Also

table, tablei, table3, oscil1, oscil1i

oscils

oscils — A simple, fast sine oscillator

Description

Simple, fast sine oscillator, that uses only one multiply, and two add operations to generate one sample of
output, and does not require a function table.

544

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar oscils iamp, icps, iphs [, iflg]

Initialization

iamp -- output amplitude.

icps -- frequency in Hz (may be zero or negative, however the absolute value must be less than sr/2).

iphs -- start phase between 0 and 1.

iflg -- sum of the following values:

• 2: use double precision even if Csound was compiled to use floats. This improves quality (especially in the
case of long performance time), but may be up to twice as slow.

• 1: skip initialization.

Performance

ar -- audio output

Examples

Here is an example of the oscils opcode. It uses the files oscils.orc and oscils.sco.

Example 15-1. Example of the oscils opcode.

/* oscils.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a fast sine oscillator.
instr 1

iamp = 10000
icps = 440
iphs = 0

a1 oscils iamp, icps, iphs
out a1

endin
/* oscils.orc */

/* oscils.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* oscils.sco */

545

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Istvan Varga

January 2002

New in version 4.18

oscilx

oscilx — Same as the osciln opcode.

Description

Same as the osciln opcode.

Syntax

ar oscilx kamp, ifrq, ifn, itimes

out

out — Writes mono audio data to an external device or stream.

Description

Writes mono audio data to an external device or stream.

Syntax

out asig

Performance

Sends mono audio samples to an accumulating output buffer (created at the beginning of performance)
which serves to collect the output of all active instruments before the sound is written to disk. There can be
any number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with nchnls statement.

See Also

outh, outo, outq, outq1, outq2, outq3, outq4, outs, outs1, outs2, soundout

546

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

out32

out32 — Writes 32-channel audio data to an external device or stream.

Description

Writes 32-channel audio data to an external device or stream.

Syntax

out32 asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8, asig10, asig11, asig12, asig13, asig14, asig15, asig16,
asig17, asig18, asig19, asig20, asig21, asig22, asig23, asig24, asig25, asig26, asig27, asig28, asig29, asig30,
asig31, asig32

Performance

out32 outputs 32 channels of audio.

Credits

outc, outch, outx, outz

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

outc

outc — Writes audio data with an arbitrary number of channels to an external device or stream.

Description

Writes audio data with an arbitrary number of channels to an external device or stream.

547

Chapter 15. Orchestra Opcodes and Operators

Syntax

outc asig1 [, asig2] [...]

Performance

outc outputs as many channels as provided. Any channels greater than nchnls are ignored. Zeros are added as
necessary

Credits

out32, outch, outx, outz

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

outch

outch — Writes multi-channel audio data, with user-controllable channels, to an external device or stream.

Description

Writes multi-channel audio data, with user-controllable channels, to an external device or stream.

Syntax

outch ksig1, asig1 [, ksig2] [, asig2] [...]

Performance

outch outputs asig1 on the channel determined by ksig1, asig2 on the channel determined by ksig2, etc.

Credits

out32, outc, outx, outz

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

548

Chapter 15. Orchestra Opcodes and Operators

May, 2000 (New in Csound Version 4.07)

outh

outh — Writes 6-channel audio data to an external device or stream.

Description

Writes 6-channel audio data to an external device or stream.

Syntax

outh asig1, asig2, asig3, asig4, asig5, asig6

Performance

Sends 6-channel audio samples to an accumulating output buffer (created at the beginning of performance)
which serves to collect the output of all active instruments before the sound is written to disk. There can be
any number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with nchnls statement.

See Also

out , outo, outq, outq1, outq2, outq3, outq4, outs, outs1, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outiat

outiat — Sends MIDI aftertouch messages at i-rate.

Description

Sends MIDI aftertouch messages at i-rate.

Syntax

outiat ichn, ivalue, imin, imax

549

Chapter 15. Orchestra Opcodes and Operators

Initialization

ichn -- MIDI channel number (1-16)

ivalue -- floating point value

imin -- minimum floating point value (converted in MIDI integer value 0)

imax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

Performance

outiat (i-rate aftertouch output) sends aftertouch messages. It works only with MIDI instruments which
recognize them. It can drive a different value of a parameter for each note currently active.

It can scale an i-value floating-point argument according to the imin and imax values. For example, set imin
= 1.0 and imax = 2.0. When the ivalue argument receives a 2.0 value, the opcode will send a 127 value to the
MIDI OUT device. When the ivalue argument receives a 1.0 value, it will send a 0 value. i-rate opcodes send
their message once during instrument initialization.

See Also

outic14, outic, outipat , outipb, outipc, outkat , outkc14, outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outic

outic — Sends MIDI controller output at i-rate.

Description

Sends MIDI controller output at i-rate.

Syntax

outic ichn, inum, ivalue, imin, imax

Initialization

ichn -- MIDI channel number (1-16)

inum -- controller number (0-127 for example 1 = ModWheel; 2 = BreathControl etc.)

ivalue -- floating point value

imin -- minimum floating point value (converted in MIDI integer value 0)

550

Chapter 15. Orchestra Opcodes and Operators

imax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

Performance

outic (i-rate MIDI controller output) sends controller messages to the MIDI OUT device. It works only with
MIDI instruments which recognize them. It can drive a different value of a parameter for each note currently
active.

It can scale an i-value floating-point argument according to the imin and imax values. For example, set imin
= 1.0 and imax = 2.0. When the ivalue argument receives a 2.0 value, the opcode will send a 127 value to the
MIDI OUT device. When the ivalue argument receives a 1.0 value, it will send a 0 value. i-rate opcodes send
their message once during instrument initialization.

See Also

outiat , outic14, outipat , outipb, outipc, outkat , outkc14, outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outic14

outic14 — Sends 14-bit MIDI controller output at i-rate.

Description

Sends 14-bit MIDI controller output at i-rate.

Syntax

outic14 ichn, imsb, ilsb, ivalue, imin, imax

Initialization

ichn -- MIDI channel number (1-16)

imsb -- most significant byte controller number when using 14-bit parameters (0-127)

ilsb -- least significant byte controller number when using 14-bit parameters (0-127)

ivalue -- floating point value

imin -- minimum floating point value (converted in MIDI integer value 0)

imax -- maximum floating point value (converted in MIDI integer value 16383 (14-bit))

551

Chapter 15. Orchestra Opcodes and Operators

Performance

outic14 (i-rate MIDI 14-bit controller output) sends a pair of controller messages. This opcode can drive
14-bit parameters on MIDI instruments that recognize them. The first control message contains the most
significant byte of ivalue argument while the second message contains the less significant byte. imsb and ilsb
are the number of the most and less significant controller.

This opcode can drive a different value of a parameter for each note currently active.

It can scale an i-value floating-point argument according to the imin and imax values. For example, set imin
= 1.0 and imax = 2.0. When the ivalue argument receives a 2.0 value, the opcode will send a 127 value to the
MIDI OUT device. When the ivalue argument receives a 1.0 value, it will send a 0 value. i-rate opcodes send
their message once during instrument initialization.

See Also

outiat , outic, outipat , outipb, outipc, outkat , outkc14, outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outipat

outipat — Sends polyphonic MIDI aftertouch messages at i-rate.

Description

Sends polyphonic MIDI aftertouch messages at i-rate.

Syntax

outipat ichn, inotenum, ivalue, imin, imax

Initialization

ichn -- MIDI channel number (1-16)

inotenum -- MIDI note number (used in polyphonic aftertouch messages)

ivalue -- floating point value

imin -- minimum floating point value (converted in MIDI integer value 0)

imax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

552

Chapter 15. Orchestra Opcodes and Operators

Performance

outipat (i-rate polyphonic aftertouch output) sends polyphonic aftertouch messages. It works only with MIDI
instruments which recognize them. It can drive a different value of a parameter for each note currently active.

It can scale an i-value floating-point argument according to the imin and imax values. For example, set imin
= 1.0 and imax = 2.0. When the ivalue argument receives a 2.0 value, the opcode will send a 127 value to the
MIDI OUT device. When the ivalue argument receives a 1.0 value, it will send a 0 value. i-rate opcodes send
their message once during instrument initialization.

See Also

outiat , outic14, outic, outipb, outipc, outkat , outkc14, outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outipb

outipb — Sends MIDI pitch-bend messages at i-rate.

Description

Sends MIDI pitch-bend messages at i-rate.

Syntax

outipb ichn, ivalue, imin, imax

Initialization

ichn -- MIDI channel number (1-16)

ivalue -- floating point value

imin -- minimum floating point value (converted in MIDI integer value 0)

imax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

Performance

outipb (i-rate pitch bend output) sends pitch bend messages. It works only with MIDI instruments which
recognize them. It can drive a different value of a parameter for each note currently active.

It can scale an i-value floating-point argument according to the imin and imax values. For example, set imin
= 1.0 and imax = 2.0. When the ivalue argument receives a 2.0 value, the opcode will send a 127 value to the

553

Chapter 15. Orchestra Opcodes and Operators

MIDI OUT device. When the ivalue argument receives a 1.0 value, it will send a 0 value. i-rate opcodes send
their message once during instrument initialization.

See Also

outiat , outic14, outic, outipat , outipc, outkat , outkc14, outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outipc

outipc — Sends MIDI program change messages at i-rate

Description

Sends MIDI program change messages at i-rate

Syntax

outipc ichn, iprog, imin, imax

Initialization

ichn -- MIDI channel number (1-16)

iprog -- program change number in floating point

imin -- minimum floating point value (converted in MIDI integer value 0)

imax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

Performance

outipc (i-rate program change output) sends program change messages. It works only with MIDI instruments
which recognize them. It can drive a different value of a parameter for each note currently active.

It can scale an i-value floating-point argument according to the imin and imax values. For example, set imin
= 1.0 and imax = 2.0. When the ivalue argument receives a 2.0 value, the opcode will send a 127 value to the
MIDI OUT device. When the ivalue argument receives a 1.0 value, it will send a 0 value. i-rate opcodes send
their message once during instrument initialization.

554

Chapter 15. Orchestra Opcodes and Operators

See Also

outiat , outic14, outic, outipat , outipb, outkat , outkc14, outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outk

outk — Passes k-rate values out of a sub-instrument.

Description

Sends k-rate values to be returned from a sub-instrument.

Syntax

outk k1 [, k2] [...]

Performance

k1, k2, etc. -- k-rate values returned for the sub-instrument call.

Note: If an instrument containing outk is called as a normal instrument, then the opcode will have no effect.

Examples

See the example for the ink opcode.

See Also

Calling an Instrument Within an Instrument , ink

Credits

Author: Matt Ingalls

New in version 4.21

555

Chapter 15. Orchestra Opcodes and Operators

outkat

outkat — Sends MIDI aftertouch messages at k-rate.

Description

Sends MIDI aftertouch messages at k-rate.

Syntax

outkat kchn, kvalue, kmin, kmax

Performance

kchn -- MIDI channel number (1-16)

kvalue -- floating point value

kmin -- minimum floating point value (converted in MIDI integer value 0)

kmax -- maximum floating point value (converted in MIDI integer value 127)

outkat (k-rate aftertouch output) sends aftertouch messages. It works only with MIDI instruments which
recognize them. It can drive a different value of a parameter for each note currently active.

It can scale the k-value floating-point argument according to the kmin and kmax values. For example: set
kmin = 1.0 and kmax = 2.0. When the kvalue argument receives a 2.0 value, the opcode will send a 127 value
to the MIDI OUT device. When the kvalue argument receives a 1.0 value, it will send a 0 value. k-rate opcodes
send a message each time the MIDI converted value of argument kvalue changes.

See Also

outiat , outic14, outic, outipat , outipb, outipc, outkc14, outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outkc

outkc — Sends MIDI controller messages at k-rate.

Description

Sends MIDI controller messages at k-rate.

556

Chapter 15. Orchestra Opcodes and Operators

Syntax

outkc kchn, knum, kvalue, kmin, kmax

Performance

kchn -- MIDI channel number (1-16)

knum -- controller number (0-127 for example 1 = ModWheel; 2 = BreathControl etc.)

kvalue -- floating point value

kmin -- minimum floating point value (converted in MIDI integer value 0)

kmax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

outkc (k-rate MIDI controller output) sends controller messages to MIDI OUT device. It works only with MIDI
instruments which recognize them. It can drive a different value of a parameter for each note currently active.

It can scale the k-value floating-point argument according to the kmin and kmax values. For example: set
kmin = 1.0 and kmax = 2.0. When the kvalue argument receives a 2.0 value, the opcode will send a 127 value
to the MIDI OUT device. When the kvalue argument receives a 1.0 value, it will send a 0 value. k-rate opcodes
send a message each time the MIDI converted value of argument kvalue changes.

See Also

outiat , outic14, outic, outipat , outipb, outipc, outkat , outkc14, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outkc14

outkc14 — Sends 14-bit MIDI controller output at k-rate.

Description

Sends 14-bit MIDI controller output at k-rate.

Syntax

outkc14 kchn, kmsb, klsb, kvalue, kmin, kmax

557

Chapter 15. Orchestra Opcodes and Operators

Performance

kchn -- MIDI channel number (1-16)

kmsb -- most significant byte controller number when using 14-bit parameters (0-127)

klsb -- least significant byte controller number when using 14-bit parameters (0-127)

kvalue -- floating point value

kmin -- minimum floating point value (converted in MIDI integer value 0)

kmax -- maximum floating point value (converted in MIDI integer value 16383 (14-bit))

outkc14 (k-rate MIDI 14-bit controller output) sends a pair of controller messages. It works only with MIDI
instruments which recognize them. These opcodes can drive 14-bit parameters on MIDI instruments that
recognize them. The first control message contains the most significant byte of kvalue argument while the
second message contains the less significant byte. kmsb and klsb are the number of the most and less
significant controller.

It can drive a different value of a parameter for each note currently active.

It can scale the k-value floating-point argument according to the kmin and kmax values. For example: set
kmin = 1.0 and kmax = 2.0. When the kvalue argument receives a 2.0 value, the opcode will send a 127 value
to the MIDI OUT device. When the kvalue argument receives a 1.0 value, it will send a 0 value. k-rate opcodes
send a message each time the MIDI converted value of argument kvalue changes.

See Also

outiat , outic14, outic, outipat , outipb, outipc, outkat , outkc, outkpat , outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outkpat

outkpat — Sends polyphonic MIDI aftertouch messages at k-rate.

Description

Sends polyphonic MIDI aftertouch messages at k-rate.

Syntax

outkpat kchn, knotenum, kvalue, kmin, kmax

558

Chapter 15. Orchestra Opcodes and Operators

Performance

kchn -- MIDI channel number (1-16)

knotenum -- MIDI note number (used in polyphonic aftertouch messages)

kvalue -- floating point value

kmin -- minimum floating point value (converted in MIDI integer value 0)

kmax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

outkpat (k-rate polyphonic aftertouch output) sends polyphonic aftertouch messages. It works only with
MIDI instruments which recognize them. It can drive a different value of a parameter for each note currently
active.

It can scale the k-value floating-point argument according to the kmin and kmax values. For example: set
kmin = 1.0 and kmax = 2.0. When the kvalue argument receives a 2.0 value, the opcode will send a 127 value
to the MIDI OUT device. When the kvalue argument receives a 1.0 value, it will send a 0 value. k-rate opcodes
send a message each time the MIDI converted value of argument kvalue changes.

See Also

outiat , outic14, outic, outipat , outipb, outipc, outkat , outkc14, outkc, outkpb, outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outkpb

outkpb — Sends MIDI pitch-bend messages at k-rate.

Description

Sends MIDI pitch-bend messages at k-rate.

Syntax

outkpb kchn, kvalue, kmin, kmax

Performance

kchn -- MIDI channel number (1-16)

kvalue -- floating point value

kmin -- minimum floating point value (converted in MIDI integer value 0)

kmax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

559

Chapter 15. Orchestra Opcodes and Operators

outkpb (k-rate pitch-bend output) sends pitch-bend messages. It works only with MIDI instruments which
recognize them. It can drive a different value of a parameter for each note currently active.

It can scale the k-value floating-point argument according to the kmin and kmax values. For example: set
kmin = 1.0 and kmax = 2.0. When the kvalue argument receives a 2.0 value, the opcode will send a 127 value
to the MIDI OUT device. When the kvalue argument receives a 1.0 value, it will send a 0 value. k-rate opcodes
send a message each time the MIDI converted value of argument kvalue changes.

See Also

outiat , outic14, outic, outipat , outipb, outipc, outkat , outkc14, outkc, outkpat , outkpc

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outkpc

outkpc — Sends MIDI program change messages at k-rate.

Description

Sends MIDI program change messages at k-rate.

Syntax

outkpc kchn, kprog, kmin, kmax

Performance

kchn -- MIDI channel number (1-16)

kprog -- program change number in floating point

kmin -- minimum floating point value (converted in MIDI integer value 0)

kmax -- maximum floating point value (converted in MIDI integer value 127 (7 bit))

outkpc (k-rate program change output) sends program change messages. It works only with MIDI
instruments which recognize them. These opcodes can drive a different value of a parameter for each note
currently active.

It can scale the k-value floating-point argument according to the kmin and kmax values. For example: set
kmin = 1.0 and kmax = 2.0. When the kvalue argument receives a 2.0 value, the opcode will send a 127 value
to the MIDI OUT device. When the kvalue argument receives a 1.0 value, it will send a 0 value. k-rate opcodes
send a message each time the MIDI converted value of argument kvalue changes.

560

Chapter 15. Orchestra Opcodes and Operators

See Also

outiat , outic14, outic, outipat , outipb, outipc, outkat , outkc14, outkc, outkpat , outkpb

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

outo

outo — Writes 8-channel audio data to an external device or stream.

Description

Writes 8-channel audio data to an external device or stream.

Syntax

outo asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8

Performance

Sends 8-channel audio samples to an accumulating output buffer (created at the beginning of performance)
which serves to collect the output of all active instruments before the sound is written to disk. There can be
any number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with nchnls statement.

See Also

out , outh, outq, outq1, outq2, outq3, outq4, outs, outs1, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

561

Chapter 15. Orchestra Opcodes and Operators

outq

outq — Writes 4-channel audio data to an external device or stream.

Description

Writes 4-channel audio data to an external device or stream.

Syntax

outq asig1, asig2, asig3, asig4

Performance

Sends 4-channel audio samples to an accumulating output buffer (created at the beginning of performance)
which serves to collect the output of all active instruments before the sound is written to disk. There can be
any number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

See Also

out , outh, outo, outq1, outq2, outq3, outq4, outs, outs1, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outq1

outq1 — Writes samples to quad channel 1 of an external device or stream.

Description

Writes samples to quad channel 1 of an external device or stream.

Syntax

outq1 asig

562

Chapter 15. Orchestra Opcodes and Operators

Performance

Sends audio samples to an accumulating output buffer (created at the beginning of performance) which
serves to collect the output of all active instruments before the sound is written to disk. There can be any
number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

See Also

out , outh, outo, outq, outq2, outq3, outq4, outs, outs1, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outq2

outq2 — Writes samples to quad channel 2 of an external device or stream.

Description

Writes samples to quad channel 2 of an external device or stream.

Syntax

outq2 asig

Performance

Sends audio samples to an accumulating output buffer (created at the beginning of performance) which
serves to collect the output of all active instruments before the sound is written to disk. There can be any
number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

See Also

out , outh, outo, outq, outq1, outq3, outq4, outs, outs1, outs2, soundout

563

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outq3

outq3 — Writes samples to quad channel 3 of an external device or stream.

Description

Writes samples to quad channel 3 of an external device or stream.

Syntax

outq3 asig

Performance

Sends audio samples to an accumulating output buffer (created at the beginning of performance) which
serves to collect the output of all active instruments before the sound is written to disk. There can be any
number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

See Also

out , outh, outo, outq, outq1, outq2, outq4, outs, outs1, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outq4

outq4 — Writes samples to quad channel 4 of an external device or stream.

564

Chapter 15. Orchestra Opcodes and Operators

Description

Writes samples to quad channel 4 of an external device or stream.

Syntax

outq4 asig

Performance

Sends audio samples to an accumulating output buffer (created at the beginning of performance) which
serves to collect the output of all active instruments before the sound is written to disk. There can be any
number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

See Also

out , outh, outo, outq, outq1, outq2, outq3, outs, outs1, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outs

outs — Writes stereo audio data to an external device or stream.

Description

Writes stereo audio data to an external device or stream.

Syntax

outs asig1, asig2

Performance

Sends stereo audio samples to an accumulating output buffer (created at the beginning of performance)
which serves to collect the output of all active instruments before the sound is written to disk. There can be
any number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

565

Chapter 15. Orchestra Opcodes and Operators

See Also

out , outh, outo, outq, outq1, outq2, outq3, outq4, outs1, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outs1

outs1 — Writes samples to stereo channel 1 of an external device or stream.

Description

Writes samples to stereo channel 1 of an external device or stream.

Syntax

outs1 asig

Performance

Sends audio samples to an accumulating output buffer (created at the beginning of performance) which
serves to collect the output of all active instruments before the sound is written to disk. There can be any
number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

See Also

out , outh, outo, outq, outq1, outq2, outq3, outq4, outs, outs2, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

566

Chapter 15. Orchestra Opcodes and Operators

outs2

outs2 — Writes samples to stereo channel 2 of an external device or stream.

Description

Writes samples to stereo channel 2 of an external device or stream.

Syntax

outs2 asig

Performance

Sends audio samples to an accumulating output buffer (created at the beginning of performance) which
serves to collect the output of all active instruments before the sound is written to disk. There can be any
number of these output units in an instrument.

The type (mono, stereo, quad, hex, or oct) should agree with nchnls. But as of version 3.50, Csound will
attempt to change an incorrect opcode to agree with the nchnls statement. Opcodes can be chosen to direct
sound to any particular channel: outs1 sends to stereo channel 1, outq3 to quad channel 3, etc.

See Also

out , outh, outo, outq, outq1, outq2, outq3, outq4, outs, outs1, soundout

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

outvalue

outvalue — Sends a k-rate signal to a user-defined channel.

Description

Sends a k-rate signal to a user-defined channel.

Syntax

outvalue "channel name", kvalue

567

Chapter 15. Orchestra Opcodes and Operators

Performance

"channel name" -- An integer or string (in double-quotes) representing channel.

kvalue -- The k-rate value that is sent to the channel.

See Also

invalue

Credits

New in version 4.21

outx

outx — Writes 16-channel audio data to an external device or stream.

Description

Writes 16-channel audio data to an external device or stream.

Syntax

outx asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8, asig9, asig10, asig11, asig12, asig13, asig14, asig15,
asig16

Performance

outx outputs 32 channels of audio.

Credits

out32, outc, outch, outz

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

568

Chapter 15. Orchestra Opcodes and Operators

outz

outz — Writes multi-channel audio data from a ZAK array to an external device or stream.

Description

Writes multi-channel audio data from a ZAK array to an external device or stream.

Syntax

outz ksig1

Performance

outz outputs from a ZAK array for nchnls of audio.

Credits

out32, outc, outch, outx

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

p

p — Show the value in a given p-field.

Description

Show the value in a given p-field.

Syntax

p(x)

This function works at i-rate and k-rate.

Initialization

x -- the number of the p-field.

569

Chapter 15. Orchestra Opcodes and Operators

Performance

The value returned by the p function is the value in a p-field.

Examples

Here is an example of the p opcode. It uses the files p.orc and p.sco.

Example 15-1. Example of the p opcode.

/* p.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Get the value in the fourth p-field, p4.
i1 = p(4)

print i1
endin
/* p.orc */

/* p.sco */
/* Written by Kevin Conder */
; p4 = value to be printed.
; Play Instrument #1 for one second, p4 = 50.375.
i 1 0 1 50.375
e
/* p.sco */

Its output should include lines like:

instr 1: i1 = 50.375

Credits

Author: Kevin Conder

pan

pan — Distribute an audio signal amongst four channels.

Description

Distribute an audio signal amongst four channels with localization control.

570

Chapter 15. Orchestra Opcodes and Operators

Syntax

a1, a2, a3, a4 pan asig, kx, ky, ifn [, imode] [, ioffset]

Initialization

ifn -- function table number of a stored pattern describing the amplitude growth in a speaker channel as
sound moves towards it from an adjacent speaker. Requires extended guard-point.

imode (optional) -- mode of the kx, ky position values. 0 signifies raw index mode, 1 means the inputs are
normalized (0 - 1). The default value is 0.

ioffset (optional) -- offset indicator for kx, ky. 0 infers the origin to be at channel 3 (left rear); 1 requests an
axis shift to the quadraphonic center. The default value is 0.

Performance

pan takes an input signal asig and distributes it amongst four outputs (essentially quad speakers) according
to the controls kx and ky. For normalized input (mode=1) and no offset, the four output locations are in
order: left-front at (0,1), right-front at (1,1), left-rear at the origin (0,0), and right-rear at (1,0). In the notation
(kx, ky), the coordinates kx and ky, each ranging 0 - 1, thus control the ’rightness’ and ’forwardness’ of a
sound location.

Movement between speakers is by amplitude variation, controlled by the stored function table ifn. As kx goes
from 0 to 1, the strength of the right-hand signals will grow from the left-most table value to the right-most,
while that of the left-hand signals will progress from the right-most table value to the left-most. For a simple
linear pan, the table might contain the linear function 0 - 1. A more correct pan that maintains constant
power would be obtained by storing the first quadrant of a sinusoid. Since pan will scale and truncate kx and
ky in simple table lookup, a medium-large table (say 8193) should be used.

kx, ky values are not restricted to 0 - 1. A circular motion passing through all four speakers (inscribed) would
have a diameter of root 2, and might be defined by a circle of radius R = root 1/2 with center at (.5,.5). kx, ky
would then come from Rcos(angle), Rsin(angle), with an implicit origin at (.5,.5) (i.e. ioffset = 1). Unscaled raw
values operate similarly. Sounds can thus be located anywhere in the polar or Cartesian plane; points lying
outside the speaker square are projected correctly onto the square’s perimeter as for a listener at the center.

Examples

instr 1
k1 phasor 1/p3 ; fraction of circle
k2 tablei k1, 1, 1 ; sin of angle (sinusoid in f1)
k3 tablei k1, 1, 1, .25, 1 ; cos of angle (sin offset 1/4 circle)
a1 oscili 10000,440, 1 ; audio signal..
a1,a2,a3,a4 pan a1, k2/2, k3/2, 2, 1, 1 ; sent in a circle (f2=1st quad sin)

outq a1, a2, a3, a4
endin

571

Chapter 15. Orchestra Opcodes and Operators

pareq

pareq — Implementation of Zoelzer’s parametric equalizer filters.

Description

Implementation of Zoelzer’s parametric equalizer filters, with some modifications by the author.

The formula for the low shelf filter is:

omega = 2*pi*f/sr
K = tan(omega/2)

b0 = 1 + sqrt(2*V)*K + V*K^2
b1 = 2*(V*K^2 - 1)
b2 = 1 - sqrt(2*V)*K + V*K^2

a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

The formula for the high shelf filter is:

omega = 2*pi*f/sr
K = tan((pi-omega)/2)

b0 = 1 + sqrt(2*V)*K + V*K^2
b1 = -2*(V*K^2 - 1)
b1 = 1 - sqrt(2*V)*K + V*K^2

a0 = 1 + K/Q + K^2
a1 = -2*(K^2 - 1)
a2 = 1 - K/Q + K^2

The formula for the peaking filter is:

omega = 2*pi*f/sr
K = tan(omega/2)

b0 = 1 + V*K/2 + K^2
b1 = 2*(K^2 - 1)
b2 = 1 - V*K/2 + K^2

a0 = 1 + K/Q + K^2
a1 = 2*(K^2 - 1)
a2 = 1 - K/Q + K^2

572

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar pareq asig, kc, kv, kq [, imode]

Initialization

imode (optional, default: 0) -- operating mode

• 0 = Peaking

• 1 = Low Shelving

• 2 = High Shelving

Performance

kc -- center frequency in peaking mode, corner frequency in shelving mode.

kv -- amount of boost or cut. A value less than 1 is a cut. A value greater than 1 is a boost. A value of 1 is a flat
response.

kq -- Q of the filter (sqrt(.5) is no resonance)

asig -- the incoming signal

Examples

Here is an example of the pareq opcode. It uses the files pareq.orc and pareq.sco.

Example 15-1. Example of the pareq opcode.

/* pareq.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

instr 15
ifc = p4 ; Center / Shelf
kq = p5 ; Quality factor sqrt(.5) is no resonance
kv = ampdb(p6) ; Volume Boost/Cut
imode = p7 ; Mode 0=Peaking EQ, 1=Low Shelf, 2=High Shelf
kfc linseg ifc*2, p3, ifc/2
asig rand 5000 ; Random number source for testing
aout pareq asig, kfc, kv, kq, imode ; Parmetric equalization

outs aout, aout ; Output the results
endin
/* pareq.orc */

/* pareq.sco */
; SCORE:

; Sta Dur Fcenter Q Boost/Cut(dB) Mode
i15 0 1 10000 .2 12 1
i15 + . 5000 .2 12 1
i15 . . 1000 .707 -12 2
i15 . . 5000 .1 -12 0
e

/* pareq.sco */

573

Chapter 15. Orchestra Opcodes and Operators

Credits

Hans Mikelson

December, 1998 (New in Csound version 3.50)

pcauchy

pcauchy — Cauchy distribution random number generator (positive values only).

Description

Cauchy distribution random number generator (positive values only). This is an x-class noise generator.

Syntax

ar pcauchy kalpha

ir pcauchy kalpha

kr pcauchy kalpha

Performance

pcauchy kalpha -- controls the spread from zero (big kalpha = big spread). Outputs positive numbers only.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the pcauchy opcode. It uses the files pcauchy.orc and pcauchy.sco.

Example 15-1. Example of the pcauchy opcode.

/* pcauchy.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number between 0 and 1.

574

Chapter 15. Orchestra Opcodes and Operators

; kalpha = 1

i1 pcauchy 1

print i1
endin
/* pcauchy.orc */

/* pcauchy.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* pcauchy.sco */

Its output should include a line like this:

instr 1: i1 = 0.012

See Also

betarand, bexprnd, cauchy, exprand, gauss, linrand, poisson, trirand, unirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

pchbend

pchbend — Get the current pitch-bend value for this channel.

Description

Get the current pitch-bend value for this channel.

Syntax

ibend pchbend [imin] [, imax]

kbend pchbend [imin] [, imax]

Initialization

imin, imax (optional) -- set minimum and maximum limits on values obtained

575

Chapter 15. Orchestra Opcodes and Operators

Performance

Get the current pitch-bend value for this channel. Note that this access to pitch-bend data is independent of
the MIDI pitch, enabling the value here to be used for any arbitrary purpose.

Examples

Here is an example of the pchbend opcode. It uses the files pchbend.orc and pchbend.sco.

Example 15-1. Example of the pchbend opcode.

/* pchbend.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 pchbend

print i1
endin
/* pchbend.orc */

/* pchbend.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* pchbend.sco */

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchmidi, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

pchmidi

pchmidi — Get the note number of the current MIDI event, expressed in pitch-class units.

576

Chapter 15. Orchestra Opcodes and Operators

Description

Get the note number of the current MIDI event, expressed in pitch-class units.

Syntax

ipch pchmidi

Performance

Get the note number of the current MIDI event, expressed in pitch-class units for local processing.

Examples

Here is an example of the pchmidi opcode. It uses the files pchmidi.orc and pchmidi.sco.

Example 15-1. Example of the pchmidi opcode.

/* pchmidi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 pchmidi

print i1
endin
/* pchmidi.orc */

/* pchmidi.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* pchmidi.sco */

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidib, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

577

Chapter 15. Orchestra Opcodes and Operators

pchmidib

pchmidib — Get the note number of the current MIDI event and modify it by the current pitch-bend value,
express it in pitch-class units.

Description

Get the note number of the current MIDI event and modify it by the current pitch-bend value, express it in
pitch-class units.

Syntax

ipch pchmidib [irange]

kpch pchmidib [irange]

Initialization

irange (optional) -- the pitch bend range in semitones

Performance

Get the note number of the current MIDI event, modify it by the current pitch-bend value, and express the
result in pitch-class units. Available as an i-time value or as a continuous k-rate value.

Examples

Here is an example of the pchmidib pchmidib. It uses the files pchmidib.orc and pchmidib.sco.

Example 15-1. Example of the pchmidib pchmidib.

/* pchmidib.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 pchmidib

print i1
endin
/* pchmidib.orc */

/* pchmidib.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* pchmidib.sco */

578

Chapter 15. Orchestra Opcodes and Operators

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, veloc

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

pchoct

pchoct — Converts an octave-point-decimal value to pitch-class.

Description

Converts an octave-point-decimal value to pitch-class.

Syntax

pchoct (oct) (init- or control-rate args only)

where the argument within the parentheses may be a further expression.

Performance

These are really value converters with a special function of manipulating pitch data.

Data concerning pitch and frequency can exist in any of the following forms:

Table 15-1. Pitch and Frequency Values

Name Abbreviation

octave point pitch-class (8ve.pc) pch

octave point decimal oct

cycles per second cps

The first two forms consist of a whole number, representing octave registration, followed by a specially
interpreted fractional part. For pch, the fraction is read as two decimal digits representing the 12
equal-tempered pitch classes from .00 for C to.11 for B. For oct , the fraction is interpreted as a true decimal
fractional part of an octave. The two fractional forms are thus related by the factor 100/12. In both forms, the
fraction is preceded by a whole number octave index such that 8.00 represents Middle C, 9.00 the C above,
etc. Thus A440 can be represented alternatively by 440 (cps),8.09 (pch), or 8.75 (oct). Microtonal divisions of
the pch semitone can be encoded by using more than two decimal places.

The mnemonics of the pitch conversion units are derived from morphemes of the forms involved, the second
morpheme describing the source and the first morpheme the object (result). Thus cpspch(8.09) will convert
the pitch argument 8.09 to its cps (or Hertz) equivalent, giving the value of 440. Since the argument is
constant over the duration of the note, this conversion will take place at i-time, before any samples for the
current note are produced.

579

Chapter 15. Orchestra Opcodes and Operators

By contrast, the conversion cpsoct(8.75 + k1) which gives the value of A440 transposed by the octave interval
k1. The calculation will be repeated every k-period since that is the rate at which k1 varies.

Note: The conversion from pch or oct into cps is not a linear operation but involves an exponential process that could
be time-consuming when executed repeatedly. Csound now uses a built-in table lookup to do this efficiently, even at
audio rates.

Examples

Here is an example of the pchoct opcode. It uses the files pchoct.orc and pchoct.sco.

Example 15-1. Example of the pchoct opcode.

/* pchoct.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Convert an octave-point-decimal value into a
; pitch-class value.
ioct = 8.75
ipch = pchoct(ioct)

print ipch
endin
/* pchoct.orc */

/* pchoct.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* pchoct.sco */

Its output should include a line like this:

instr 1: ipch = 8.090

See Also

cpsoct , cpspch, octcps, octpch

580

Chapter 15. Orchestra Opcodes and Operators

peak

peak — Maintains the output equal to the highest absolute value received.

Description

These opcodes maintain the output k-rate variable as the peak absolute level so far received.

Syntax

kr peak asig

kr peak ksig

Performance

kr -- Output equal to the highest absolute value received so far. This is effectively an input to the opcode as
well, since it reads kr in order to decide whether to write something higher into it.

ksig -- k-rate input signal.

asig -- a-rate input signal.

Examples

Here is an example of the peak opcode. It uses the files peak.orc, peak.sco, and beats.wav.

Example 15-1. Example of the peak opcode.

/* peak.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1 - play an audio file.
instr 1

; Capture the highest amplitude in the "beats.wav" file.
asig soundin "beats.wav"
kp peak asig

; Print out the peak value once per second.
printk 1, kp

out asig
endin
/* peak.orc */

/* peak.sco */
/* Written by Kevin Conder */
; Play Instrument #1, the audio file, for three seconds.
i 1 0 3
e
/* peak.sco */

Its output should include lines like this:

581

Chapter 15. Orchestra Opcodes and Operators

i 1 time 0.00002: 4835.00000
i 1 time 1.00002: 29312.00000
i 1 time 2.00002: 32767.00000

Credits

Author: Robin Whittle

Australia

May 1997

peakk

peakk — Deprecated.

Description

Deprecated as of version 3.63. Use the peak opcode instead.

pgmassign

pgmassign — Assigns an instrument number to a specified MIDI program.

Description

Assigns an instrument number to a specified (or all) MIDI program(s).

By default, the instrument is the same as the program number. If the selected instrument is zero or negative
or does not exist, the program change is ignored. This opcode is normally used in the orchestra header.
Although, like massign, it also works in instruments.

Syntax

pgmassign ipgm, inst

Initialization

ipgm -- MIDI program number (1 to 128). A value of zero selects all programs.

inst -- instrument number. If set to zero, or negative, MIDI program changes to ipgm are ignored. Currently,
assignment to an instrument that does not exist has the same effect. This may be changed in a later release to
print an error message.

582

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the pgmassign opcode. It uses the files pgmassign.orc and pgmassign.sco.

Example 15-1. Example of the pgmassign opcode.

/* pgmassign.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Program 55 (synth vox) uses Instrument #10.
pgmassign 55, 10

; Instrument #10.
instr 10

; Just an example, no working code in here!
endin
/* pgmassign.orc */

/* pgmassign.sco */
; Play Instrument #10 for one second.
i 10 0 1
e
/* pgmassign.sco */

Here is an example of the pgmassign opcode that will ignore program change events. It uses the files
pgmassign_ignore.orc and pgmassign_ignore.sco.

Example 15-2. Example of the pgmassign opcode that will ignore program change events.

/* pgmassign_ignore.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Ignore all program change events.
pgmassign 0, -1

; Instrument #1.
instr 1

; Just an example, no working code in here!
endin
/* pgmassign_ignore.orc */

/* pgmassign_ignore.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* pgmassign_ignore.sco */

Here is an advanced example of the pgmassign opcode. It uses the files pgmassign_advanced.mid,
pgmassign_advanced.orc, and pgmassign_advanced.sco.

583

Chapter 15. Orchestra Opcodes and Operators

Don’t forget that you must include the -F flag when using an external MIDI file like
“pgmassign_advanced.mid”.

Example 15-3. An advanced example of the pgmassign opcode.

/* pgmassign_advanced.orc - written by Istvan Varga */
sr = 44100
ksmps = 10
nchnls = 1

massign 1, 1 ; channels 1 to 4 use instr 1 by default
massign 2, 1
massign 3, 1
massign 4, 1

; pgmassign.mid has 4 notes with these parameters:
;
; Start time Channel Program
;
; note 1 0.5 1 10
; note 2 1.5 2 11
; note 3 2.5 3 12
; note 4 3.5 4 13

pgmassign 0, 0 ; disable program changes
pgmassign 11, 3 ; program 11 uses instr 3
pgmassign 12, 2 ; program 12 uses instr 2

; waveforms for instruments
itmp ftgen 1, 0, 1024, 10, 1
itmp ftgen 2, 0, 1024, 10, 1, 0.5, 0.3333, 0.25, 0.2, 0.1667, 0.1429, 0.125
itmp ftgen 3, 0, 1024, 10, 1, 0, 0.3333, 0, 0.2, 0, 0.1429, 0, 0.10101

instr 1 /* sine */

kcps cpsmidib 2 ; note frequency
asnd oscili 30000, kcps, 1

out asnd

endin

instr 2 /* band-limited sawtooth */

kcps cpsmidib 2 ; note frequency
asnd oscili 30000, kcps, 2

out asnd

endin

instr 3 /* band-limited square */

kcps cpsmidib 2 ; note frequency
asnd oscili 30000, kcps, 3

out asnd

endin
/* pgmassign_advanced.orc - written by Istvan Varga */

/* pgmassign_advanced.sco - written by Istvan Varga */
t 0 120
f 0 8.5 2 -2 0
e
/* pgmassign_advanced.sco - written by Istvan Varga */

584

Chapter 15. Orchestra Opcodes and Operators

See Also

midichn

Credits

Author: Istvan Varga

May 2002

New in version 4.20

phaser1

phaser1 — First-order allpass filters arranged in a series.

Description

An implementation of iord number of first-order allpass filters in series.

Syntax

ar phaser1 asig, kfreq, kord, kfeedback [, iskip]

Initialization

iskip (optional, default=0) -- used to control initial disposition of internal data space. Since filtering
incorporates a feedback loop of previous output, the initial status of the storage space used is significant. A
zero value will clear the space; a non-zero value will allow previous information to remain. The default value
is 0.

Performance

kfreq -- frequency (in Hz) of the filter(s). This is the frequency at which each filter in the series shifts its input
by 90 degrees.

kord -- the number of allpass stages in series. These are first-order filters and can range from 1 to 4999.

kfeedback -- amount of the output which is fed back into the input of the allpass chain. With larger amounts
of feedback, more prominent notches appear in the spectrum of the output. kfeedback must be between -1
and +1. for stability.

phaser1 implements iord number of first-order allpass sections, serially connected, all sharing the same
coefficient. Each allpass section can be represented by the following difference equation:

y(n) = C * x(n) + x(n-1) - C * y(n-1)

585

Chapter 15. Orchestra Opcodes and Operators

where x(n) is the input, x(n-1) is the previous input, y(n) is the output, y(n-1) is the previous output, and C is a
coefficient which is calculated from the value of kfreq, using the bilinear z-transform.

By slowly varying kfreq, and mixing the output of the allpass chain with the input, the classic "phase shifter"
effect is created, with notches moving up and down in frequency. This works best with iord between 4 and 16.
When the input to the allpass chain is mixed with the output, 1 notch is generated for every 2 allpass stages,
so that with iord = 6, there will be 3 notches in the output. With higher values for iord, modulating kfreq will
result in a form of nonlinear pitch modulation.

Examples

Here is an example of the phaser1 opcode. It uses the files phaser1.orc and phaser1.sco.

Example 15-1. Example of the phaser1 opcode.

/* phaser1.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; demonstration of phase shifting abilities of phaser1.
instr 1

; Input mixed with output of phaser1 to generate notches.
; Shows the effects of different iorder values on the sound
idur = p3
iamp = p4 * .05
iorder = p5 ; number of 1st-order stages in phaser1 network.

; Divide iorder by 2 to get the number of notches.
ifreq = p6 ; frequency of modulation of phaser1
ifeed = p7 ; amount of feedback for phaser1

kamp linseg 0, .2, iamp, idur - .2, iamp, .2, 0

iharms = (sr*.4) / 100

asig gbuzz 1, 100, iharms, 1, .95, 2 ; "Sawtooth" waveform modulation oscillator for phaser1 ugen.
kfreq oscili 5500, ifreq, 1
kmod = kfreq + 5600

aphs phaser1 asig, kmod, iorder, ifeed

out (asig + aphs) * iamp
endin
/* phaser1.orc */

/* phaser1.sco */
; inverted half-sine, used for modulating phaser1 frequency
f1 0 16384 9 .5 -1 0
; cosine wave for gbuzz
f2 0 8192 9 1 1 .25

; phaser1
i1 0 5 7000 4 .2 .9
i1 6 5 7000 6 .2 .9
i1 12 5 7000 8 .2 .9
i1 18 5 7000 16 .2 .9
i1 24 5 7000 32 .2 .9
i1 30 5 7000 64 .2 .9
e
/* phaser1.sco */

586

Chapter 15. Orchestra Opcodes and Operators

Technical History

A general description of the differences between flanging and phasing can be found in Hartmann [1]. An early
implementation of first-order allpass filters connected in series can be found in Beigel [2], where the bilinear
z-transform is used for determining the phase shift frequency of each stage. Cronin [3] presents a similar
implementation for a four-stage phase shifting network. Chamberlin [4] and Smith [5] both discuss using
second-order allpass sections for greater control over notch depth, width, and frequency.

References

1. Hartmann, W.M. "Flanging and Phasers." Journal of the Audio Engineering Society, Vol. 26, No. 6, pp.
439-443, June 1978.

2. Beigel, Michael I. "A Digital ’Phase Shifter’ for Musical Applications, Using the Bell Labs (Alles-Fischer)
Digital Filter Module." Journal of the Audio Engineering Society, Vol. 27, No. 9, pp. 673-676,September
1979.

3. Cronin, Dennis. "Examining Audio DSP Algorithms." Dr. Dobb’s Journal, July 1994, p. 78-83.

4. Chamberlin, Hal. Musical Applications of Microprocessors. Second edition. Indianapolis, Indiana:
Hayden Books, 1985.

5. Smith, Julius O. "An Allpass Approach to Digital Phasing and Flanging." Proceedings of the 1984 ICMC,
p. 103-108.

See Also

phaser2

Credits

Author: Sean Costello

Seattle, Washington

1999

New in Csound version 4.0

phaser2

phaser2 — Second-order allpass filters arranged in a series.

Description

An implementation of iord number of second-order allpass filters in series.

587

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar phaser2 asig, kfreq, kq, kord, kmode, ksep, kfeedback

Initialization

iskip (optional, default=0) -- used to control initial disposition of internal data space. Since filtering
incorporates a feedback loop of previous output, the initial status of the storage space used is significant. A
zero value will clear the space; a non-zero value will allow previous information to remain. The default value
is 0.

Performance

kfreq -- frequency (in Hz) of the filter(s). This is the center frequency of the notch of the first allpass filter in
the series. This frequency is used as the base frequency from which the frequencies of the other notches are
derived.

kq -- Q of each notch. Higher Q values result in narrow notches. A Q between 0.5 and 1 results in the strongest
"phasing" effect, but higher Q values can be used for special effects.

kord -- the number of allpass stages in series. These are second-order filters, and iord can range from 1 to
2499. With higher orders, the computation time increases.

kfeedback -- amount of the output which is fed back into the input of the allpass chain. With larger amounts
of feedback, more prominent notches appear in the spectrum of the output. kfeedback must be between -1
and +1. for stability.

kmode -- used in calculation of notch frequencies.

ksep -- scaling factor used, in conjunction with imode, to determine the frequencies of the additional notches
in the output spectrum.

phaser2 implements iord number of second-order allpass sections, connected in series. The use of
second-order allpass sections allows for the precise placement of the frequency, width, and depth of notches
in the frequency spectrum. iord is used to directly determine the number of notches in the spectrum; e.g. for
iord = 6, there will be 6 notches in the output spectrum.

There are two possible modes for determining the notch frequencies. When imode = 1, the notch frequencies
are determined the following function:

frequency of notch N = kbf + (ksep * kbf * N-1)

For example, with imode = 1 and ksep = 1, the notches will be in harmonic relationship with the notch
frequency determined by kfreq (i.e. if there are 8 notches, with the first at 100 Hz, the next notches will be at
200, 300, 400, 500, 600, 700, and 800 Hz). This is useful for generating a "comb filtering" effect, with the
number of notches determined by iord. Different values of ksep allow for inharmonic notch frequencies and
other special effects. ksep can be swept to create an expansion or contraction of the notch frequencies. A
useful visual analogy for the effect of sweeping ksep would be the bellows of an accordion as it is being played
- the notches will be seperated, then compressed together, as ksep changes.

When imode = 2, the subsequent notches are powers of the input parameter ksep times the initial notch
frequency specified by kfreq. This can be used to set the notch frequencies to octaves and other musical
intervals. For example, the following lines will generate 8 notches in the output spectrum, with the notches
spaced at octaves of kfreq:

aphs phaser2 ain, kfreq, 0.5, 8, 2, 2, 0
aout = ain + aphs

588

Chapter 15. Orchestra Opcodes and Operators

When imode = 2, the value of ksep must be greater than 0. ksep can be swept to create a compression and
expansion of notch frequencies (with more dramatic effects than when imode = 1).

Examples

Here is an example of the phaser2 opcode. It uses the files phaser2.orc and phaser2.sco.

Example 15-1. Example of the phaser2 opcode.

/* phaser2.orc */
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 2 ; demonstration of phase shifting abilities of phaser2.
; Input mixed with output of phaser2 to generate notches.
; Demonstrates the interaction of imode and ksep.
idur = p3
iamp = p4 * .04
iorder = p5 ; number of 2nd-order stages in phaser2 network
ifreq = p6 ; not used
ifeed = p7 ; amount of feedback for phaser2
imode = p8 ; mode for frequency scaling
isep = p9 ; used with imode to determine notch frequencies
kamp linseg 0, .2, iamp, idur - .2, iamp, .2, 0
iharms = (sr*.4) / 100

; "Sawtooth" waveform exponentially decaying function, to control notch frequencies
asig gbuzz 1, 100, iharms, 1, .95, 2
kline expseg 1, idur, .005
aphs phaser2 asig, kline * 2000, .5, iorder, imode, isep, ifeed

out (asig + aphs) * iamp
endin
/* phaser2.orc */

/* phaser2.sco */
; cosine wave for gbuzz
f2 0 8192 9 1 1 .25

; phaser2, imode=1
i2 00 10 7000 8 .2 .9 1 .33
i2 11 10 7000 8 .2 .9 1 2

; phaser2, imode=2
i2 22 10 7000 8 .2 .9 2 .33
i2 33 10 7000 8 .2 .9 2 2
e
/* phaser2.sco */

589

Chapter 15. Orchestra Opcodes and Operators

Technical History

A general description of the differences between flanging and phasing can be found in Hartmann [1]. An early
implementation of first-order allpass filters connected in series can be found in Beigel [2], where the bilinear
z-transform is used for determining the phase shift frequency of each stage. Cronin [3] presents a similar
implementation for a four-stage phase shifting network. Chamberlin [4] and Smith [5] both discuss using
second-order allpass sections for greater control over notch depth, width, and frequency.

References

1. Hartmann, W.M. "Flanging and Phasers." Journal of the Audio Engineering Society, Vol. 26, No. 6, pp.
439-443, June 1978.

2. Beigel, Michael I. "A Digital ’Phase Shifter’ for Musical Applications, Using the Bell Labs (Alles-Fischer)
Digital Filter Module." Journal of the Audio Engineering Society, Vol. 27, No. 9, pp. 673-676,September
1979.

3. Cronin, Dennis. "Examining Audio DSP Algorithms." Dr. Dobb’s Journal, July 1994, p. 78-83.

4. Chamberlin, Hal. Musical Applications of Microprocessors. Second edition. Indianapolis, Indiana:
Hayden Books, 1985.

5. Smith, Julius O. "An Allpass Approach to Digital Phasing and Flanging." Proceedings of the 1984 ICMC,
p. 103-108.

See Also

phaser1

Credits

Author: Sean Costello

Seattle, Washington

1999

New in Csound version 4.0

phasor

phasor — Produce a normalized moving phase value.

Description

Produce a normalized moving phase value.

590

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar phasor xcps [, iphs]

kr phasor kcps [, iphs]

Initialization

iphs (optional) -- initial phase, expressed as a fraction of a cycle (0 to 1). A negative value will cause phase
initialization to be skipped. The default value is zero.

Performance

An internal phase is successively accumulated in accordance with the kcps or xcps frequency to produce a
moving phase value, normalized to lie in the range 0 <= phs < 1.

When used as the index to a table unit, this phase (multiplied by the desired function table length) will cause
it to behave like an oscillator.

Note that phasor is a special kind of integrator, accumulating phase increments that represent frequency
settings.

Examples

Here is an example of the phasor opcode. It uses the files phasor.orc and phasor.sco.

Example 15-1. Example of the phasor opcode.

/* phasor.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Create an index that repeats once per second.
kcps init 1
kndx phasor kcps

; Read Table #1 with our index.
ifn = 1
ixmode = 1
kfreq table kndx, ifn, ixmode

; Generate a sine waveform, use our table values
; to vary its frequency.
a1 oscil 20000, kfreq, 2
out a1

endin
/* phasor.orc */

/* phasor.sco */
/* Written by Kevin Conder */
; Table #1, a line from 200 to 2,000.
f 1 0 1025 -7 200 1024 2000
; Table #2, a sine wave.
f 2 0 16384 10 1

591

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* phasor.sco */

phasorbnk

phasorbnk — Produce an arbitrary number of normalized moving phase values.

Description

Produce an arbitrary number of normalized moving phase values, accessable by an index.

Syntax

ar phasorbnk xcps, kndx, icnt [, iphs]

kr phasorbnk kcps, kndx, icnt [, iphs]

Initialization

icnt -- maximum number of phasors to be used.

iphs -- initial phase, expressed as a fraction of a cycle (0 to 1). If -1 initialization is skipped. If iphas>1 each
phasor will be initialized with a random value.

Performance

kndx -- index value to access individual phasors

For each independent phasor, an internal phase is successively accumulated in accordance with the kcps or
xcps frequency to produce a moving phase value, normalized to lie in the range 0 <= phs < 1. Each individual
phasor is accessed by index kndx.

This phasor bank can be used inside a k-rate loop to generate multiple independent voices, or together with
the adsynt opcode to change parameters in the tables used by adsynt .

Examples

Here is an example of the phasorbnk opcode. It uses the files phasorbnk.orc and phasorbnk.sco.

Example 15-1. Example of the phasorbnk opcode.

/* phasorbnk.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

592

Chapter 15. Orchestra Opcodes and Operators

; Generate a sinewave table.
giwave ftgen 1, 0, 1024, 10, 1

; Instrument #1
instr 1

; Generate 10 voices.
icnt = 10
; Empty the output buffer.
asum = 0
; Reset the loop index.
kindex = 0

; This loop is executed every k-cycle.
loop:

; Generate non-harmonic partials.
kcps = (kindex+1)*100+30
; Get the phase for each voice.
aphas phasorbnk kcps, kindex, icnt
; Read the wave from the table.
asig table aphas, giwave, 1
; Accumulate the audio output.
asum = asum + asig

; Increment the index.
kindex = kindex + 1

; Perform the loop until the index (kindex) reaches
; the counter value (icnt).
if (kindex < icnt) kgoto loop

out asum*3000
endin
/* phasorbnk.orc */

/* phasorbnk.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* phasorbnk.sco */

Generate multiple voices with independent partials. This example is better with adsynt . See also the example
under adsynt , for k-rate use of phasorbnk.

Credits

Author: Peter Neubäcker

Munich, Germany

August, 1999

New in Csound version 3.58

pinkish

pinkish — Generates approximate pink noise.

593

Chapter 15. Orchestra Opcodes and Operators

Description

Generates approximate pink noise (-3dB/oct response) by one of two different methods:

• a multirate noise generator after Moore, coded by Martin Gardner

• a filter bank designed by Paul Kellet

Syntax

ar pinkish xin [, imethod] [, inumbands] [, iseed] [, iskip]

Initialization

imethod (optional, default=0) -- selects filter method:

• 0 = Gardner method (default).

• 1 = Kellet filter bank.

• 2 = A somewhat faster filter bank by Kellet, with less accurate response.

inumbands (optional) -- only effective with Gardner method. The number of noise bands to generate.
Maximum is 32, minimum is 4. Higher levels give smoother spectrum, but above 20 bands there will be
almost DC-like slow fluctuations. Default value is 20.

iseed (optional, default=0) -- only effective with Gardner method. If non-zero, seeds the random generator. If
zero, the generator will be seeded from current time. Default is 0.

iskip (optional, default=0) -- if non-zero, skip (re)initialization of internal state (useful for tied notes). Default
is 0.

Performance

xin -- for Gardner method: k- or a-rate amplitude. For Kellet filters: normally a-rate uniform random noise
from rand (31-bit) or unirand, but can be any a-rate signal. The output peak value varies widely (±15%) even
over long runs, and will usually be well below the input amplitude. Peak values may also occasionally
overshoot input amplitude or noise.

pinkish attempts to generate pink noise (i.e., noise with equal energy in each octave), by one of two different
methods.

The first method, by Moore & Gardner, adds several (up to 32) signals of white noise, generated at octave rates
(sr, sr/2, sr/4 etc). It obtains pseudo-random values from an internal 32-bit generator. This random generator
is local to each opcode instance and seedable (similar to rand).

The second method is a lowpass filter with a response approximating -3dB/oct. If the input is uniform white
noise, it outputs pink noise. Any signal may be used as input for this method. The high quality filter is slower,
but has less ripple and a slightly wider operating frequency range than less computationally intense versions.
With the Kellet filters, seeding is not used.

The Gardner method output has some frequency response anomalies in the low-mid and high-mid frequency
ranges. More low-frequency energy can be generated by increasing the number of bands. It is also a bit faster.
The refined Kellet filter has very smooth spectrum, but a more limited effective range. The level increases
slightly at the high end of the spectrum.

594

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the pinkish opcode. It uses the files pinkish.orc and pinkish.sco.

Example 15-1. Example of the pinkish opcode.

/* pinkish.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

awhite unirand 2.0

; Normalize to +/-1.0
awhite = awhite - 1.0

apink pinkish awhite, 1, 0, 0, 1

out apink * 30000
endin
/* pinkish.orc */

/* pinkish.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* pinkish.sco */

Kellet-filtered noise for a tied note (iskip is non-zero).

Credits

Authors: Phil Burk and John ffitch

University of Bath/Codemist Ltd.

Bath, UK

Adapted for Csound by Rasmus Ekman

The noise bands method is due to F. R. Moore (or R. F. Voss), and was presented by Martin Gardner in an
oft-cited article in Scientific American. The present version was coded by Phil Burk as the result of discussion
on the music-dsp mailing list, with significant optimizations suggested by James McCartney.

The filter bank was designed by Paul Kellet, posted to the music-dsp mailing list.

The whole pink noise discussion was collected on a HTML page by Robin Whittle, which is currently available
at http://www.firstpr.com.au/dsp/pink-noise/ .

Added notes by Rasmus Ekman on September 2002.

May, 2000 (New in Csound Version 4.07)

595

Chapter 15. Orchestra Opcodes and Operators

pitch

pitch — Tracks the pitch of a signal.

Description

Using the same techniques as spectrum and specptrk, pitch tracks the pitch of the signal in octave point
decimal form, and amplitude in dB.

Syntax

koct, kamp pitch asig, iupdte, ilo, ihi, idbthresh [, ifrqs] [, iconf] [, istrt] [, iocts] [, iq] [, inptls] [, irolloff] [, iskip]

Initialization

iupdte -- length of period, in seconds, that outputs are updated

ilo, ihi -- range in which pitch is detected, expressed in octave point decimal

idbthresh -- amplitude, expressed in decibels, necessary for the pitch to be detected. Once started it
continues until it is 6 dB down.

ifrqs (optional) -- number of divisons of an octave. Default is 12 and is limited to 120.

iconf (optional) -- the number of conformations needed for an octave jump. Default is 10.

istrt (optional) -- starting pitch for tracker. Default value is (ilo + ihi)/2.

iocts (optional) -- number of octave decimations in spectrum. Default is 6.

iq (optional) -- Q of analysis filters. Default is 10.

inptls (optional) -- number of harmonics, used in matching. Computation time increases with the number of
harmonics. Default is 4.

irolloff (optional) -- amplitude rolloff for the set of filters expressed as fraction per octave. Values must be
positive. Default is 0.6.

iskip (optional) -- if non-zero, skips initialization. Default is 0.

Performance

koct -- The pitch output, given in the octave point decimal format.

kamp -- The amplitude output.

pitch analyzes the input signal, asig , to give a pitch/amplitude pair of outputs, for the strongest frequency in
the signal. The value is updated every iupdte seconds.

The number of partials and rolloff fraction can effect the pitch tracking, so some experimentation may be
necessary. Suggested values are 4 or 5 harmonics, with rolloff 0.6, up to 10 or 12 harmonics with rolloff 0.75
for complex timbres, with a weak fundamental.

Examples

Here is an example of the pitch opcode. It uses the files pitch.orc, pitch.sco and mary.wav.

Example 15-1. Example of the pitch opcode.

/* pitch.orc */

596

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1 - play an audio file without effects.
instr 1

asig soundin "mary.wav"
out asig

endin

; Instrument #2 - track the pitch of an audio file.
instr 2

iupdte = 0.01
ilo = 7
ihi = 9
idbthresh = 10
ifrqs = 12
iconf = 10
istrt = 8

asig soundin "mary.wav"

; Follow the audio file, get its pitch and amplitude.
koct, kamp pitch asig, iupdte, ilo, ihi, idbthresh, ifrqs, iconf, istrt

; Re-synthesize the audio file with a different sounding waveform.
kamp2 = kamp * 10
kcps = cpsoct(koct)
a1 oscil kamp2, kcps, 1

out a1
endin
/* pitch.orc */

/* pitch.sco */
/* Written by Kevin Conder */
; Table #1: A different sounding waveform.
f 1 0 32768 11 7 3 .7

; Play Instrument #1, the audio file, for three seconds.
i 1 0 3
; Play Instrument #2, the "re-synthesized" waveform, for three seconds.
i 2 3 3
e
/* pitch.sco */

Credits

Author: John ffitch

University of Bath, Codemist Ltd.

Bath, UK

April, 1999

New in Csound version 3.54

597

Chapter 15. Orchestra Opcodes and Operators

pitchamdf

pitchamdf — Follows the pitch of a signal based on the AMDF method.

Description

Follows the pitch of a signal based on the AMDF method (Average Magnitude Difference Function). Outputs
pitch and amplitude tracking signals. The method is quite fast and should run in realtime. This technique
usually works best for monophonic signals.

Syntax

kcps, krms pitchamdf asig, imincps, imaxcps [, icps] [, imedi] [, idowns] [, iexcps] [, irmsmedi]

Initialization

imincps -- estimated minimum frequency (expressed in Hz) present in the signal

imaxcps -- estimated maximum frequency present in the signal

icps (optional, default=0) -- estimated initial frequency of the signal. If 0, icps = (imincps+imaxcps) / 2. The
default is 0.

imedi (optional, default=1) -- size of median filter applied to the output kcps. The size of the filter will be
imedi*2+1. If 0, no median filtering will be applied. The default is 1.

idowns (optional, default=1) -- downsampling factor for asig . Must be an integer. A factor of idowns > 1
results in faster performance, but may result in worse pitch detection. Useful range is 1 - 4. The default is 1.

iexcps (optional, default=0) -- how frequently pitch analysis is executed, expressed in Hz. If 0, iexcps is set to
imincps. This is usually reasonable, but experimentation with other values may lead to better results. Default
is 0.

irmsmedi (optional, default=0) -- size of median filter applied to the output krms. The size of the filter will be
irmsmedi*2+1. If 0, no median filtering will be applied. The default is 0.

Performance

kcps -- pitch tracking output

krms -- amplitude tracking output

pitchamdf usually works best for monophonic signals, and is quite reliable if appropriate initial values are
chosen. Setting imincps and imaxcps as narrow as possible to the range of the signal’s pitch, results in better
detection and performance.

Because this process can only detect pitch after an initial delay, setting icps close to the signal’s real initial
pitch prevents spurious data at the beginning.

The median filter prevents kcps from jumping. Experiment to determine the optimum value for imedi for a
given signal.

Other initial values can usually be left at the default settings. Lowpass filtering of asig before passing it to
pitchamdf , can improve performance, especially with complex waveforms.

598

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the pitchamdf opcode. It uses the files pitchamdf.orc, pitchamdf.sco and mary.wav.

Example 15-1. Example of the pitchamdf opcode.

/* pitchamdf.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; synth waveform
giwave ftgen 2, 0, 1024, 10, 1, 1, 1, 1

; Instrument #1 - play an audio file with no effects.
instr 1

; get input signal with original freq.
asig soundin "mary.wav"

out asig
endin

; Instrument #2 - play the synth waveform using the
; same pitch and amplitude as the audio file.
instr 2

; get input signal with original freq.
asig soundin "mary.wav"

; lowpass-filter
asig tone asig, 1000
; extract pitch and envelope
kcps, krms pitchamdf asig, 150, 500, 200
; "re-synthesize" with the synth waveform, giwave.
asig1 oscil krms, kcps, giwave

out asig1
endin
/* pitchamdf.orc */

/* pitchamdf.sco */
; Play Instrument #1, the audio file, for three seconds.
i 1 0 3
; Play Instrument #2, the "re-synthesized" waveform, for three seconds.
i 2 3 3
e
/* pitchamdf.sco */

Credits

Author: Peter Neubäcker

Munich, Germany

August, 1999

New in Csound version 3.59

599

Chapter 15. Orchestra Opcodes and Operators

planet

planet — Simulates a planet orbiting in a binary star system.

Description

planet simulates a planet orbiting in a binary star system. The outputs are the x, y and z coordinates of the
orbiting planet. It is possible for the planet to achieve escape velocity by a close encounter with a star. This
makes this system somewhat unstable.

Syntax

ax, ay, az planet kmass1, kmass2, ksep, ix, iy, iz, ivx, ivy, ivz, idelta [, ifriction]

Initialization

ix, iy, iz -- the initial x, y and z coordinates of the planet

ivx, ivy, ivz -- the initial velocity vector components for the planet.

idelta -- the step size used to approximate the differential equation.

ifriction (optional, default=0) -- a value for friction, which can used to keep the system from blowing up

Performance

ax, ay, az -- the output x, y, and z coodinates of the planet

kmass1 -- the mass of the first star

kmass2 -- the mass of the second star

Examples

Here is an example of the planet opcode. It uses the files planet.orc and planet.sco.

Example 15-1. Example of the planet opcode.

/* planet.orc */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 2

; Instrument #1 - a planet oribiting in 3D space.
instr 1

; Create a basic tone.
kamp init 5000
kcps init 440
ifn = 1
asnd oscil kamp, kcps, ifn

; Figure out its X, Y, Z coordinates.
km1 init 0.5
km2 init 0.35
ksep init 2.2
ix = 0

600

Chapter 15. Orchestra Opcodes and Operators

iy = 0.1
iz = 0
ivx = 0.5
ivy = 0
ivz = 0
ih = 0.0003
ifric = -0.1
ax1, ay1, az1 planet km1, km2, ksep, ix, iy, iz, \

ivx, ivy, ivz, ih, ifric

; Place the basic tone within 3D space.
kx downsamp ax1
ky downsamp ay1
kz downsamp az1
idist = 1
ift = 0
imode = 1
imdel = 1.018853416
iovr = 2
aw2, ax2, ay2, az2 spat3d asnd, kx, ky, kz, idist, \

ift, imode, imdel, iovr

; Convert the 3D sound to stereo.
aleft = aw2 + ay2
aright = aw2 - ay2

outs aleft, aright
endin
/* planet.orc */

/* planet.sco */
; Table #1 a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 10 seconds.
i 1 0 10
e
/* planet.sco */

Credits

Author: Hans Mikelson

December 1998

New in Csound version 3.50

pluck

pluck — Produces a naturally decaying plucked string or drum sound.

601

Chapter 15. Orchestra Opcodes and Operators

Description

Audio output is a naturally decaying plucked string or drum sound based on the Karplus-Strong algorithms.

Syntax

ar pluck kamp, kcps, icps, ifn, imeth [, iparm1] [, iparm2]

Initialization

icps -- intended pitch value in Hz, used to set up a buffer of 1 cycle of audio samples which will be smoothed
over time by a chosen decay method. icps normally anticipates the value of kcps, but may be set artificially
high or low to influence the size of the sample buffer.

ifn -- table number of a stored function used to initialize the cyclic decay buffer. If ifn = 0, a random sequence
will be used instead.

imeth -- method of natural decay. There are six, some of which use parameters values that follow.

1. simple averaging. A simple smoothing process, uninfluenced by parameter values.

2. stretched averaging. As above, with smoothing time stretched by a factor of iparm1 (=1).

3. simple drum. The range from pitch to noise is controlled by a ’roughness factor’ in iparm1 (0 to 1). Zero
gives the plucked string effect, while 1 reverses the polarity of every sample (octave down, odd
harmonics). The setting .5 gives an optimum snare drum.

4. stretched drum. Combines both roughness and stretch factors. iparm1 is roughness (0 to 1), and iparm2
the stretch factor (=1).

5. weighted averaging. As method 1, with iparm1 weighting the current sample (the status quo) and
iparm2 weighting the previous adjacent one. iparm1 + iparm2must be <= 1.

6. 1st order recursive filter, with coefs .5. Unaffected by parameter values.

iparm1, iparm2 (optional) -- parameter values for use by the smoothing algorithms (above). The default
values are both 0.

Performance

kamp -- the output amplitude.

kcps -- the resampling frequency in cycles-per-second.

An internal audio buffer, filled at i-time according to ifn, is continually resampled with periodicity kcps and
the resulting output is multiplied by kamp. Parallel with the sampling, the buffer is smoothed to simulate the
effect of natural decay.

Plucked strings (1,2,5,6) are best realized by starting with a random noise source, which is rich in initial
harmonics. Drum sounds (methods 3,4) work best with a flat source (wide pulse), which produces a deep
noise attack and sharp decay.

The original Karplus-Strong algorithm used a fixed number of samples per cycle, which caused serious
quantization of the pitches available and their intonation. This implementation resamples a buffer at the
exact pitch given by kcps, which can be varied for vibrato and glissando effects. For low values of the orch
sampling rate (e.g. sr = 10000), high frequencies will store only very few samples (sr / icps). Since this may
cause noticeable noise in the resampling process, the internal buffer has a minimum size of 64 samples. This
can be further enlarged by setting icps to some artificially lower pitch.

602

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the pluck opcode. It uses the files pluck.orc and pluck.sco.

Example 15-1. Example of the pluck opcode.

/* pluck.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 20000
kcps = 440
icps = 440
ifn = 0
imeth = 1

a1 pluck kamp, kcps, icps, ifn, imeth
out a1

endin
/* pluck.orc */

/* pluck.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* pluck.sco */

poisson

poisson — Poisson distribution random number generator (positive values only).

Description

Poisson distribution random number generator (positive values only). This is an x-class noise generator.

Syntax

ar poisson klambda

ir poisson klambda

kr poisson klambda

603

Chapter 15. Orchestra Opcodes and Operators

Performance

klambda -- the mean of the distribution. Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the poisson opcode. It uses the files poisson.orc and poisson.sco.

Example 15-1. Example of the poisson opcode.

/* poisson.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generates a random number in a poisson distribution.
; klambda = 1

i1 poisson 1

print i1
endin
/* poisson.orc */

/* poisson.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* poisson.sco */

Its output should include a line like this:

instr 1: i1 = 1.000

See Also

betarand, bexprnd, cauchy, exprand, gauss, linrand, pcauchy, trirand, unirand, weibull

604

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

polyaft

polyaft — Returns the polyphonic after-touch pressure of the selected note number.

Description

polyaft returns the polyphonic pressure of the selected note number, optionally mapped to an user-specified
range.

Syntax

ir polyaft inote [, ilow] [, ihigh]

kr polyaft inote [, ilow] [, ihigh]

Initialization

inote -- note number. Normally set to the value returned by notnum

ilow (optional, default: 0) -- lowest output value

ihigh (optional, default: 127) -- highest output value

Performance

kr -- polyphonic pressure (aftertouch).

Examples

Here is an example of the polyaft opcode. It uses the files polyaft.mid, polyaft.orc and polyaft.sco.

Don’t forget that you must include the -F flag when using an external MIDI file like “polyaft.mid”.

Example 15-1. Example of the polyaft opcode.

/* polyaft.orc - written by Istvan Varga */
sr = 44100
ksmps = 10
nchnls = 1

massign 1, 1
itmp ftgen 1, 0, 1024, 10, 1 ; sine wave

instr 1

kcps cpsmidib 2 ; note frequency
inote notnum ; note number

605

Chapter 15. Orchestra Opcodes and Operators

kaft polyaft inote, 0, 127 ; aftertouch
; interpolate aftertouch to eliminate clicks
ktmp phasor 40
ktmp trigger 1 - ktmp, 0.5, 0
kaft tlineto kaft, 0.025, ktmp
; map to sine curve for crossfade
kaft = sin(kaft * 3.14159 / 254) * 22000

asnd oscili kaft, kcps, 1

out asnd

endin
/* polyaft.orc - written by Istvan Varga */

/* polyaft.sco - written by Istvan Varga */
t 0 120
f 0 9 2 -2 0
e
/* polyaft.sco - written by Istvan Varga */

Credits

Added thanks to an email from Istvan Varga

New in version 4.12

port

port — Applies portamento to a step-valued control signal.

Description

Applies portamento to a step-valued control signal.

Syntax

kr port ksig, ihtim [, isig]

Initialization

ihtim -- half-time of the function, in seconds.

isig (optional, default=0) -- initial (i.e. previous) value for internal feedback. The default value is 0.

606

Chapter 15. Orchestra Opcodes and Operators

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

port applies portamento to a step-valued control signal. At each new step value, ksig is low-pass filtered to
move towards that value at a rate determined by ihtim. ihtim is the “half-time” of the function (in seconds),
during which the curve will traverse half the distance towards the new value, then half as much again, etc.,
theoretically never reaching its asymptote. With portk, the half-time can be varied at the control rate.

See Also

areson, aresonk, atone, atonek, portk, reson, resonk, tone, tonek

portk

portk — Applies portamento to a step-valued control signal.

Description

Applies portamento to a step-valued control signal.

Syntax

kr portk ksig, khtim [, isig]

Initialization

isig (optional, default=0) -- initial (i.e. previous) value for internal feedback. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

khtim -- half-time of the function in seconds.

portk is like port except the half-time can be varied at the control rate.

See Also

areson, aresonk, atone, atonek, port , reson, resonk, tone, tonek

poscil

poscil — High precision oscillator.

607

Chapter 15. Orchestra Opcodes and Operators

Description

High precision oscillator.

Syntax

ar poscil kamp, kcps, ifn [, iphs]

kr poscil kamp, kcps, ifn [, iphs]

Initialization

ifn -- function table number

iphs (optional, default=0) -- initial phase (in samples)

Performance

ar -- output signal

kamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal in cycles per second.

poscil (precise oscillator) is the same as oscili, but allows much more precise frequency control, especially
when using long tables and low frequency values. It uses floating-point table indexing, instead of integer
math, like oscil and oscili. It is only a bit slower than oscili.

Examples

Here is an example of the poscil opcode. It uses the files poscil.orc and poscil.sco.

Example 15-1. Example of the poscil opcode.

/* poscil.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a basic oscillator.
instr 1

kamp = 10000
kcps = 440
ifn = 1

a1 poscil kamp, kcps, ifn
out a1

endin
/* poscil.orc */

/* poscil.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2

608

Chapter 15. Orchestra Opcodes and Operators

e
/* poscil.sco */

See Also

poscil3

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.52)

poscil3

poscil3 — High precision oscillator with cubic interpolation.

Description

High precision oscillator with cubic interpolation.

Syntax

ar poscil3 kamp, kcps, ifn [, iphs]

kr poscil3 kamp, kcps, ifn [, iphs]

Initialization

ifn -- function table number

iphs (optional, default=0) -- initial phase (in samples)

Performance

ar -- output signal

kamp -- the amplitude of the output signal.

kcps -- the frequency of the output signal in cycles per second.

poscil3 uses cubic interpolation.

609

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the poscil3 opcode. It uses the files poscil3.orc and poscil3.sco.

Example 15-1. Example of the poscil3 opcode.

/* poscil3.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - a basic oscillator.
instr 1

kamp = 10000
kcps = 440
ifn = 1

a1 poscil3 kamp, kcps, ifn
out a1

endin
/* poscil3.orc */

/* poscil3.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* poscil3.sco */

See Also

poscil

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.52

pow

pow — Computes one argument to the power of another argument.

610

Chapter 15. Orchestra Opcodes and Operators

Description

Computes xarg to the power of kpow (or ipow) and scales the result by inorm.

Syntax

ar pow aarg, kpow [, inorm]

ir pow iarg, ipow

kr pow karg, kpow [, inorm]

Initialization

iarg -- i-rate base.

ipow -- i-rate exponent

inorm (optional, default=1) -- The number to divide the result (default to 1). This is especially useful if you are
doing powers of a- or k- signals where samples out of range are extremely common!

Performance

karg -- k-rate base.

kpow -- k-rate exponent

aarg -- a-rate base.

Note: Use ˆ with caution in arithmetical statements, as the precedence may not be correct. New in Csound version
3.493.

Examples

Here is an example of the pow opcode. It uses the files pow.orc and pow.sco.

Example 15-1. Example of the pow opcode.

/* pow.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; This could also be expressed as: i1 = 2 ^ 12
i1 pow 2, 12

print i1
endin
/* pow.orc */

/* pow.sco */
/* Written by Kevin Conder */

611

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for one second.
i 1 0 1
e
/* pow.sco */

Its output should include a line like this:

instr 1: i1 = 4096.000

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

powoftwo

powoftwo — Performs a power-of-two calculation.

Description

Performs a power-of-two calculation.

Syntax

powoftwo(x) (init-rate or control-rate args only)

Performance

powoftwo() function returns 2 ^ x and allows positive and negatives numbers as argument. The range of
values admitted in powoftwo() is -5 to +5 allowing a precision more fine than one cent in a range of ten
octaves. If a greater range of values is required, use the slower opcode pow.

These functions are fast, because they read values stored in tables. Also they are very useful when working
with tuning ratios. They work at i- and k-rate.

Examples

Here is an example of the powoftwo opcode. It uses the files powoftwo.orc and powoftwo.sco.

Example 15-1. Example of the powoftwo opcode.

/* powoftwo.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410

612

Chapter 15. Orchestra Opcodes and Operators

ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = powoftwo(12)
print i1

endin
/* powoftwo.orc */

/* powoftwo.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* powoftwo.sco */

Its output should include a line like this:

instr 1: i1 = 4096.000

See Also

logbtwo, pow

Credits

Author: Gabriel Maldonado

Italy

June, 1998

Author: John ffitch

University of Bath, Codemist, Ltd.

Bath, UK

July, 1999

New in Csound version 3.57

prealloc

prealloc — Creates space for instruments but does not run them.

Description

Creates space for instruments but does not run them.

613

Chapter 15. Orchestra Opcodes and Operators

Syntax

prealloc insnum, icount

Initialization

insnum -- instrument number

icount -- number of instrument allocations

Performance

All instances of prealloc must be defined in the header section, not in the instrument body.

Examples

Here is an example of the prealloc opcode. It uses the files prealloc.orc and prealloc.sco.

Example 15-1. Example of the prealloc opcode.

/* prealloc.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Pre-allocate memory for five instances of Instrument #1.
prealloc 1, 5

; Instrument #1
instr 1

; Generate a waveform, get the cycles per second from the 4th p-field.
a1 oscil 6500, p4, 1
out a1

endin
/* prealloc.orc */

/* prealloc.sco */
/* Written by Kevin Conder */
; Just generate a nice, ordinary sine wave.
f 1 0 32768 10 1

; Play five instances of Instrument #1 for one second.
; Note that 4th p-field contains cycles per second.
i 1 0 1 220
i 1 0 1 440
i 1 0 1 880
i 1 0 1 1320
i 1 0 1 1760
e
/* prealloc.sco */

614

Chapter 15. Orchestra Opcodes and Operators

See Also

cpuprc, maxalloc

Credits

Author: Gabriel Maldonado

Italy

July, 1999

New in Csound version 3.57

print

print — Displays the values init, control, or audio signals.

Description

These units will print orchestra init-values, or produce graphic display of orchestra control signals and audio
signals. Uses X11 windows if enabled, else (or if -g flag is set) displays are approximated in ASCII characters.

Syntax

print iarg [, iarg1] [, iarg2] [...]

Initialization

iarg, iarg2, ... -- i-rate arguments.

Performance

print -- print the current value of the i-time arguments (or expressions) iarg at every i-pass through the
instrument.

Examples

Here is an example of the print opcode. It uses the files print.orc and print.sco.

Example 15-1. Example of the print opcode.

/* print.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

615

Chapter 15. Orchestra Opcodes and Operators

; Print the fourth p-field.
print p4

endin
/* print.orc */

/* print.sco */
/* Written by Kevin Conder */

; p4 = value to be printed.
; Play Instrument #1 for one second, p4 = 50.375.
i 1 0 1 50.375
; Play Instrument #1 for one second, p4 = 300.
i 1 1 1 300
; Play Instrument #1 for one second, p4 = -999.
i 1 2 1 -999
e
/* print.sco */

Its output should include lines like this:

instr 1: p4 = 50.375
instr 1: p4 = 300.000
instr 1: p4 = -999.000

See Also

dispfft , display

Credits

Comments about the inprds parameter contributed by Rasmus Ekman.

printk

printk — Prints one k-rate value at specified intervals.

Description

Prints one k-rate value at specified intervals.

Syntax

printk itime, kval [, ispace]

616

Chapter 15. Orchestra Opcodes and Operators

Initialization

itime -- time in seconds between printings.

ispace (optional, default=0) -- number of spaces to insert before printing. (default: 0, max: 130)

Performance

kval -- The k-rate values to be printed.

printk prints one k-rate value on every k-cycle, every second or at intervals specified. First the instrument
number is printed, then the absolute time in seconds, then a specified number of spaces, then the kval value.
The variable number of spaces enables different values to be spaced out across the screen - so they are easier
to view.

This opcode can be run on every k-cycle it is run in the instrument. To every accomplish this, set itime to 0.

When itime is not 0, the opcode print on the first k-cycle it is called, and subsequently when every itime
period has elapsed. The time cycles start from the time the opcode is initialized - typically the initialization of
the instrument.

Examples

Here is an example of the printk opcode. It uses the files printk.orc and printk.sco.

Example 15-1. Example of the printk opcode.

/* printk.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Change a value linearly from 0 to 100,
; over the period defined by p3.
kval line 0, p3, 100

; Print the value of kval, once per second.
printk 1, kval

endin
/* printk.orc */

/* printk.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 5 seconds.
i 1 0 5
e
/* printk.sco */

Its output should include lines like this:

i 1 time 0.00002: 0.00000
i 1 time 1.00002: 20.01084
i 1 time 2.00002: 40.02999
i 1 time 3.00002: 60.04914
i 1 time 4.00002: 79.93327

617

Chapter 15. Orchestra Opcodes and Operators

See Also

printks

Credits

Author: Robin Whittle

Australia

May 1997

Thanks goes to Luis Jure for pointing a mistake in itime.

printk2

printk2 — Prints a new value every time a control variable changes.

Description

Prints a new value every time a control variable changes.

Syntax

printk2 kvar [, inumspaces]

Initialization

inumspaces (optional, default=0) -- number of space characters printed before the value of kvar

Performance

kvar -- signal to be printed

Derived from Robin Whittle’s printk, prints a new value of kvar each time kvar changes. Useful for
monitoring MIDI control changes when using sliders.

Warning
WARNING! Don’t use this opcode with normal, continuously variant k-signals, because it can hang the
computer, as the rate of printing is too fast.

618

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the printk2 opcode. It uses the files printk2.orc and printk2.sco.

Example 15-1. Example of the printk2 opcode.

/* printk2.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Change a value linearly from 0 to 10,
; over the period defined by p3.
kval1 line 0, p3, 10

; If kval1 is greater than or equal to 5,
; then kval=2, else kval=1.
kval2 = (kval1 >= 5 ? 2 : 1)

; Print the value of kval2, once per second.
printk2 kval2

endin
/* printk2.orc */

/* printk2.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 5 seconds.
i 1 0 5
e
/* printk2.sco */

Its output should include a line like this:

i1 1.00000
i1 2.00000

Credits

Author: Gabriel Maldonado

Italy

1998 (New in Csound version 3.48)

printks

printks — Prints using a printf() style syntax.

619

Chapter 15. Orchestra Opcodes and Operators

Description

Prints using a printf() style syntax.

Syntax

printks istring, itime, kval1, kval2, kval3, kval4

Initialization

istring -- the text string to be printed. Can be up to 130 characters and must be in double quotes.

itime -- time in seconds between printings.

Performance

kval, kval1, kval2, kval3, kval4 -- The k-rate values to be printed. These are specified in “txtstring” with the
standard C value specifier %f, in the order given. Use 0 for those which are not used.

printks prints numbers and text, with up to four printable numbers - which can be i- or k-rate values. printks
is highly flexible, and if used together with cursor positioning codes, could be used to write specific values to
locations in the screen as the Csound processing proceeds.

A special mode of operation allows this printks to convert kval1 input parameter into a 0 to 255 value and to
use it as the first character to be printed. This enables a Csound program to send arbitrary characters to the
console. To achieve this, make the first character of the string a # and then, if desired continue with normal
text and format specifiers. Three more format specifers may be used - they access kval2, kval3 and kval4.

This opcode can be run on every k-cycle it is run in the instrument. To every accomplish this, set itime to 0.

When itime is not 0, the opcode print on the first k-cycle it is called, and subsequently when every itime
period has elapsed. The time cycles start from the time the opcode is initialized - typically the initialization of
the instrument.

Print Output Formatting

Standard C language printf() control characters may be used, but must be prefaced with an additional
backslash:

\\n or \\N Newline
\\t or \\T Tab

The standard C lanuage %f format is used to print kval1, kval2, kval3, and kval4. For example:

%f prints with full precision: 123.456789
%6.2f prints 1234.56
%5.0p prints 12345

620

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the printks opcode. It uses the files printks.orc and printks.sco.

Example 15-1. Example of the printks opcode.

/* printks.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Change a value linearly from 0 to 100,
; over the period defined by p3.
kup line 0, p3, 100
; Change a value linearly from 30 to 10,
; over the period defined by p3.
kdown line 30, p3, 10

; Print the value of kup and kdown, once per second.
printks "kup = %f, kdown = %f\\n", 1, kup, kdown

endin
/* printks.orc */

/* printks.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 5 seconds.
i 1 0 5
e
/* printks.sco */

Its output should include lines like this:

kup = 0.000000, kdown = 30.000000
kup = 20.010843, kdown = 25.962524
kup = 40.029991, kdown = 21.925049
kup = 60.049141, kdown = 17.887573
kup = 79.933266, kdown = 13.872493

See Also

printk

Credits

Author: Robin Whittle

Australia

May 1997

Thanks goes to Luis Jure for pointing a mistake in itime.

621

Chapter 15. Orchestra Opcodes and Operators

product

product — Multiplies any number of a-rate signals.

Description

Multiplies any number of a-rate signals.

Syntax

ar product asig1, asig2 [, asig3] [...]

Performance

asig1, asig2, asig3, ... -- a-rate signals to be multiplied.

Credits

Author: Gabriel Maldonado

Italy

April, 1999

New in Csound version 3.54

pset

pset — Defines and initializes numeric arrays at orchestra load time.

Description

Defines and initializes numeric arrays at orchestra load time.

Syntax

pset icon1 [, icon2] [...]

Initialization

icon1, icon2, ... -- preset values for a MIDI instrument

pset (optional) defines and initializes numeric arrays at orchestra load time. It may be used as an orchestra
header statement (i.e. instrument 0) or within an instrument. When defined within an instrument, it is not
part of its i-time or performance operation, and only one statement is allowed per instrument. These values
are available as i-time defaults. When an instrument is triggered from MIDI it only gets p1 and p2 from the
event, and p3, p4, etc. will receive the actual preset values.

622

Chapter 15. Orchestra Opcodes and Operators

Examples

The example below illustrates pset as used within an instrument.

instr 1
pset 0,0,3,4,5,6 ; pfield substitutes
a1 oscil 10000, 440, p6

See Also

strset

pvadd

pvadd — Reads from a pvoc file and uses the data to perform additive synthesis.

Description

pvadd reads from a pvoc file and uses the data to perform additive synthesis using an internal array of
interpolating oscillators. The user supplies the wave table (usually one period of a sine wave), and can choose
which analysis bins will be used in the re-synthesis.

Syntax

ar pvadd ktimpnt, kfmod, ifilcod, ifn, ibins [, ibinoffset] [, ibinincr] [, iextractmode] [, ifreqlim] [, igatefn]

Initialization

ifilcod -- integer or character-string denoting a control-file derived from pvanal analysis of an audio signal.
An integer denotes the suffix of a file pvoc.m; a character-string (in double quotes) gives a filename,
optionally a full pathname. If not fullpath, the file is sought first in the current directory, then in the one given
by the environment variable SADIR (if defined). pvoc control files contain data organized for fft resynthesis.
Memory usage depends on the size of the files involved, which are read and held entirely in memory during
computation but are shared by multiple calls (see also lpread).

ifn -- table number of a stored function containing a sine wave.

ibins -- number of bins that will be used in the resynthesis (each bin counts as one oscillator in the
re-synthesis)

ibinoffset (optional) -- is the first bin used (it is optional and defaults to 0).

ibinincr (optional) -- sets an increment by which pvadd counts up from ibinoffset for ibins components in
the re-synthesis (see below for a further explanation).

iextractmode (optional) -- determines if spectral extraction will be carried out and if so whether components
that have changes in frequency below ifreqlim or above ifreqlim will be discarded. A value for iextractmode of
1 will cause pvadd to synthesize only those components where the frequency difference between analysis
frames is greater than ifreqlim. A value of 2 for iextractmode will cause pvadd to synthesize only those
components where the frequency difference between frames is less than ifreqlim. The default values for
iextractmode and ifreqlim are 0, in which case a simple resynthesis will be done. See examples below.

623

Chapter 15. Orchestra Opcodes and Operators

igatefn (optional) -- is the number of a stored function which will be applied to the amplitudes of the analysis
bins before resynthesis takes place. If igatefn is greater than 0 the amplitudes of each bin will be scaled by
igatefn through a simple mapping process. First, the amplitudes of all of the bins in all of the frames in the
entire analysis file are compared to determine the maximum amplitude value. This value is then used create
normalized amplitudes as indeces into the stored function igatefn. The maximum amplitude will map to the
last point in the function. An amplitude of 0 will map to the first point in the function. Values between 0 and 1
will map accordingly to points along the function table.This will be made clearer in the examples below.

Performance

ktimpnt and kfmod are used in the same way as in pvoc.

Examples

ktime line 0, p3, p3

asig pvadd ktime, 1, “oboe.pvoc”, 1, 100, 2

In the above, ibins is 100 and ibinoffset is 2. Using these settings the resynthesis will contain 100 components
beginning with bin #2 (bins are counted starting with 0). That is, resynthesis will be done using bins 2-101
inclusive. It is usually a good idea to begin with bin 1 or 2 since the 0th and often 1st bin have data that is
neither necessary nor even helpful for creating good clean resynthesis.

ktime line 0, p3, p3
asig pvadd ktime, 1, “oboe.pvoc”, 1, 100, 2, 2

The above is the same as the previous example with the addition of the value 2 used for the optional ibinincr
argument. This result will still result in 100 components in the resynthesis, but pvadd will count through the
bins by 2 instead of by 1. It will use bins 2, 4, 6, 8, 10, and so on. For ibins=10, ibinoffset=10, and ibinincr=10,
pvadd would use bins 10, 20, 30, 40, up to and including 100.

Below is an example using spectral extraction. In this example iextractmode is one and ifreqlim is 9. This will
cause pvadd to synthesize only those bins where the frequency deviation, averaged over 6 frames, is greater
than 9.

ktime line 0, p3, p3
asig pvadd ktime, 1, “oboe.pvoc”, 1, 100, 2, 2, 1, 9

If iextractmode were 2 in the above, then only those bins with an average frequency deviation of less than 9
would be synthesized. If tuned correctly, this technique can be used to separate the pitched parts of the
spectrum from the noisy parts. In practice this depends greatly on the type of sound, the quality of the
recording and digitization, and also on the analysis window size and frame increment.

Next is an example using amplitude gating. The last 2 in the argument list stands for f2 in the score.

asig pvadd ktime, 1, “oboe.pvoc”, 1, 100, 2, 2, 0, 0, 2

624

Chapter 15. Orchestra Opcodes and Operators

Suppose the score for the above were to contain:

f2 0 512 7 0 256 1 256 1

Then those bins with amplitudes of 50% of the maximum or greater would be left unchanged, while those
with amplitudes less than 50% of the maximum would be scaled down. In this case the lower the amplitude
the more severe the scaling down would be. But suppose the score contains:

f2 0 512 5 1 512 .001

In this case lower amplitudes will be left unchanged and greater ones will be scaled down, turning the sound
“upside-down” in terms of the amplitude spectrum! Functions can be arbitrarily complex. Just remember
that the normalized amplitude values of the analysis are themselves the indeces into the function.

Finally, both spectral extraction and amplitude gating can be used together. The example below will
synthesize only those components that with a frequency deviation of less than 5Hz per frame and it will scale
the amplitudes according to F2.

asig pvadd ktime, 1, “oboe.pvoc”, 1, 100, 1, 1, 2, 5, 2

USEFUL HINTS: By using several pvadd units together, one can gradually fade in different parts of the resynthesis,
creating various “filtering” effects. The author uses pvadd to synthesis one bin at a time to have control over each
separate component of the re-synthesis.

If any combination of ibins, ibinoffset , and ibinincr , creates a situation where pvadd is asked to used a bin number
greater than the number of bins in the analysis, it will just use all of the available bins, and give no complaint. So to use
every bin just make ibins a big number (ie. 2000).

Expect to have to scale up the amplitudes by factors of 10-100, by the way.

Credits

Author: Richard Karpen

Seattle, Wash

1998 (New in Csound version 3.48, additional arguments version 3.56)

pvbufread

pvbufread — Reads from a phase vocoder analysis file and makes the retrieved data available.

625

Chapter 15. Orchestra Opcodes and Operators

Description

pvbufread reads from a pvoc file and makes the retrieved data available to any following pvinterp and pvcross
units that appear in an instrument before a subsequent pvbufread (just as lpread and lpreson work together).
The data is passed internally and the unit has no output of its own.

Syntax

pvbufread ktimpnt, ifile

Initialization

ifile -- the pvoc number (n in pvoc.n) or the name in quotes of the analysis file made using pvanal. (See pvoc.)

Performance

ktimpnt -- the passage of time, in seconds, through this file. ktimpnt must always be positive, but can move
forwards or backwards in time, be stationary or discontinuous, as a pointer into the analysis file.

Examples

The example below shows an example using pvbufread with pvinterp to interpolate between the sound of an
oboe and the sound of a clarinet. The value of kinterp returned by a linseg is used to determine the timing of
the transitions between the two sounds. The interpolation of frequencies and amplitudes are controlled by
the same factor in this example, but for other effects it might be interesting to not have them synchronized in
this way. In this example the sound will begin as a clarinet, transform into the oboe and then return again to
the clarinet sound. The value of kfreqscale2 is 1.065 because the oboe in this case is a semitone higher in pitch
than the clarinet and this brings them approximately to the same pitch. The value of kampscale2 is .75
because the analyzed clarinet was somewhat louder than the analyzed oboe. The setting of these two
parameters make the transition quite smooth in this case, but such adjustments are by no means necessary
or even advocated.

ktime1 line 0, p3, 3.5 ; used as index in the "oboe.pvoc" file
ktime2 line 0, p3, 4.5 ; used as index in the "clar.pvoc" file
kinterp linseg 1, p3*.15, 1, p3*.35, 0, p3*.25, 0, p3*.15, 1, p3*.1, 1

pvbufread ktime1, "oboe.pvoc"
apv pvinterp ktime2,1,"clar.pvoc",1,1.065,1,.75,1-kinterp,1-kinterp

Below is an example using pvbufread with pvcross. In this example the amplitudes used in the resynthesis
gradually change from those of the oboe to those of the clarinet. The frequencies, of course, remain those of
the clarinet throughout the process since pvcross does not use the frequency data from the file read by
pvbufread.

ktime1 line 0, p3, 3.5 ; used as index in the "oboe.pvoc" file
ktime2 line 0, p3, 4.5 ; used as index in the "clar.pvoc" file
kcross expon .001, p3, 1

pvbufread ktime1, "oboe.pvoc"
apv pvcross ktime2, 1, "clar.pvoc", 1-kcross, kcross

626

Chapter 15. Orchestra Opcodes and Operators

See Also

pvcross, pvinterp, pvread, tableseg , tablexseg

Credits

Author: Richard Karpen

Seattle, Wash

1997

pvcross

pvcross — Applies the amplitudes from one phase vocoder analysis file to the data from a second file.

Description

pvcross applies the amplitudes from one phase vocoder analysis file to the data from a second file and then
performs the resynthesis. The data is passed, as described above, from a previously called pvbufread unit.
The two k-rate amplitude arguments are used to scale the amplitudes of each files separately before they are
added together and used in the resynthesis (see below for further explanation). The frequencies of the first
file are not used at all in this process. This unit simply allows for cross-synthesis through the application of
the amplitudes of the spectra of one signal to the frequencies of a second signal. Unlike pvinterp, pvcross
does allow for the use of the ispecwp as in pvoc and vpvoc.

Syntax

ar pvcross ktimpnt, kfmod, ifile, kampscale1, kampscale2 [, ispecwp]

Initialization

ifile -- the pvoc number (n in pvoc.n) or the name in quotes of the analysis file made using pvanal. (See pvoc.)

ispecwp (optional, default=0) -- if non-zero, attempts to preserve the spectral envelope while its frequency
content is varied by kfmod. The default value is zero.

Performance

ktimpnt -- the passage of time, in seconds, through this file. ktimpnt must always be positive, but can move
forwards or backwards in time, be stationary or discontinuous, as a pointer into the analysis file.

kfmod -- a control-rate transposition factor: a value of 1 incurs no transposition, 1.5 transposes up a perfect
fifth, and .5 down an octave.

kampscale1, kampscale2 -- used to scale the amplitudes stored in each frame of the phase vocoder analysis
file. kampscale1 scale the amplitudes of the data from the file read by the previously called pvbufread.
kampscale2 scale the amplitudes of the file named by ifile.

By using these arguments, it is possible to adjust these values before applying the interpolation. For example,
if file1 is much louder than file2, it might be desirable to scale down the amplitudes of file1 or scale up those
of file2 before interpolating. Likewise one can adjust the frequencies of each to bring them more in accord
with one another (or just the opposite, of course!) before the interpolation is performed.

627

Chapter 15. Orchestra Opcodes and Operators

Examples

Below is an example using pvbufread with pvcross. In this example the amplitudes used in the resynthesis
gradually change from those of the oboe to those of the clarinet. The frequencies, of course, remain those of
the clarinet throughout the process since pvcross does not use the frequency data from the file read by
pvbufread.

ktime1 line 0, p3, 3.5 ; used as index in the "oboe.pvoc" file
ktime2 line 0, p3, 4.5 ; used as index in the "clar.pvoc" file
kcross expon .001, p3, 1

pvbufread ktime1, "oboe.pvoc"
apv pvcross ktime2, 1, "clar.pvoc", 1-kcross, kcross

See Also

pvbufread, pvinterp, pvread, tableseg , tablexseg

Credits

Author: Richard Karpen

Seattle, Wash

1997

pvinterp

pvinterp — Interpolates between the amplitudes and frequencies of two phase vocoder analysis files.

Description

pvinterp interpolates between the amplitudes and frequencies, on a bin by bin basis, of two phase vocoder
analysis files (one from a previously called pvbufread unit and the other from within its own argument list),
allowing for user defined transitions between analyzed sounds. It also allows for general scaling of the
amplitudes and frequencies of each file separately before the interpolated values are calculated and sent to
the resynthesis routines. The kfmod argument in pvinterp performs its frequency scaling on the frequency
values after their derivation from the separate scaling and subsequent interpolation is performed so that this
acts as an overall scaling value of the new frequency components.

Syntax

ar pvinterp ktimpnt, kfmod, ifile, kfreqscale1, kfreqscale2, kampscale1, kampscale2, kfreqinterp, kampinterp

Initialization

ifile -- the pvoc number (n in pvoc.n) or the name in quotes of the analysis file made using pvanal. (See pvoc.)

628

Chapter 15. Orchestra Opcodes and Operators

Performance

ktimpnt -- the passage of time, in seconds, through this file. ktimpnt must always be positive, but can move
forwards or backwards in time, be stationary or discontinuous, as a pointer into the analysis file.

kfmod -- a control-rate transposition factor: a value of 1 incurs no transposition, 1.5 transposes up a perfect
fifth, and .5 down an octave.

kfreqscale1, kfreqscale2, kampscale1, kampscale2 -- used in pvinterp to scale the frequencies and amplitudes
stored in each frame of the phase vocoder analysis file. kfreqscale1 and kampscale1 scale the frequencies and
amplitudes of the data from the file read by the previously called pvbufread (this data is passed internally to
the pvinterp unit). kfreqscale2 and kampscale2 scale the frequencies and amplitudes of the file named by ifile
in the pvinterp argument list and read within the pvinterp unit.

By using these arguments, it is possible to adjust these values before applying the interpolation. For example,
if file1 is much louder than file2, it might be desirable to scale down the amplitudes of file1 or scale up those
of file2 before interpolating. Likewise one can adjust the frequencies of each to bring them more in accord
with one another (or just the opposite, of course!) before the interpolation is performed.

kfreqinterp, kampinterp -- used in pvinterp, determine the interpolation distance between the values of one
phase vocoder file and the values of a second file. When the value of kfreqinterp is 0, the frequency values will
be entirely those from the first file (read by the pvbufread), post scaling by the kfreqscale1 argument. When
the value of kfreqinterp is 1 the frequency values will be those of the second file (read by the pvinterp unit
itself), post scaling by kfreqscale2. When kfreqinterp is between 0 and 1 the frequency values will be
calculated, on a bin, by bin basis, as the percentage between each pair of frequencies (in other words,
kfreqinterp=.5 will cause the frequencies values to be half way between the values in the set of data from the
first file and the set of data from the second file).

kampinterp works in the same way upon the amplitudes of the two files. Since these are k-rate arguments,
the percentages can change over time making it possible to create many kinds of transitions between sounds.

Examples

The example below shows an example using pvbufread with pvinterp to interpolate between the sound of an
oboe and the sound of a clarinet. The value of kinterp returned by a linseg is used to determine the timing of
the transitions between the two sounds. The interpolation of frequencies and amplitudes are controlled by
the same factor in this example, but for other effects it might be interesting to not have them synchronized in
this way. In this example the sound will begin as a clarinet, transform into the oboe and then return again to
the clarinet sound. The value of kfreqscale2 is 1.065 because the oboe in this case is a semitone higher in pitch
than the clarinet and this brings them approximately to the same pitch. The value of kampscale2 is .75
because the analyzed clarinet was somewhat louder than the analyzed oboe. The setting of these two
parameters make the transition quite smooth in this case, but such adjustments are by no means necessary
or even advocated.

ktime1 line 0, p3, 3.5 ; used as index in the "oboe.pvoc" file
ktime2 line 0, p3, 4.5 ; used as index in the "clar.pvoc" file
kinterp linseg 1, p3*.15, 1, p3*.35, 0, p3*.25, 0, p3*.15, 1, p3*.1, 1

pvbufread ktime1, "oboe.pvoc"
apv pvinterp ktime2,1,"clar.pvoc",1,1.065,1,.75,1-kinterp,1-kinterp

See Also

pvbufread, pvcross, pvread, tableseg , tablexseg

629

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Richard Karpen

Seattle, Wash

1997

pvoc

pvoc — Implements signal reconstruction using an fft-based phase vocoder.

Description

Implements signal reconstruction using an fft-based phase vocoder.

Syntax

ar pvoc ktimpnt, kfmod, ifilcod [, ispecwp] [, iextractmode] [, ifreqlim] [, igatefn]

Initialization

ifilcod -- integer or character-string denoting a control-file derived from analysis of an audio signal. An
integer denotes the suffix of a file pvoc.m; a character-string (in double quotes) gives a filename, optionally a
full pathname. If not fullpath, the file is sought first in the current directory, then in the one given by the
environment variable SADIR (if defined). pvoc control contains breakpoint amplitude and frequency
envelope values organized for fft resynthesis. Memory usage depends on the size of the files involved, which
are read and held entirely in memory during computation but are shared by multiple calls (see also lpread).

ispecwp (optional) -- if non-zero, attempts to preserve the spectral envelope while its frequency content is
varied by kfmod. The default value is zero.

iextractmode (optional) -- determines if spectral extraction will be carried out and if so whether components
that have changes in frequency below ifreqlim or above ifreqlim will be discarded. A value for iextractmode of
1 will cause pvadd to synthesize only those components where the frequency difference between analysis
frames is greater than ifreqlim. A value of 2 for iextractmode will cause pvadd to synthesize only those
components where the frequency difference between frames is less than ifreqlim. The default values for
iextractmode and ifreqlim are 0, in which case a simple resynthesis will be done. See examples under pvadd
for how to use spectral extraction.

igatefn (optional) -- the number of a stored function which will be applied to the amplitudes of the analysis
bins before resynthesis takes place. If igatefn is greater than 0 the amplitudes of each bin will be scaled by
igatefn through a simple mapping process. First, the amplitudes of all of the bins in all of the frames in the
entire analysis file are compared to determine the maximum amplitude value. This value is then used create
normalized amplitudes as indeces into the stored function igatefn. The maximum amplitude will map to the
last point in the function. An amplitude of 0 will map to the first point in the function. Values between 0 and 1
will map accordingly to points along the function table. See examples under pvadd for how to use amplitude
gating.

Performance

ktimpnt -- The passage of time, in seconds, through the analysis file. ktimpnt must always be positive, but
can move forwards or backwards in time, be stationary or discontinuous, as a pointer into the analysis file.

630

Chapter 15. Orchestra Opcodes and Operators

kfmod -- a control-rate transposition factor: a value of 1 incurs no transposition, 1.5 transposes up a perfect
fifth, and .5 down an octave.

pvoc implements signal reconstruction using an fft-based phase vocoder. The control data stems from a
precomputed analysis file with a known frame rate.

This implementation of pvoc was orignally written by Dan Ellis. It is based in part on the system of Mark
Dolson, but the pre-analysis concept is new. The spectral extraction and amplitude gating (new in Csound
version 3.56) were added by Richard Karpen based on functions in SoundHack by Tom Erbe.

See Also

vpvoc

Credits

Author: Dan Ellis

Richard Karpen

Seattle, Wash

1997

pvread

pvread — Reads from a phase vocoder analysis file and returns the frequency and amplitude from a single
analysis channel or bin.

Description

pvread reads from a pvoc file and returns the frequency and amplitude from a single analysis channel or bin.
The returned values can be used anywhere else in the Csound instrument. For example, one can use them as
arguments to an oscillator to synthesize a single component from an analyzed signal or a bank of pvreads can
be used to resynthesize the analyzed sound using additive synthesis by passing the frequency and magnitude
values to a bank of oscillators.

Syntax

kfreq, kamp pvread ktimpnt, ifile, ibin

Initialization

ifile -- the pvoc number (n in pvoc.n) or the name in quotes of the analysis file made using pvanal. (See pvoc.)

ibin -- the number of the analysis channel from which to return frequency in Hz and magnitude.

Performance

kfreq, kamp -- outputs of the pvread unit. These values, retrieved from a phase vocoder analysis file,
represent the values of frequency and amplitude from a single analysis channel specified in the ibin
argument. Interpolation between analysis frames is performed at k-rate resolution and dependent of course
upon the rate and direction of ktimpnt.

631

Chapter 15. Orchestra Opcodes and Operators

ktimpnt -- the passage of time, in seconds, through this file. ktimpnt must always be positive, but can move
forwards or backwards in time, be stationary or discontinuous, as a pointer into the analysis file.

Examples

The example below shows the use pvread to synthesize a single component from a phase vocoder analysis
file. It should be noted that the kfreq and kamp outputs can be used for any kind of synthesis, filtering,
processing, and so on.

ktime line 0, p3, 3
kfreq, kamp pvread ktime, "pvoc.file", 7 ; read

;data from 7th analysis bin.
asig oscili kamp, kfreq, 1 ; function 1

;is a stored sine

See Also

pvbufread, pvcross, pvinterp, tableseg , tablexseg

Credits

Author: Richard Karpen

Seattle, Wash

1997

pvsadsyn

pvsadsyn — Resynthesize using a fast oscillator-bank.

Description

Resynthesize using a fast oscillator-bank.

Syntax

ar pvsadsyn fsrc, inoscs, kfmod [, ibinoffset] [, ibinincr] [, iinit]

Initialization

inoscs -- The number of analysis bins to synthesise. Cannot be larger than the size of fsrc (see pvsinfo), e.g. as
created by pvsanal. Processing time is directly proportional to inoscs.

ibinoffset (optional, default=0) -- The first (lowest) bin to resynthesise, counting from 0 (default = 0).

ibinincr (optional) -- Starting from bin ibinoffset, resynthesize bins ibinincr apart.

632

Chapter 15. Orchestra Opcodes and Operators

iinit (optional) -- Skip reinitialization. This is not currently implemented for any of these opcodes, and it
remains to be seen if it is even practical.

Performance

kfmod -- Scale all frequencies by factor kfmod. 1.0 = no change, 2 = up one octave.

pvsadsyn is experimental, and implements the oscillator bank using a fast direct calculation method, rather
than a lookup table. This takes advantage of the fact, empirically arrived at, that for the analysis rates
generally used, (and presuming analysis using pvsanal, where frequencies in a bin change only slightly
between frames) it is not necessary to interpolate frequencies between frames, only amplitudes. Accurate
resynthesis is often contingent on the use of pvsanal with iwinsize = ifftsize*2.

This opcode is the most likely to change, or be much extended, according to feedback and advice from users.
It is likely that a full interpolating table-based method will be added, via a further optional iarg. The
parameter list to pvsadsyn mimics that for pvadd, but excludes spectral extraction.

Examples

; resynth the first 100 odd-numbered bins, with pitch scaling envelope.
kpch linseg 1,p3/3,1,p3/3,1.5,p3/3,1
aout pvsadsyn fsrc, 100,kpch,1,2

See Also

pvsynth

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvsanal

pvsanal — Generate an fsig from a mono audio source ain, using phase vocoder overlap-add analysis.

Description

Generate an fsig from a mono audio source ain, using phase vocoder overlap-add analysis.

Syntax

fsig pvsanal ain, ifftsize, ioverlap, iwinsize, iwintype [, iformat] [, iinit]

633

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifftsize -- The FFT size in samples. Need not be a power of two (though these are especially efficient), but
must be even. Odd numbers are rounded up internally. ifftsize determines the number of analysis bins in fsig,
as ifftsize/2 + 1. For example, where ifftsize = 1024, fsig will contain 513 analysis bins, ordered linearly from
the fundamental to Nyquist. The fundamental of analysis (which in principle gives the lowest resolvable
frequency) is determined as sr/ifftsize. Thus, for the example just given and assuming sr = 44100, the
fundamental of analysis is 43.07Hz. In practice, due to the phase-preserving nature of the phase vocoder, the
frequency of any bin can deviate bilaterally, so that DC components are recorded. Given a strongly pitched
signal, frequencies in adjacent bins can bunch very closely together, around partials in the source, and the
lowest bins may even have negative frequencies.

As a rule, the only reason to use a non power-of-two value for ifftsize would be to match the known
fundamental frequency of a strongly pitched source. Values with many small factors can be almost as
efficient as power-of-two sizes; for example: 384, for a source pitched at around low A=110Hz.

ioverlap -- The distance in samples (“hop size”) between overlapping analysis frames. As a rule, this needs to
be at least ifftsize/4, e.g. 256 for the example above. ioverlap determines the underlying analysis rate, as
sr/ioverlap. ioverlap does not require to be a simple factor of ifftsize; for example a value of 160 would be legal.
The choice of ioverlap may be dictated by the degree of pitch modification applied to the fsig, if any. As a rule
of thumb, the more extreme the pitch shift, the higher the analysis rate needs to be, and hence the smaller the
value for ioverlap. A higher analysis rate can also be advantageous with broadband transient sounds, such as
drums (where a small analysis window gives less smearing, but more frequency-related errors).

Note that it is possible, and reasonable, to have distinct fsigs in an orchestra (even in the same instrument),
running at different analysis rates. Interactions between such fsigs is currently unsupported, and the fsig
assignment opcode does not allow copying between fsigs with different properties, even if the only difference
is in ioverlap. However, this is not a closed issue, as it is possible in theory to achieve crude rate conversion
(especially with regard to in-memory analysis files) in ways analogous to time-domain techniques.

iwinsize -- The size in samples of the analysis window filter (as set by iwintype). This must be at least ifftsize,
and can usefully be larger. Though other proportions are permitted, it is recommended that iwinsize always
be an integral multiple of ifftsize, e.g. 2048 for the eaxmple above. Internally, the analysis window (Hamming,
von Hann) is multiplied by a sinc function, so that amplitudes are zero at the boundaries between frames.
The larger analysis window size has been found to be especially important for oscillator bank resynthesis (e.g.
using pvsadsyn), as it has the effect of increasing the frequency resolution of the analysis, and hence the
accuracy of the resynthesis. As noted above, iwinsize determines the overall latency of the
analysis/resynthesis system. In many cases, and especially in the absence of pitch modifications, it will be
found that setting iwinsize=ifftsize works very well, and offers the lowest latency.

iwintype -- The shape of the analysis window. Currently only two choices are implemented:

• 0 = Hamming window

• 1 = von Hann window

Both are also supported by the PVOC-EX file format. The window type is stored as an internal attribute of the
fsig, together with the other parameters (see pvsinfo). Other types may be implemented later on (e.g. the
Kaiser window, also supported by PVOC-EX), though an obvious alternative is to enable windows to be
defined via a function table. The main issue here is the constraint of f-tables to power-of-two sizes, so this
method does not offer a complete solution. Most users will find the Hamming window meets all normal
needs, and can be regarded as the default choice.

iformat -- (optional) The analysis format. Currently only one format is implemented by this opcode:

• 0 = amplitude + frequency

This is the classic phase vocoder format; easy to process, and a natural format for oscillator-bank resynthesis.
It would be very easy (tempting, one might say) to treat an fsig frame not purely as a phase vocoder frame but

634

Chapter 15. Orchestra Opcodes and Operators

as a generic additive synthesis frame. It is indeed possible to use an fsig this way, but it is important to bear in
mind that the two are not, strictly speaking, directly equivalent.

Other important formats (supported by PVOC-EX) are:

• 1 = amplitude + phase

• 2 = complex (real + imaginary)

iformat is provided in case it proves useful later to add support for these other formats. Formats 0 and 1 are
very closely related (as the phase is “wrapped” in both cases - it is a trivial matter to convert from one to the
other), but the complex format might warrant a second explicit signal type (a “csig”) specifically for
convolution-based processes, and other processes where the full complement of arithmetic operators may be
useful.

iinit -- (optional) Skip reinitialization. This is not currently implemented for any of these opcodes, and it
remains to be seen if it is even practical.

Examples

ain in ; live source
fin pvsanal ain,1024,256,2048,0 ; analyse, using Hamming
fout pvsmaska fin,1,0.75 ; apply eq from f-table
aout pvsynth fout ; and resynthesize

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvscross

pvscross — Performs cross-synthesis between two source fsigs.

Description

Performs cross-synthesis between two source fsigs.

Syntax

fsig pvscross fsrc, fdest, kamp1, kamp2

635

Chapter 15. Orchestra Opcodes and Operators

Performance

The operation of this opcode is identical to that of pvcross (q.v.), except in using fsigs rather than analysis
files, and the absence of spectral envelope preservation. The amplitudes from fsrc are applied to fdest, using
scale factors kamp1 and kamp2 respectively. kamp1 and kamp2 must not exceed the range 0 to 1.

With this opcode, cross-synthesis can be performed on real-time audio input, by using pvsanal to generate
fsrc and fdest. These must have the same format.

Examples

kcross linseg 0,p3/3,0,p3/3,1,p3/3,1 ; progressive cross-synthesis
fcross pvscross fsig1,fsig2,1-kcross,kcross
across pvsynth fcross

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvsfread

pvsfread — Read a selected channel from a PVOC-EX analysis file.

Description

Create an fsig stream by reading a selected channel from a PVOC-EX analysis file loaded into memory, with
frame interpolation. Only format 0 files (amplitude+frequency) are currently supported. The operation of this
opcode mirrors that of pvoc, but outputs an fsig instead of a resynthesized signal.

Syntax

fsig pvsfread ktimpt, ifn [, ichan]

Initialization

ifn -- Name of the analysis file. This must have the .pvx file extension.

A multi-channel PVOC-EX file can be generated using the extended pvanal utility.

ichan -- (optional) The channel to read (counting from 0). Default is 0.

636

Chapter 15. Orchestra Opcodes and Operators

Performance

ktimpt -- Time pointer into analysis file, in seconds. See the description of the same parameter of pvoc for
usage.

Note that analysis files can be very large, especially if multi-channel. Reading such files into memory will very
likely incur breaks in the audio during real-time performance. As the file is read only once, and is then
available to all other interested opcodes, it can be expedient to arrange for a dedicated instrument to preload
all such analysis files at startup.

Examples

idur filelen "test.pvx" ; find dur of (stereo) analysis file
kpos line 0,p3,idur ; to ensure we process whole file
fsigr pvsfread kpos,"test.pvx",1 ; create fsig from R channel

(NB: as this example shows, the filelen opcode has been extended to accept both old and new analysis file
formats).

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvsftr

pvsftr — Reads amplitude and/or frequency data from function tables.

Description

Reads amplitude and/or frequency data from function tables.

Syntax

pvsftr fsrc, ifna [, ifnf]

Initialization

ifna -- A table, at least inbins in size, that stores amplitude data. Ignored if ifna = 0

ifnf (optional) -- A table, at least inbins in size, that stores frequency data. Ignored if ifnf = 0

637

Chapter 15. Orchestra Opcodes and Operators

Performance

fsrc -- a PVOC-EX formatted source.

Enables the contents of fsrc to be exchanged with function tables for custom processing. Except when the
frame overlap equals ksmps (which will generally not be the case), the frame data is not updated each control
period. The data in ifna, ifnf should only be processed when kflag is set to 1. To process only frequency data,
set ifna to zero.

As the function tables are required only to store data from fsrc, there is no advantage in defining then in the
score, and they should generally be created in the instrument, using ftgen.

By exporting amplitude data, say, from one fsig and importing it into another, basic cross-synthesis (as in
pvscross) can be performed, with the option to modify the data beforehand using the table manipulation
opodes.

Note that the format data in the source fsig is not written to the tables. This therefore offers a means of
transferring amplitude and frequency data between non-identical fsigs. Used this way, these opcodes
become potentially pathological, and can be relied upon to produce unexpected results. In such cases,
resynthesis using pvsadsyn would almost certainly be required.

To perform a straight copy from one fsig to another one of identical format, the conventional assignment
syntax can be used:

fsig1 = fsig2

It is not necessary to use function tables in this case.

Examples

ifn ftgen 0,0,inbins,10,1 ; make ftable
kflag pvsftw fsrc,ifn ; export amps to table,
kamp init 0
if kflag==0 kgoto contin ; only proc when frame is ready
; kill lowest bins, for obvious effect

tablew kamp,1,ifn
tablew kamp,2,ifn
tablew kamp,3,ifn
tablew kamp,4,ifn

; read modified data back to fsrc
pvsftr fsrc,ifn

contin:
; and resynth
aout pvsynth fsrc

See Also

pvsftw

638

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvsftw

pvsftw — Writes amplitude and/or frequency data to function tables.

Description

Writes amplitude and/or frequency data to function tables.

Syntax

kflag pvsftw fsrc, ifna [, ifnf]

Initialization

ifna -- A table, at least inbins in size, that stores amplitude data. Ignored if ifna = 0

ifnf -- A table, at least inbins in size, that stores frequency data. Ignored if ifnf = 0

Performance

kflag -- A flag that has the value of 1 when new data is available, 0 otherwise.

fsrc -- a PVOC-EX formatted source.

Enables the contents of fsrc to be exchanged with function tables, for custom processing. Except when the
frame overlap equals ksmps (which will generally not be the case), the frame data is not updated each control
period. The data in ifna, ifnf should only be processed when kflag is set to 1. To process only frequency data,
set ifna to zero.

As the functions tables are required only to store data from fsrc, there is no advantage in defining then in the
score. They should generally be created in the instrument using ftgen.

By exporting amplitude data, say, from one fsig and importing it into another, basic cross-synthesis (as in
pvscross) can be performed, with the option to modify the data beforehand using the table manipulation
opodes.

Note that the format data in the source fsig is not written to the tables. This therefore offers a means of
transferring amplitude and frequency data between non-identical fsigs. Used this way, these opcodes
become potentially pathological, and can be relied upon to produce unexpected results. In such cases,
resynthesis using pvsadsyn would almost certainly be required.

To perform a straight copy from one fsig to another one of identical format, the conventional assignment
syntax can be used:

fsig1 = fsig2

It is not necessary to use function tables in this case.

639

Chapter 15. Orchestra Opcodes and Operators

Examples

ifn ftgen 0,0,inbins,10,1 ; make ftable
kflag pvsftw fsrc,ifn ; export amps to table,
kamp init 0
if kflag==0 kgoto contin ; only proc when frame is ready
; kill lowest bins, for obvious effect

tablew kamp,1,ifn
tablew kamp,2,ifn
tablew kamp,3,ifn
tablew kamp,4,ifn

; read modified data back to fsrc
pvsftr fsrc,ifn

contin:
; and resynth
aout pvsynth fsrc

See Also

pvsftr

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvsinfo

pvsinfo — Get information from a PVOC-EX formatted source.

Description

Get format information about fsrc, whether created by an opcode such as pvsanal, or obtained from a
PVOCEX file by pvsfread. This information is available at init time, and can be used to set parameters for
other pvs opcodes, and in particular for creating function tables (e.g. for pvsftw), or setting the number of
oscillators for pvsadsyn.

Syntax

ioverlap, inumbins, iwinsize, iformat pvsinfo fsrc

640

Chapter 15. Orchestra Opcodes and Operators

Initialization

ioverlap -- The stream overlap size.

inumbins -- The number of analysis bins (amplitude+frequency) in fsrc. The underlying FFT size is calculated
as (inumbins -1) * 2.

iwinsize -- The analysis window size. May be larger than the FFT size.

iformat -- The analysis frame format. If fsrc is created by an opcode, iformat will always be 0, signifying
amplitude+frequency. If fsrc is defined from a PVOC-EX file, iformat may also have the value 1 or 2
(amplitude+phase, complex).

Examples

fin pvsfread "test.pvx" ; import pvocex file
iovl,inb,iws,ifmt pvsinfo fin ; get inumbins info
ifn ftgen 0,0,inb,10,1 ; and create f-table

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvsmaska

pvsmaska — Modify amplitudes using a function table, with dynamic scaling.

Description

Modify amplitudes of fsrc using function table, with dynamic scaling.

Syntax

fsig pvsmaska fsrc, ifn, kdepth

Initialization

ifn -- The f-table to use. Given fsrc has N analysis bins, table ifn must be of size N or larger. The table need not
be normalized, but values should lie within the range 0 to 1. It can be supplied from the score in the usual
way, or from within the orchestra by using pvsinfo to find the size of fsrc, (returned by pvsinfo in inbins),
which can then be passed to ftgen to create the f-table.

641

Chapter 15. Orchestra Opcodes and Operators

Performance

kdepth -- Controls the degree of modification applied to fsrc, using simple linear scaling. 0 leaves amplitudes
unchanged, 1 applies the full profile of ifn.

Note that power-of-two FFT sizes are particularly convenient when using table-based processing, as the
number of analysis bins (inbins) is then a power-of-two plus one, for which an exactly matching f-table can
be created. In this case it is important that the f-table be created with a size of inbins, rather than as a power
of two, as the latter will copy the first table value to the guard point, which is inappropriate for this opcode.

Examples

Example 15-1. Example (using score-supplied f-table, assuming fsig fftsize = 1024)

; score f-table using cubic spline to define shaped peaks
f1 0 513 8 0 2 1 3 0 4 1 6 0 10 1 12 0 16 1 32 0 1 0 436 0

asig buzz 20000,199,50,3 ; pulsewave source
fsig pvsanal asig,1024,256,1024,0 ; create fsig
kmod linseg 0,p3/2,1,p3/2,0 ; simple control sig

fsig pvsmaska fsig,2,kmod ; apply weird eq to fsig
aout pvsynth fsig ; resynthesize,

dispfft aout,0.1,1024 ; and view the effect

This also illustrates that the usual Csound behaviour applies to fsigs; the same name can be used for both
input and output.

Credits

Author: Richard Dobson

August 2001

New in version 4.13

pvsynth

pvsynth — Resynthesise using a FFT overlap-add.

Description

Resynthesise using a FFT overlap-add.

Syntax

ar pvsynth fsrc, [iinit]

642

Chapter 15. Orchestra Opcodes and Operators

Performance

ar -- output audio signal

fsrc -- input signal

iinit -- not yet implemented.

Examples

; resynth the first 100 odd-numbered bins, with pitch scaling envelope.
kpch linseg 1,p3/3,1,p3/3,1.5,p3/3,1
aout pvsadsyn fsrc, 100,kpch,1,2

See Also

pvsadsyn

Credits

Author: Richard Dobson

August 2001

New in version 4.13

rand

rand — Generates a controlled random number series.

Description

Output is a controlled random number series between -amp and +amp

Syntax

ar rand xamp [, iseed] [, isize] [, ioffset]

kr rand xamp [, iseed] [, isize] [, ioffset]

Initialization

iseed (optional, default=0.5) -- seed value for the recursive pseudo-random formula. A value between 0 and
+1 will produce an initial output of kamp * iseed. A value greater than 1 will be used directly, without scaling.
A negative value will cause seed re-initialization to be skipped. The default seed value is .5.

isize (optional, default=0) -- if zero, a 16 bit number is generated. If non-zero, a 31-bit random number is
generated. Default is 0.

ioffset (optional, default=0) -- a base value added to the random result. New in Csound version 4.03.

643

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp, xamp -- range over which random numbers are distributed.

kcps, xcps -- the frequency which new random numbers are generated.

The internal pseudo-random formula produces values which are uniformly distributed over the range kamp
to -kamp. rand will thus generate uniform white noise with an R.M.S value of kamp / root 2.

The remaining units produce band-limited noise: the kcps and xcps parameters permit the user to specify
that new random numbers are to be generated at a rate less than the sampling or control frequencies.

Examples

Here is an example of the rand opcode. It uses the files rand.orc and rand.sco.

Example 15-1. Example of the rand opcode.

/* rand.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Choose a random frequency between 4,100 and 44,100.
kfreq rand 40000
kcps = kfreq + 4100

a1 oscil 30000, kcps, 1
out a1

endin
/* rand.orc */

/* rand.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* rand.sco */

See Also

randh, randi

644

Chapter 15. Orchestra Opcodes and Operators

randh

randh — Generates random numbers and holds them for a period of time.

Description

Generates random numbers and holds them for a period of time.

Syntax

ar randh xamp, xcps [, iseed] [, isize] [, ioffset]

kr randh kamp, kcps [, iseed] [, isize] [, ioffset]

Initialization

iseed (optional, default=0.5) -- seed value for the recursive pseudo-random formula. A value between 0 and
+1 will produce an initial output of kamp * iseed. A value greater than 1 will be used directly, without scaling.
A negative value will cause seed re-initialization to be skipped. The default seed value is .5.

isize (optional, default=0) -- if zero, a 16 bit number is generated. If non-zero, a 31-bit random number is
generated. Default is 0.

ioffset (optional, default=0) -- a base value added to the random result. New in Csound version 4.03.

Performance

kamp, xamp -- range over which random numbers are distributed.

kcps, xcps -- the frequency which new random numbers are generated.

The internal pseudo-random formula produces values which are uniformly distributed over the range -kamp
to +kamp. rand will thus generate uniform white noise with an R.M.S value of kamp / root 2.

The remaining units produce band-limited noise: the kcps and xcps parameters permit the user to specify
that new random numbers are to be generated at a rate less than the sampling or control frequencies. randh
will hold each new number for the period of the specified cycle.

Examples

Here is an example of the randh opcode. It uses the files randh.orc and randh.sco.

Example 15-1. Example of the randh opcode.

/* randh.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Choose a random frequency between 4,100 and 44,100.
; Generate new random numbers at 220 Hz.
; kamp = 40000
; kcps = 220

645

Chapter 15. Orchestra Opcodes and Operators

; iseed = 0.5
; isize = 0
; ioffset = 4100

kcps randh 40000, 220, 0.5, 0, 4100

a1 oscil 30000, kcps, 1
out a1

endin
/* randh.orc */

/* randh.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* randh.sco */

See Also

rand, randi

randi

rand — Generates a controlled random number series with interpolation between each new number.

Description

Generates a controlled random number series with interpolation between each new number.

Syntax

ar randi xamp, xcps [, iseed] [, isize] [, ioffset]

kr randi kamp, kcps [, iseed] [, isize] [, ioffset]

Initialization

iseed (optional, default=0.5) -- seed value for the recursive pseudo-random formula. A value between 0 and
+1 will produce an initial output of kamp * iseed. A value greater than 1 will be used directly, without scaling.
A negative value will cause seed re-initialization to be skipped. The default seed value is .5.

isize (optional, default=0) -- if zero, a 16 bit number is generated. If non-zero, a 31-bit random number is
generated. Default is 0.

ioffset (optional, default=0) -- a base value added to the random result. New in Csound version 4.03.

646

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp, xamp -- range over which random numbers are distributed.

kcps, xcps -- the frequency which new random numbers are generated.

The internal pseudo-random formula produces values which are uniformly distributed over the range kamp
to -kamp. rand will thus generate uniform white noise with an R.M.S value of kamp / root 2.

The remaining units produce band-limited noise: the kcps and xcps parameters permit the user to specify
that new random numbers are to be generated at a rate less than the sampling or control frequencies. randi
will produce straight-line interpolation between each new number and the next.

Examples

Here is an example of the randi opcode. It uses the files randi.orc and randi.sco.

Example 15-1. Example of the randi opcode.

/* randi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Choose a random frequency between 4,100 and 44,100.
; Generate new random numbers at 10 Hz.
; kamp = 40000
; kcps = 10
; iseed = 0.5
; isize = 0
; ioffset = 4100

kcps randi 40000, 10, 0.5, 0, 4100

a1 oscil 30000, kcps, 1
out a1

endin
/* randi.orc */

/* randi.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* randi.sco */

647

Chapter 15. Orchestra Opcodes and Operators

See Also

rand, randh

random

random — Generates is a controlled pseudo-random number series between min and max values.

Description

Generates is a controlled pseudo-random number series between min and max values.

Syntax

ar random kmin, kmax

ir random imin, imax

kr random kmin, kmax

Initialization

imin -- minimum range limit

imax -- maximum range limit

Performance

kmin -- minimum range limit

kmax -- maximum range limit

The random opcode is similar to linrand and trirand but sometimes I [Gabriel Maldonado] find it more
convenient because allows the user to set arbitrary minimum and maximum values.

Examples

Here is an example of the random opcode. It uses the files random.orc and random.sco.

Example 15-1. Example of the random opcode.

/* random.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number between 220 and 440.
kmin init 220
kmax init 440
k1 random kmin, kmax

648

Chapter 15. Orchestra Opcodes and Operators

printks "k1 = %f\\n", 0.1, k1
endin
/* random.orc */

/* random.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* random.sco */

Its output should include lines like:

k1 = 414.232056
k1 = 419.393402
k1 = 275.376373

See Also

linrand, randomh, randomi, trirand

Credits

Author: Gabriel Maldonado

randomh

randomh — Generates random numbers with a user-defined limit and holds them for a period of time.

Description

Generates random numbers with a user-defined limit and holds them for a period of time.

Syntax

ar randomh kmin, kmax, acps

kr randomh kmin, kmax, kcps

Performance

kmin -- minimum range limit

kmax -- maximum range limit

kcps, acps -- rate of random break-point generation

The randomh opcode is similar to randh but allows the user to set arbitrary minimum and maximum values.

649

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the randomh opcode. It uses the files randomh.orc and randomh.sco.

Example 15-1. Example of the randomh opcode.

/* randomh.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Choose a random frequency between 220 and 440 Hz.
; Generate new random numbers at 10 Hz.
kmin = 220
kmax = 440
kcps = 10

k1 randomh kmin, kmax, kcps

printks "k1 = %f\\n", 0.1, k1
endin
/* randomh.orc */

/* randh.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* randh.sco */

Its output should include lines like:

k1 = 220.000000
k1 = 414.232056
k1 = 284.095184

See Also

randh, random, randomi

Credits

Author: Gabriel Maldonado

650

Chapter 15. Orchestra Opcodes and Operators

randomi

randomi — Generates a user-controlled random number series with interpolation between each new
number.

Description

Generates a user-controlled random number series with interpolation between each new number.

Syntax

ar randomi kmin, kmax, acps

kr randomi kmin, kmax, kcps

Performance

kmin -- minimum range limit

kmax -- maximum range limit

kcps, acps -- rate of random break-point generation

The randomi opcode is similar to randi but allows the user to set arbitrary minimum and maximum values.

Examples

Here is an example of the randomi opcode. It uses the files randomi.orc and randomi.sco.

Example 15-1. Example of the randomi opcode.

/* randomi.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Choose a random frequency between 220 and 440.
; Generate new random numbers at 10 Hz.
kmin init 220
kmax init 440
kcps init 10

k1 randomi kmin, kmax, kcps

printks "k1 = %f\\n", 0.1, k1
endin
/* randomi.orc */

/* randomi.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* randomi.sco */

651

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like:

k1 = 220.000000
k1 = 414.226196
k1 = 284.101074

See Also

randi, random, randomh

Credits

Author: Gabriel Maldonado

readclock

readclock — Reads the value of an internal clock.

Description

Reads the value of an internal clock.

Syntax

ir readclock inum

Initialization

inum -- the number of a clock. There are 32 clocks numbered 0 through 31. All other values are mapped to
clock number 32.

ir -- value at i-time, of the clock specified by inum

Performance

Between a clockon and a clockoff opcode, the CPU time used is accumulated in the clock. The precision is
machine dependent but is the millisecond range on UNIX and Windows systems. The readclock opcde reads
the current value of a clock at initialization time.

652

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the readclock opcode. It uses the files readclock.orc and readclock.sco.

Example 15-1. Example of the readclock opcode.

/* readclock.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1.
instr 1

; Start clock #1.
clockon 1
; Do something that keeps Csound busy.
a1 oscili 10000, 440, 1
out a1
; Stop clock #1.
clockoff 1
; Print the time accumulated in clock #1.
i1 readclock 1
print i1

endin
/* readclock.orc */

/* readclock.sco */
/* Written by Kevin Conder */

; Initialize the function tables.
; Table 1: an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for one second starting at 0:00.
i 1 0 1
; Play Instrument #1 for one second starting at 0:01.
i 1 1 1
; Play Instrument #1 for one second starting at 0:02.
i 1 2 1
e
/* readclock.sco */

Its output should include lines like this:

instr 1: i1 = 0.000
instr 1: i1 = 90.000
instr 1: i1 = 180.000

See Also

clockoff , clockon

653

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

July, 1999

New in Csound version 3.56

readk

readk — Periodically reads an orchestra control-signal value from an external file.

Description

Periodically reads an orchestra control-signal value to a named external file in a specific format.

Syntax

kr readk ifilname, iformat, ipol [, interp]

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

ipol -- if non-zero, and iprd implies more than one control period, interpolate the k- signals between the
periodic reads from the external file. If the value is 0, repeat each signal between frames. Currently not
supported.

654

Chapter 15. Orchestra Opcodes and Operators

Performance

kr -- a control-rate signal

This opcode allows a generated control signal value to be read from a named external file. The file contains
no self-defining header information. But it contains a regularly sampled time series, suitable for later input or
analysis. There may be any number of readk opcodes in an instrument or orchestra and they may read from
the same or different files.

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpk3, dumpk4, readk2, readk3, readk4

readk2

readk2 — Periodically reads two orchestra control-signal values from an external file.

Description

Periodically reads two orchestra control-signal values from an external file.

Syntax

kr1, kr2 readk2 ifilname, iformat, ipol [, interp]

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

655

Chapter 15. Orchestra Opcodes and Operators

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

ipol -- if non-zero, and iprd implies more than one control period, interpolate the k- signals between the
periodic reads from the external file. If the value is 0, repeat each signal between frames. Currently not
supported.

Performance

kr1, kr2 -- control-rate signals

This opcode allows two generated control signal values to be read from a named external file. The file
contains no self-defining header information. But it contains a regularly sampled time series, suitable for
later input or analysis. There may be any number of readk2 opcodes in an instrument or orchestra and they
may read from the same or different files.

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpk3, dumpk4, readk, readk3, readk4

readk3

readk3 — Periodically reads three orchestra control-signal values from an external file.

Description

Periodically reads three orchestra control-signal values from an external file.

Syntax

kr1, kr2, kr3 readk3 ifilname, iformat, ipol [, interp]

656

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

ipol -- if non-zero, and iprd implies more than one control period, interpolate the k- signals between the
periodic reads from the external file. If the value is 0, repeat each signal between frames. Currently not
supported.

Performance

kr1, kr2, kr3 -- control-rate signals

This opcode allows three generated control signal values to be read from a named external file. The file
contains no self-defining header information. But it contains a regularly sampled time series, suitable for
later input or analysis. There may be any number of readk3 opcodes in an instrument or orchestra and they
may read from the same or different files.

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

See Also

dumpk, dumpk2, dumpk3, dumpk4, readk, readk2, readk4

657

Chapter 15. Orchestra Opcodes and Operators

readk4

readk4 — Periodically reads four orchestra control-signal values from an external file.

Description

Periodically reads four orchestra control-signal values from an external file.

Syntax

kr1, kr2, kr3, kr4 readk4 ifilname, iformat, ipol [, interp]

Initialization

ifilname -- character string (in double quotes, spaces permitted) denoting the external file name. May either
be a full path name with target directory specified or a simple filename to be created within the current
directory

iformat -- specifies the output data format:

• 1 = 8-bit signed char(high order 8 bits of a 16-bit integer

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats, 7=ASCII long integers

• 8 = ASCII floats (2 decimal places)

Note that A-law and U-law output are not available, and that all formats except the lsat two are binary. The
output file contains no header information.

iprd -- the period of ksig output i seconds, rounded to the nearest orchestra control period. A value of 0
implies one control period (the enforced minimum), which will create an output file sampled at the orchestra
control rate.

ipol -- if non-zero, and iprd implies more than one control period, interpolate the k- signals between the
periodic reads from the external file. If the value is 0, repeat each signal between frames. Currently not
supported.

Performance

kr1, kr2, kr3, kr4 -- control-rate signals.

This opcode allows four generated control signal values to be read from a named external file. The file
contains no self-defining header information. But it contains a regularly sampled time series, suitable for
later input or analysis. There may be any number of readk4 opcodes in an instrument or orchestra and they
may read from the same or different files.

Examples

knum = knum+1 ; at each k-period
ktemp tempest krms, .02, .1, 3, 2, 800, .005, 0, 60, 4, .1, .995 ;estimate the tempo
koct specptrk wsig, 6, .9, 0 ;and the pitch

dumpk3 knum, ktemp, cpsoct(koct), "what happened when", 8 0 ;& save them

658

Chapter 15. Orchestra Opcodes and Operators

See Also

dumpk, dumpk2, dumpk3, dumpk4, readk, readk2, readk3

reinit

reinit — Suspends a performance while a special initialization pass is executed.

Description

Suspends a performance while a special initialization pass is executed.

Whenever this statement is encountered during a p-time pass, performance is temporarily suspended while a
special Initialization pass, beginning at label and continuing to rireturn or endin, is executed. Performance
will then be resumed from where it left off.

Syntax

reinit label

Examples

The following statements will generate an exponential control signal whose value moves from 440 to 880
exactly ten times over the duration p3. They use the files reinit.orc and reinit.sco.

Example 15-1. Example of the reinit opcode.

/* reinit.orc */
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

instr 1

reset:
timout 0, p3/10, contin
reinit reset

contin:
kLine expon 440, p3/10, 880
aSig oscil 10000, kLine, 1
out aSig
rireturn

endin
/* reinit.orc */

/* reinit.sco */
f1 0 4096 10 1

659

Chapter 15. Orchestra Opcodes and Operators

i1 0 10
e
/* reinit.sco */

See Also

rigoto, rireturn

release

release — Indicates whether a note is in its “release” stage.

Description

Indicates whether a note is in its “release” stage.

Syntax

kflag release

Performance

kflag -- indicates whether the note is in its “release” stage.

release outputs current note state. If current note is in the “release” stage (i.e. if its duration has been
extended with xtratim opcode and if it has only just deactivated), then the kflag output argument is set to 1.
Otherwise (in sustain stage of current note), kflag is set to 0.

This opcode is useful for implementing complex release-oriented envelopes.

Examples

instr 1 ;allows complex ADSR envelope with MIDI events
inum notnum
icps cpsmidi
iamp ampmid i 4000

;
;------- complex envelope block ------

xtratim 1 ;extra-time, i.e. release dur
krel init 0
krel release ;outputs release-stage flag (0 or 1 values)
if (krel .5) kgoto rel ;if in release-stage goto release section

;
;************ attack and sustain section ***********

kmp1 linseg 0, .03, 1, .05, 1, .07, 0, .08, .5, 4, 1, 50, 1
kmp = kmp1*iamp

kgoto done
;

660

Chapter 15. Orchestra Opcodes and Operators

;--------- release section --------
rel:

kmp2 linseg 1, .3, .2, .7, 0
kmp = kmp1*kmp2*iamp
done:

;------
a1 oscili kmp, icps, 1
out a1

endin

See Also

xtratim

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

repluck

repluck — Physical model of the plucked string.

Description

repluck is an implementation of the physical model of the plucked string. A user can control the pluck point,
the pickup point, the filter, and an additional audio signal, axcite. axcite is used to excite the ’string’. Based on
the Karplus-Strong algorithm.

Syntax

ar repluck iplk, kamp, icps, kpick, krefl, axcite

Initialization

iplk -- The point of pluck is iplk, which is a fraction of the way up the string (0 to 1). A pluck point of zero
means no initial pluck.

icps -- The string plays at icps pitch.

661

Chapter 15. Orchestra Opcodes and Operators

Performance

kamp -- Amplitude of note.

kpick -- Proportion of the way along the string to sample the output.

krefl -- the coefficient of reflection, indicating the lossiness and the rate of decay. It must be strictly between 0
and 1 (it will complain about both 0 and 1).

Performance

axcite -- A signal which excites the string.

Examples

Here is an example of the repluck opcode. It uses the files repluck.orc and repluck.sco.

Example 15-1. Example of the repluck opcode.

/* repluck.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

iplk = 0.75
kamp = 30000
icps = 220
kpick = 0.75
krefl = 0.5
axcite oscil 1, 1, 1

apluck repluck iplk, kamp, icps, kpick, krefl, axcite

out apluck
endin
/* repluck.orc */

/* repluck.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* repluck.sco */

See Also

wgpluck2

662

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

1997

reson

reson — A second-order resonant filter.

Description

A second-order resonant filter.

Syntax

ar reson asig, kcf, kbw [, iscl] [, iskip]

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white
noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

ar -- the output signal at audio rate.

asig -- the input signal at audio rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

reson is a second-order filter in which kcf controls the center frequency, or frequency position of the peak
response, and kbw controls its bandwidth (the frequency difference between the upper and lower half-power
points).

663

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the reson opcode. It uses the files reson.orc and reson.sco.

Example 15-1. Example of the reson opcode.

/* reson.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a sine waveform.
asine buzz 15000, 440, 3, 1

; Vary the cut-off frequency from 220 to 1280.
kcf line 220, p3, 1320
kbw init 20

; Run the sine through a resonant filter.
ares reson asine, kcf, kbw

; Give the filtered signal the same amplitude
; as the original signal.
a1 balance ares, asine
out a1

endin
/* reson.orc */

/* reson.sco */
/* Written by Kevin Conder */
; Table #1, an ordinary sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 4 seconds.
i 1 0 4
e
/* reson.sco */

See Also

areson, aresonk, atone, atonek, port , portk, resonk, tone, tonek

resonk

resonk — A second-order resonant filter.

664

Chapter 15. Orchestra Opcodes and Operators

Description

A second-order resonant filter.

Syntax

kr resonk ksig, kcf, kbw [, iscl] [, iskip]

Initialization

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white
noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points).

resonk is like reson except its output is at control-rate rather than audio rate.

See Also

areson, aresonk, atone, atonek, port , portk, reson, tone, tonek

resonr

resonr — A bandpass filter with variable frequency response.

Description

Implementations of a second-order, two-pole two-zero bandpass filter with variable frequency response.

Syntax

ar resonr asig, kcf, kbw [, iscl] [, iskip]

665

Chapter 15. Orchestra Opcodes and Operators

Initialization

The optional initialization variables for resonr are identical to the i-time variables for reson.

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. This intended equalization of input
and output power assumes all frequencies are physically present; hence it is most applicable to white noise. A
zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The default
value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

asig -- input signal to be filtered

kcf -- cutoff or resonant frequency of the filter, measured in Hz

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points)

resonr and resonz are variations of the classic two-pole bandpass resonator (reson). Both filters have two
zeroes in their transfer functions, in addition to the two poles. resonz has its zeroes located at z = 1 and z = -1.
resonr has its zeroes located at +sqrt(R) and -sqrt(R), where R is the radius of the poles in the complex
z-plane. The addition of zeroes to resonr and resonz results in the improved selectivity of the magnitude
response of these filters at cutoff frequencies close to 0, at the expense of less selectivity of frequencies above
the cutoff peak.

resonr and resonz are very close to constant-gain as the center frequency is swept, resulting in a more
efficient control of the magnitude response than with traditional two-pole resonators such as reson.

resonr and resonz produce a sound that is considerably different from reson, especially for lower center
frequencies; trial and error is the best way of determining which resonator is best suited for a particular
application.

Examples

Here is an example of the resonr and resonz opcodes. It uses the files resonr.orc and resonr.sco.

Example 15-1. Example of the resonr and resonz opcodes.

/* resonr.orc */
/* Written by Sean Costello */

; Orchestra file for resonant filter sweep of a sawtooth-like waveform.
; The outputs of reson, resonr, and resonz are scaled by coefficients
; specified in the score, so that each filter can be heard on its own
; from the same instrument.

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1

idur = p3
ibegfreq = p4 ; beginning of sweep frequency
iendfreq = p5 ; ending of sweep frequency
ibw = p6 ; bandwidth of filters in Hz
ifreq = p7 ; frequency of gbuzz that is to be filtered

666

Chapter 15. Orchestra Opcodes and Operators

iamp = p8 ; amplitude to scale output by
ires = p9 ; coefficient to scale amount of reson in output
iresr = p10 ; coefficient to scale amount of resonr in output
iresz = p11 ; coefficient to scale amount of resonz in output

; Frequency envelope for reson cutoff
kfreq linseg ibegfreq, idur * .5, iendfreq, idur * .5, ibegfreq

; Amplitude envelope to prevent clicking
kenv linseg 0, .1, iamp, idur - .2, iamp, .1, 0

; Number of harmonics for gbuzz scaled to avoid aliasing
iharms = (sr*.4)/ifreq

asig gbuzz 1, ifreq, iharms, 1, .9, 1 ; "Sawtooth" waveform
ain = kenv * asig ; output scaled by amp envelope
ares reson ain, kfreq, ibw, 1
aresr resonr ain, kfreq, ibw, 1
aresz resonz ain, kfreq, ibw, 1

out ares * ires + aresr * iresr + aresz * iresz

endin
/* resonr.orc */

/* resonr.sco */
/* Written by Sean Costello */
f1 0 8192 9 1 1 .25 ; cosine table for gbuzz generator

i1 0 10 1 3000 200 100 4000 1 0 0 ; reson output with bw = 200
i1 10 10 1 3000 200 100 4000 0 1 0 ; resonr output with bw = 200
i1 20 10 1 3000 200 100 4000 0 0 1 ; resonz output with bw = 200
i1 30 10 1 3000 50 200 8000 1 0 0 ; reson output with bw = 50
i1 40 10 1 3000 50 200 8000 0 1 0 ; resonr output with bw = 50
i1 50 10 1 3000 50 200 8000 0 0 1 ; resonz output with bw = 50
e
/* resonr.sco */

Technical History

resonr and resonz were originally described in an article by Julius O. Smith and James B. Angell.1 Smith and
Angell recommended the resonz form (zeros at +1 and -1) when computational efficiency was the main
concern, as it has one less multiply per sample, while resonr (zeroes at + and - the square root of the pole
radius R) was recommended for situations when a perfectly constant-gain center peak was required.

Ken Steiglitz, in a later article 2, demonstrated that resonz had constant gain at the true peak of the filter, as
opposed to resonr , which displayed constant gain at the pole angle. Steiglitz also recommended resonz for its
sharper notches in the gain curve at zero and Nyquist frequency. Steiglitz’s recent book 3 features a thorough
technical discussion of reson and resonz, while Dodge and Jerse’s textbook 4 illustrates the differences in the
response curves of reson and resonz.

667

Chapter 15. Orchestra Opcodes and Operators

References

1. Smith, Julius O. and Angell, James B., "A Constant-Gain Resonator Tuned by a Single Coefficient,"
Computer Music Journal, vol. 6, no. 4, pp. 36-39, Winter 1982.

2. Steiglitz, Ken, "A Note on Constant-Gain Digital Resonators," Computer Music Journal, vol. 18, no. 4, pp.
8-10, Winter 1994.

3. Ken Steiglitz, A Digital Signal Processing Primer, with Applications to Digital Audio and Computer
Music. Addison-Wesley Publishing Company, Menlo Park, CA, 1996.

4. Dodge, Charles and Jerse, Thomas A., Computer Music: Synthesis, Composition, and Performance. New
York: Schirmer Books, 1997, 2nd edition, pp. 211-214.

See Also

resonz

Credits

Author: Sean Costello

Seattle, Washington

1999

New in Csound version 3.55

resonx

resonx — Emulates a stack of filters using the reson opcode.

Description

resonx is equivalent to a filters consisting of more layers of reson with the same arguments, serially
connected. Using a stack of a larger number of filters allows a sharper cutoff. They are faster than using a
larger number instances in a Csound orchestra of the old opcodes, because only one initialization and k-
cycle are needed at time and the audio loop falls entirely inside the cache memory of processor.

Syntax

ar resonx asig, kcf, kbw [, inumlayer] [, iscl] [, iskip]

Initialization

inumlayer (optional) -- number of elements in the filter stack. Default value is 4.

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white

668

Chapter 15. Orchestra Opcodes and Operators

noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The
default value is 0.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

asig -- input signal

kcf -- the center frequency of the filter, or frequency position of the peak response.

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points)

See Also

atonex, tonex

Credits

Author: Gabriel Maldonado (adapted by John ffitch)

Italy

New in Csound version 3.49

resony

resony — A bank of second-order bandpass filters, connected in parallel.

Description

A bank of second-order bandpass filters, connected in parallel.

Syntax

ar resony asig, kbf, kbw, inum, ksep [, isepmode] [, iscl] [, iskip]

Initialization

inum -- number of filters

isepmode (optional, default=0) -- if isepmode = 0, the separation of center frequencies of each filter is
generated logarithmically (using octave as unit of measure). If isepmode not equal to 0, the separation of
center frequencies of each filter is generated linearly (using Hertz). Default value is 0.

iscl (optional, default=0) -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of
1, i.e. all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A
value of 2 raises the response factor so that its overall RMS value equals 1. (This intended equalization of
input and output power assumes all frequencies are physically present; hence it is most applicable to white
noise.) A zero value signifies no scaling of the signal, leaving that to some later adjustment (e.g. balance). The
default value is 0.

669

Chapter 15. Orchestra Opcodes and Operators

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

asig -- audio input signal

kbf -- base frequency, i.e. center frequency of lowest filter in Hz

kbw -- bandwidth in Hz

ksep -- separation of the center frequency of filters in octaves

resony is a bank of second-order bandpass filters, with k-rate variant frequency separation, base frequency
and bandwidth, connected in parallel (i.e. the resulting signal is a mix of the output of each filter). The center
frequency of each filter depends of kbf and ksep variables. The maximum number of filters is set to 100.

Examples

Here is an example of the resony opcode. It uses the files resony.orc, resony.sco, and beats.wav.

Example 15-1. Example of the resony opcode.

/* resony.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a nice sawtooth waveform.
asig vco 32000, 220, 1

; Vary the base frequency from 60 to 600 Hz.
kbf line 60, p3, 600
kbw = 50
inum = 2
ksep = 1
isepmode = 0
iscl = 1

a1 resony asig, kbf, kbw, inum, ksep, isepmode, iscl

out a1
endin
/* resony.orc */

/* resony.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave for the vco opcode.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* resony.sco */

670

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

resonz

resonz — A bandpass filter with variable frequency response.

Description

Implementations of a second-order, two-pole two-zero bandpass filter with variable frequency response.

Syntax

ar resonz asig, kcf, kbw [, iscl] [, iskip]

Initialization

The optional initialization variables for resonr and resonz are identical to the i-time variables for reson.

iskip -- initial disposition of internal data space. Since filtering incorporates a feedback loop of previous
output, the initial status of the storage space used is significant. A zero value will clear the space; a non-zero
value will allow previous information to remain. The default value is 0.

iscl -- coded scaling factor for resonators. A value of 1 signifies a peak response factor of 1, i.e. all frequencies
other than kcf are attenuated in accordance with the (normalized) response curve. A value of 2 raises the
response factor so that its overall RMS value equals 1. This intended equalization of input and output power
assumes all frequencies are physically present; hence it is most applicable to white noise. A zero value
signifies no scaling of the signal, leaving that to some later adjustment (see balance). The default value is 0.

Performance

resonr and resonz are variations of the classic two-pole bandpass resonator (reson). Both filters have two
zeroes in their transfer functions, in addition to the two poles. resonz has its zeroes located at z = 1 and z = -1.
resonr has its zeroes located at +sqrt(R) and -sqrt(R), where R is the radius of the poles in the complex
z-plane. The addition of zeroes to resonr and resonz results in the improved selectivity of the magnitude
response of these filters at cutoff frequencies close to 0, at the expense of less selectivity of frequencies above
the cutoff peak.

resonr and resonz are very close to constant-gain as the center frequency is swept, resulting in a more
efficient control of the magnitude response than with traditional two-pole resonators such as reson.

resonr and resonz produce a sound that is considerably different from reson, especially for lower center
frequencies; trial and error is the best way of determining which resonator is best suited for a particular
application.

asig -- input signal to be filtered

671

Chapter 15. Orchestra Opcodes and Operators

kcf -- cutoff or resonant frequency of the filter, measured in Hz

kbw -- bandwidth of the filter (the Hz difference between the upper and lower half-power points)

Technical History

resonr and resonz were originally described in an article by Julius O. Smith and James B. Angell.1 Smith and
Angell recommended the resonz form (zeros at +1 and -1) when computational efficiency was the main
concern, as it has one less multiply per sample, while resonr (zeroes at + and - the square root of the pole
radius R) was recommended for situations when a perfectly constant-gain center peak was required.

Ken Steiglitz, in a later article 2, demonstrated that resonz had constant gain at the true peak of the filter, as
opposed to resonr , which displayed constant gain at the pole angle. Steiglitz also recommended resonz for its
sharper notches in the gain curve at zero and Nyquist frequency. Steiglitz’s recent book 3 features a thorough
technical discussion of reson and resonz, while Dodge and Jerse’s textbook 4 illustrates the differences in the
response curves of reson and resonz.

References

1. Smith, Julius O. and Angell, James B., "A Constant-Gain Resonator Tuned by a Single Coefficient,"
Computer Music Journal, vol. 6, no. 4, pp. 36-39, Winter 1982.

2. Steiglitz, Ken, "A Note on Constant-Gain Digital Resonators," Computer Music Journal, vol. 18, no. 4, pp.
8-10, Winter 1994.

3. Ken Steiglitz, A Digital Signal Processing Primer, with Applications to Digital Audio and Computer
Music. Addison-Wesley Publishing Company, Menlo Park, CA, 1996.

4. Dodge, Charles and Jerse, Thomas A., Computer Music: Synthesis, Composition, and Performance. New
York: Schirmer Books, 1997, 2nd edition, pp. 211-214.

See Also

resonr

Credits

Author: Sean Costello

Seattle, Washington

1999

New in Csound version 3.55

reverb

reverb — Reverberates an input signal with a “natural room” frequency response.

672

Chapter 15. Orchestra Opcodes and Operators

Description

Reverberates an input signal with a “natural room” frequency response.

Syntax

ar reverb asig, krvt [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

A standard reverb unit is composed of four comb filters in parallel followed by two alpass units in series. Loop
times are set for optimal “natural room response.” Core storage requirements for this unit are proportional
only to the sampling rate, each unit requiring approximately 3K words for every 10KC. The comb, alpass,
delay, tone and other Csound units provide the means for experimenting with alternate reverberator designs.

Since output from the standard reverb will begin to appear only after 1/20 second or so of delay, and often
with less than three-fourths of the original power, it is normal to output both the source and the reverberated
signal. If krvt is inadvertently set to a non-positive number, krvt will be reset automatically to 0.01. (New in
Csound version 4.07.) Also, since the reverberated sound will persist long after the cessation of source events,
it is normal to put reverb in a separate instrument to which sound is passed via a global variable, and to leave
that instrument running throughout the performance.

Examples

Here is an example of the reverb opcode. It uses the files reverb.orc and reverb.sco.

Example 15-1. Example of the reverb opcode.

/* reverb.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; init an audio receiver/mixer
ga1 init 0

; Instrument #1. (there may be many copies)
instr 1

; generate a source signal
a1 oscili 7000, cpspch(p4), 1
; output the direct sound
out a1
; and add to audio receiver
ga1 = ga1 + a1

endin

; (highest instr number executed last)
instr 99

; reverberate whatever is in ga1

673

Chapter 15. Orchestra Opcodes and Operators

a3 reverb ga1, 1.5
; and output the result
out a3
; empty the receiver for the next pass
ga1 = 0

endin
/* reverb.orc */

/* reverb.sco */
; Table #1, a sine wave.
f 1 0 128 10 1

; p4 = frequency (in a pitch-class)
; Play Instrument #1 for a tenth of a second, p4=6.00
i 1 0 0.1 6.00
; Play Instrument #1 for a tenth of a second, p4=6.02
i 1 1 0.1 6.02
; Play Instrument #1 for a tenth of a second, p4=6.04
i 1 2 0.1 6.04
; Play Instrument #1 for a tenth of a second, p4=6.06
i 1 3 0.1 6.06

; Make sure the reverb remains active.
i 99 0 6
e
/* reverb.sco */

See Also

alpass, comb, valpass, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)

University of Texas at Austin

Austin, Texas USA

January 2002

reverb2

reverb2 — Same as the nreverb opcode.

Description

Same as the nreverb opcode.

674

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar reverb2 asig, ktime, khdif [, iskip] [,inumCombs] [, ifnCombs] [, inumAlpas] [, ifnAlpas]

rezzy

rezzy — A resonant low-pass filter.

Description

A resonant low-pass filter.

Syntax

ar rezzy asig, xfco, xres [, imode]

Initialization

imode (optional, default=0) -- high-pass or low-pass mode. If zero, rezzy is low-pass. If not zero, rezzy is
high-pass. Default value is 0. (New in Csound version 3.50)

Performance

asig -- input signal

xfco -- filter cut-off frequency in Hz. As of version 3.50, may i-,k-, or a-rate.

xres -- amount of resonance. Values of 1 to 100 are typical. Resonance should be one or greater. As of version
3.50, may a-rate, i-rate, or k-rate.

rezzy is a resonant low-pass filter created empirically by Hans Mikelson.

Examples

Here is an example of the rezzy opcode. It uses the files rezzy.orc and rezzy.sco.

Example 15-1. Example of the rezzy opcode.

/* rezzy.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a nice sawtooth waveform.
asig vco 32000, 220, 1

; Vary the filter-cutoff frequency from .2 to 2 KHz.
kfco line 200, p3, 2000

675

Chapter 15. Orchestra Opcodes and Operators

; Set the resonance amount to one.
kres init 25

a1 rezzy asig, kfco, kres

out a1
endin
/* rezzy.orc */

/* rezzy.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave for the vco opcode.
f 1 0 16384 10 1

; Play Instrument #1 for three seconds.
i 1 0 3
e
/* rezzy.sco */

See Also

biquad, moogvcf

Credits

Author: Hans Mikelson

October 1998

New in Csound version 3.49

rigoto

rigoto — Transfers control during a reinit pass.

Description

Similar to igoto, but effective only during a reinit pass (i.e., no-op at standard i-time). This statement is useful
for bypassing units that are not to be reinitialized.

Syntax

rigoto label

See Also

cigoto, igoto, reinit , rireturn

676

Chapter 15. Orchestra Opcodes and Operators

rireturn

rireturn — Terminates a reinit pass.

Description

Terminates a reinit pass (i.e., no-op at standard i-time). This statement, or an endin, will cause normal
performance to be resumed.

Syntax

rireturn

Examples

The following statements will generate an exponential control signal whose value moves from 440 to 880
exactly ten times over the duration p3. They use the files reinit.orc and reinit.sco.

Example 15-1. Example of the rireturn opcode.

/* reinit.orc */
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

instr 1

reset:
timout 0, p3/10, contin
reinit reset

contin:
kLine expon 440, p3/10, 880
aSig oscil 10000, kLine, 1
out aSig
rireturn

endin
/* reinit.orc */

/* reinit.sco */
f1 0 4096 10 1

i1 0 10
e
/* reinit.sco */

See Also

reinit , rigoto

677

Chapter 15. Orchestra Opcodes and Operators

rms

rms — Determines the root-mean-square amplitude of an audio signal.

Description

Determines the root-mean-square amplitude of an audio signal.

Syntax

kr rms asig [, ihp] [, iskip]

Initialization

ihp (optional, default=10) -- half-power point (in Hz) of a special internal low-pass filter. The default value is
10.

iskip (optional, default=0) -- initial disposition of internal data space (see reson). The default value is 0.

Performance

asig -- input audio signal

rms output values kr will trace the root-mean-square value of the audio input asig . This unit is not a signal
modifier, but functions rather as a signal power-gauge.

Examples

asrc buzz 10000,440, sr/440, 1 ; band-limited pulse train
a1 reson asrc, 1000,100 ; sent through
a2 reson a1,3000,500 ; 2 filters
afin balance a2, asrc ; then balanced with source

See Also

balance, gain

rnd

rnd — Returns a random number in a unipolar range.

Description

Returns a random number in a unipolar range.

678

Chapter 15. Orchestra Opcodes and Operators

Syntax

rnd(x) (init- or control-rate only)

Where the argument within the parentheses may be an expression. These value converters sample a global
random sequence, but do not reference seed. The result can be a term in a further expression.

Performance

Returns a random number in the unipolar range 0 to x.

Examples

Here is an example of the rnd opcode. It uses the files rnd.orc and rnd.sco.

Example 15-1. Example of the rnd opcode.

/* rnd.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number from 0 to 1.
i1 = rnd(1)
print i1

endin
/* rnd.orc */

/* rnd.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #1 for one second.
i 1 1 1
e
/* rnd.sco */

Its output should include lines like this:

instr 1: i1 = 0.974
instr 1: i1 = 0.139

See Also

birnd

679

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Barry L. Vercoe

MIT

Cambridge, Massachussetts

1997

rnd31

rnd31 — 31-bit bipolar random opcodes with controllable distribution.

Description

31-bit bipolar random opcodes with controllable distribution. These units are portable, i.e. using the same
seed value will generate the same random sequence on all systems. The distribution of generated random
numbers can be varied at k-rate.

Syntax

ax rnd31 kscl, krpow [, iseed]

ix rnd31 iscl, irpow [, iseed]

kx rnd31 kscl, krpow [, iseed]

Initialization

ix -- i-rate output value.

iscl -- output scale. The generated random numbers are in the range -iscl to iscl.

irpow -- controls the distribution of random numbers. If irpow is positive, the random distribution (x is in the
range -1 to 1) is abs(x) ˆ ((1 / irpow) - 1); for negative irpow values, it is (1 - abs(x)) ˆ ((-1 / irpow) - 1). Setting
irpow to -1, 0, or 1 will result in uniform distribution (this is also faster to calculate).

680

Chapter 15. Orchestra Opcodes and Operators

A graph of distributions for different values of irpow.

iseed (optional, default=0) -- seed value for random number generator (positive integer in the range 1 to
2147483646 (2 ˆ 31 - 2)). Zero or negative value seeds from current time (this is also the default). Seeding from
current time is guaranteed to generate different random sequences, even if multiple random opcodes are
called in a very short time.

In the a- and k-rate version the seed is set at opcode initialization. With i-rate output, if iseed is zero or
negative, it will seed from current time in the first call, and return the next value from the random sequence
in successive calls; positive seed values are set at all i-rate calls. The seed is local for a- and k-rate, and global
for i-rate units.

Notes:

• although seed values up to 2147483646 are allowed, it is recommended to use smaller numbers (< 1000000) for
portability, as large integers may be rounded to a different value if 32-bit floats are used.

• i-rate rnd31 with a positive seed will always produce the same output value (this is not a bug). To get different values,
set seed to 0 in successive calls, which will return the next value from the random sequence.

Performance

ax -- a-rate output value.

kx -- k-rate output value.

kscl -- output scale. The generated random numbers are in the range -kscl to kscl. It is the same as iscl, but
can be varied at k-rate.

krpow -- controls the distribution of random numbers. It is the same as irpow, but can be varied at k-rate.

681

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the rnd31 opcode at a-rate. It uses the files rnd31.orc and rnd31.sco.

Example 15-1. An example of the rnd31 opcode at a-rate.

/* rnd31.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Create random numbers at a-rate in the range -2 to 2 with
; a triangular distribution, seed from the current time.
a31 rnd31 2, -0.5

; Use the random numbers to choose a frequency.
afreq = a31 * 500 + 100

a1 oscil 30000, afreq, 1
out a1

endin
/* rnd31.orc */

/* rnd31.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* rnd31.sco */

Here is an example of the rnd31 opcode at k-rate. It uses the files rnd31_krate.orc and rnd31_krate.sco.

Example 15-2. An example of the rnd31 opcode at k-rate.

/* rnd31_krate.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Create random numbers at k-rate in the range -1 to 1
; with a uniform distribution, seed=10.
k1 rnd31 1, 0, 10

printks "k1=%f\\n", 0.1, k1
endin
/* rnd31_krate.orc */

/* rnd31_krate.sco */
; Play Instrument #1 for one second.
i 1 0 1

682

Chapter 15. Orchestra Opcodes and Operators

e
/* rnd31_krate.sco */

Its output should include lines like this:

k1=0.112106
k1=-0.274665
k1=0.403933

Here is an example of the rnd31 opcode that uses the number 7 as a seed value. It uses the files
rnd31_seed7.orc and rnd31_seed7.sco.

Example 15-3. An example of the rnd31 opcode that uses the number 7 as a seed value.

/* rnd31_seed7.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; i-rate random numbers with linear distribution, seed=7.
; (Note that the seed was used only in the first call.)
i1 rnd31 1, 0.5, 7
i2 rnd31 1, 0.5
i3 rnd31 1, 0.5

print i1
print i2
print i3

endin
/* rnd31_seed7.orc */

/* rnd31_seed7.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* rnd31_seed7.sco */

Its output should include lines like this:

instr 1: i1 = -0.649
instr 1: i2 = -0.761
instr 1: i3 = 0.677

Here is an example of the rnd31 opcode that uses the current time as a seed value. It uses the files
rnd31_time.orc and rnd31_time.sco.

683

Chapter 15. Orchestra Opcodes and Operators

Example 15-4. An example of the rnd31 opcode that uses the current time as a seed value.

/* rnd31_time.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; i-rate random numbers with linear distribution,
; seeding from the current time. (Note that the seed
; was used only in the first call.)
i1 rnd31 1, 0.5, 0
i2 rnd31 1, 0.5
i3 rnd31 1, 0.5

print i1
print i2
print i3

endin
/* rnd31_time.orc */

/* rnd31_time.sco */
; Play Instrument #1 for one second.
i 1 0 1
e
/* rnd31_time.sco */

Its output should include lines like this:

instr 1: i1 = -0.691
instr 1: i2 = -0.686
instr 1: i3 = -0.358

Credits

Author: Istvan Varga

New in version 4.16

rspline

rspline — Generate random spline curves.

Description

Generate random spline curves.

684

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar rspline xrangeMin, xrangeMax, kcpsMin, kcpsMax

kr rspline krangeMin, krangeMax, kcpsMin, kcpsMax

Performance

kr, ar -- Output signal

xrangeMin, xrangeMax -- Range of values of random-generated points

kcpsMin, kcpsMax -- Range of point-generation rate. Min and max limits are expressed in cps.

xamp -- Amplitude factor

rspline (random-spline-curve generator) is similar to jspline but output range is defined by means of two
limit values. Also in this case, real output range could be a bit greater of range values, because of interpolating
curves beetween each pair of random-points.

At present time generated curves are quite smooth when cpsMin is not too different from cpsMax. When
cpsMin-cpsMax interval is big, some little discontinuity could occurr, but it should not be a problem, in most
cases. Maybe the algorithm will be improved in next versions.

These opcodes are often better than jitter when user wants to “naturalize” or “analogize” digital sounds. They
could be used also in algorithmic composition, to generate smooth random melodic lines when used
together with samphold opcode.

Note that the result is quite different from the one obtained by filtering white noise, and they allow the user to
obtain a much more precise control.

Credits

Author: Gabriel Maldonado

New in version 4.15

rtclock

rtclock — Read the real time clock from the operating system.

Description

Read the real-time clock from the operating system.

Syntax

ir rtclock

kr rtclock

Performance

Read the real-time clock from operating system. Under Windows, this changes only once per second. Under
GNU/Linux, it ticks every microsecond. Performance under other systems varies.

685

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the rtclock opcode. It uses the files rtclock.orc and rtclock.sco.

Example 15-1. Example of the rtclock opcode.

/* rtclock.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1
instr 1

; Get the system time.
k1 rtclock
; Print it once per second.
printk 1, k1

endin
/* rtclock.orc */

/* rtclock.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* rtclock.sco */

Its output should include lines like this:

i 1 time 0.00002: 1018236096.00000
i 1 time 1.00002: 1018236224.00000

Credits

Author: John ffitch

New in version 4.10

s16b14

s16b14 — Creates a bank of 16 different 14-bit MIDI control message numbers.

Description

Creates a bank of 16 different 14-bit MIDI control message numbers.

686

Chapter 15. Orchestra Opcodes and Operators

Syntax

i1,...,i16 s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb16, ictlno_lsb16,
imin16, imax16, initvalue16, ifn16

k1,...,k16 s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb16,
ictlno_lsb16, imin16, imax16, initvalue16, ifn16

Initialization

i1 ... i64 -- output values

ichan -- MIDI channel (1-16)

ictlno_msb1 ictlno_msb32 -- MIDI control number, most significant byte (0-127)

ictlno_lsb1 ictlno_lsb32 -- MIDI control number, least significant byte (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

s16b14 is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

s16b14 allows a bank of 16 different MIDI control message numbers. It uses 14-bit values instead of MIDI’s
normal 7-bit values.

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

In the i-rate version of s16b14, there is not an initial value input argument. The output is taken directly from
the current status of internal controller array of Csound.

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

687

Chapter 15. Orchestra Opcodes and Operators

s32b14

s32b14 — Creates a bank of 32 different 14-bit MIDI control message numbers.

Description

Creates a bank of 32 different 14-bit MIDI control message numbers.

Syntax

i1,...,i32 s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb32, ictlno_lsb32,
imin32, imax32, initvalue32, ifn32

k1,...,k32 s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb32,
ictlno_lsb32, imin32, imax32, initvalue32, ifn32

Initialization

i1 ... i64 -- output values

ichan -- MIDI channel (1-16)

ictlno_msb1 ictlno_msb32 -- MIDI control number, most significant byte (0-127)

ictlno_lsb1 ictlno_lsb32 -- MIDI control number, least significant byte (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

s32b14 is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

s32b14 allows a bank of 32 different MIDI control message numbers. It uses 14-bit values instead of MIDI’s
normal 7-bit values.

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

In the i-rate version of s32b14, there is not an initial value input argument. The output is taken directly from
the current status of internal controller array of Csound.

688

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

samphold

samphold — Performs a sample-and-hold operation on its input.

Description

Performs a sample-and-hold operation on its input.

Syntax

ar samphold asig, agate [, ival] [, ivstor]

kr samphold ksig, kgate [, ival] [, ivstor]

Initialization

ival, ivstor (optional) -- controls initial disposition of internal save space. If ivstor is zero the internal “hold”
value is set to ival ; else it retains its previous value. Defaults are 0,0 (i.e. init to zero)

Performance

kgate, xgate -- controls whether to hold the signal.

samphold performs a sample-and-hold operation on its input according to the value of gate. If gate !- 0, the
input samples are passed to the output; If gate = 0, the last output value is repeated. The controlling gate can
be a constant, a control signal, or an audio signal.

Examples

asrc buzz 10000,440,20, 1 ; band-limited pulse train
adif diff asrc ; emphasize the highs
anew balance adif, asrc ; but retain the power
agate reson asrc,0,440 ; use a lowpass of the original
asamp samphold anew, agate ; to gate the new audiosig
aout tone asamp,100 ; smooth out the rough edges

689

Chapter 15. Orchestra Opcodes and Operators

See Also

diff , downsamp, integ , interp, upsamp

sandpaper

sandpaper — Semi-physical model of a sandpaper sound.

Description

sandpaper is a semi-physical model of a sandpaper sound. It is one of the PhISEM percussion opcodes.
PhISEM (Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions
of multiple independent sound producing objects.

Syntax

ar sandpaper iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 128.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping_amount is 0.999 which means that the default value of idamp is 0.5. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.

Examples

Here is an example of the sandpaper opcode. It uses the files sandpaper.orc and sandpaper.sco.

Example 15-1. Example of the sandpaper opcode.

/* sandpaper.orc */
;orchestra ---------------

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 01 ;an example of sandpaper blocks
a1 line 2, p3, 2 ;preset amplitude increase
a2 sandpaper p4, 0.01 ;sandpaper needs a little amp help at these settings

690

Chapter 15. Orchestra Opcodes and Operators

a3 product a1, a2 ;increase amplitude
out a3
endin

/* sandpaper.orc */

/* sandpaper.sco */
;score -------------------

i1 0 1 26000
e

/* sandpaper.sco */

See Also

cabasa, crunch, sekere, stix

Credits

Author: Perry Cook, part of the PhOLIES (Physically-Oriented Library of Imitated Environmental Sounds)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

scanhammer

scanhammer — Copies from one table to another with a gain control.

Description

This is is a variant of tablecopy, copying from one table to another, starting at ipos, and with a gain control.
The number of points copied is determined by the length of the source. Other points are not changed. This
opcode can be used to “hit” a string in the scanned synthesis code.

Syntax

scanhammer isrc, idst, ipos, imult

Initialization

isrc -- source function table.

idst -- destination function table.

ipos -- starting position (in points).

imult -- gain multiplier. A value of 0 will leave values unchanged.

691

Chapter 15. Orchestra Opcodes and Operators

See Also

scantable

Credits

Author: Matt Gilliard

April 2002

New in version 4.20

scans

scans — Generate audio output using scanned synthesis.

Description

Generate audio output using scanned synthesis.

Syntax

ar scans kamp, kfreq, ifn, id [, iorder]

Initialization

ifn -- ftable containing the scanning trajectory. This is a series of numbers that contains addresses of masses.
The order of these addresses is used as the scan path. It should not contain values greater than the number of
masses, or negative numbers. See the introduction to the scanned synthesis section.

id -- ID number of the scanu opcode’s waveform to use

iorder (optional, default=0) -- order of interpolation used internally. It can take any value in the range 1 to 4,
and defaults to 4, which is quartic interpolation. The setting of 2 is quadratic and 1 is linear. The higher
numbers are slower, but not necessarily better.

Performance

kamp -- output amplitude. Note that the resulting amplitude is also dependent on instantaneous value in the
wavetable. This number is effectively the scaling factor of the wavetable.

kfreq -- frequency of the scan rate

Examples

Here is an example of the scanned synthesis. It uses the files scans.orc, scans.sco, and string-128.matrix.

Example 15-1. Example of the scans opcode.

/* scans.orc */
sr = 44100
kr = 4410
ksmps = 10

692

Chapter 15. Orchestra Opcodes and Operators

nchnls = 1

instr 1
a0 = 0
; scanu init, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, kmass, kstif, kcentr, kdamp, ileft, iright, kpos, kstrngth, ain, idisp, id

scanu 1, .01, 6, 2, 3, 4, 5, 2, .1, .1, -
.01, .1, .5, 0, 0, a0, 1, 2
;ar scans kamp, kfreq, ifntraj, id
a1 scans ampdb(p4), cpspch(p5), 7, 2

out a1
endin

/* scans.orc */

/* scans.sco */
; Initial condition
f1 0 128 7 0 64 1 64 0

; Masses
f2 0 128 -7 1 128 1

; Spring matrices
f3 0 16384 -23 "string-128.matrix"

; Centering force
f4 0 128 -7 0 128 2

; Damping
f5 0 128 -7 1 128 1

; Initial velocity
f6 0 128 -7 0 128 0

; Trajectories
f7 0 128 -5 .001 128 128

; Note list
i1 0 10 86 6.00
i1 11 14 86 7.00
i1 15 20 86 5.00
e
/* scans.sco */

The matrix file “string-128.matrix”, as well as several other matrices, is also available in a zipped file from the
Scanned Synthesis page at cSounds.com.

Credits

Author: Paris Smaragdis

MIT Media Lab

Boston, Massachussetts USA

New in Csound version 4.05

693

Chapter 15. Orchestra Opcodes and Operators

scantable

scantable — A simpler scanned synthesis implementation.

Description

A simpler scanned synthesis implementation. This is an implementation of a circular string scanned using
external tables. This opcode will allow direct modification and reading of values with the table opcodes.

Syntax

aout scantable kamp, kpch, ipos, imass, istiff, idamp, ivel

Initialization

ipos -- table containing position array.

imass -- table containing the mass of the string.

istiff -- table containing the stiffness of the string.

idamp -- table containing the damping factors of the string.

ivel -- table containing the velocities.

Performance

kamp -- amplitude (gain) of the string.

kpch -- the string’s scanned frequency.

Examples

Here is an example of the scantable opcode. It uses the files scantable.orc and scantable.sco.

Example 15-1. Example of the scantable opcode.

/* scantable.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Table #1 - initial position
git1 ftgen 1, 0, 128, 7, 0, 64, 1, 64, 0
; Table #2 - masses
git2 ftgen 2, 0, 128, -7, 1, 128, 1
; Table #3 - stiffness
git3 ftgen 3, 0, 128, -7, 0, 64, 100, 64, 0
; Table #4 - damping
git4 ftgen 4, 0, 128, -7, 1, 128, 1
; Table #5 - initial velocity
git5 ftgen 5, 0, 128, -7, 0, 128, 0

; Instrument #1.
instr 1

694

Chapter 15. Orchestra Opcodes and Operators

kamp init 20000
kpch init 220
ipos = 1
imass = 2
istiff = 3
idamp = 4
ivel = 5

a1 scantable kamp, kpch, ipos, imass, istiff, idamp, ivel
a2 dcblock a1

out a2
endin
/* scantable.orc */

/* scantable.sco */
; Play Instrument #1 for ten seconds.
i 1 0 10
e
/* scantable.sco */

See Also

scanhammer

Credits

Author: Matt Gilliard

April 2002

New in version 4.20

scanu

scanu — Compute the waveform and the wavetable for use in scanned synthesis.

Description

Compute the waveform and the wavetable for use in scanned synthesis.

Syntax

scanu init, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, kmass, kstif, kcentr, kdamp, ileft, iright, kpos,
kstrngth, ain, idisp, id

695

Chapter 15. Orchestra Opcodes and Operators

Initialization

init -- the initial position of the masses. If this is a negative number, then the absolute of init signifies the
table to use as a hammer shape. If init > 0, the length of it should be the same as the intended mass number,
otherwise it can be anything.

ifnvel -- the ftable that contains the initial velocity for each mass. It should have the same size as the intended
mass number.

ifnmass -- ftable that contains the mass of each mass. It should have the same size as the intended mass
number.

ifnstif -- ftable that contains the spring stiffness of each connection. It should have the same size as the
square of the intended mass number. The data ordering is a row after row dump of the connection matrix of
the system.

ifncentr -- ftable that contains the centering force of each mass. It should have the same size as the intended
mass number.

ifndamp -- the ftable that contains the damping factor of each mass. It should have the same size as the
intended mass number.

ileft -- If init < 0, the position of the left hammer (ileft = 0 is hit at leftmost, ileft = 1 is hit at rightmost).

iright -- If init < 0, the position of the right hammer (iright = 0 is hit at leftmost, iright = 1 is hit at rightmost).

idisp -- If 0, no display of the masses is provided.

id -- If positive, the ID of the opcode. This will be used to point the scanning opcode to the proper waveform
maker. If this value is negative, the absolute of this value is the wavetable on which to write the waveshape.
That wavetable can be used later from an other opcode to generate sound. The initial contents of this table
will be destroyed.

Performance

kmass -- scales the masses

kstif -- scales the spring stiffness

kcentr -- scales the centering force

kdamp -- scales the damping

kpos -- position of an active hammer along the string (kpos = 0 is leftmost, kpos = 1 is rightmost). The shape of
the hammer is determined by init and the power it pushes with is kstrngth.

kstrngth -- power that the active hammer uses

ain -- audio input that adds to the velocity of the masses. Amplitude should not be too great.

Examples

For an example, see the documentation on scans.

Credits

Author: Paris Smaragdis

MIT Media Lab

Boston, Massachussetts USA

March, 2000 (New in Csound version 4.05)

696

Chapter 15. Orchestra Opcodes and Operators

schedkwhen

schedkwhen — Adds a new score event generated by a k-rate trigger.

Description

Adds a new score event generated by a k-rate trigger.

Syntax

schedkwhen ktrigger, kmintim, kmaxnum, kinsnum, kwhen, kdur [, ip4] [, ip5] [...]

Initialization

ip4, ip5, ... -- Equivalent to p4, p5, etc., in a score i statement

Performance

ktrigger -- triggers a new score event. If ktrigger = 0, no new event is triggered.

kmintim -- minimum time between generated events, in seconds. If kmintim <= 0, no time limit exists. If the
kinsnum is negative (to turn off an instrument), this test is bypassed.

kmaxnum -- maximum number of simultaneous instances of instrument kinsnum allowed. If the number of
extant instances of kinsnum is >= kmaxnum, no new event is generated. If kmaxnum is <= 0, it is not used to
limit event generation. If the kinsnum is negative (to turn off an instrument), this test is bypassed.

kinsnum -- instrument number. Equivalent to p1 in a score i statement .

kwhen -- start time of the new event. Equivalent to p2 in a score i statement . Measured from the time of the
triggering event. kwhen must be>= 0. If kwhen > 0, the instrument will not be initialized until the actual time
when it should start performing.

kdur -- duration of event. Equivalent to p3 in a score i statement . If kdur = 0, the instrument will only do an
initialization pass, with no performance. If kdur is negative, a held note is initiated. (See ihold and i
statement .)

Note: While waiting for events to be triggered by schedkwhen, the performance must be kept going, or
Csound may quit if no score events are expected. To guarantee continued performance, an f0 statement may
be used in the score.

Examples

Here is an example of the schedkwhen opcode. It uses the files schedkwhen.orc and schedkwhen.sco.

Example 15-1. Example of the schedkwhen opcode.

/* schedkwhen.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1 - oscillator with a high note.
instr 1

; Use the fourth p-field as the trigger.

697

Chapter 15. Orchestra Opcodes and Operators

ktrigger = p4
kmintim = 0
kmaxnum = 2
kinsnum = 2
kwhen = 0
kdur = 0.5

; Play Instrument #2 at the same time, if the trigger is set.
schedkwhen ktrigger, kmintim, kmaxnum, kinsnum, kwhen, kdur

; Play a high note.
a1 oscils 10000, 880, 1
out a1

endin

; Instrument #2 - oscillator with a low note.
instr 2

; Play a low note.
a1 oscils 10000, 220, 1
out a1

endin
/* schedkwhen.orc */

/* schedkwhen.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; p4 = trigger for Instrument #2 (when p4 > 0).
; Play Instrument #1 for half a second, no trigger.
i 1 0 0.5 0
; Play Instrument #1 for half a second, trigger Instrument #2.
i 1 1 0.5 1
e
/* schedkwhen.sco */

Credits

Author: Rasmus Ekman

Location: EMS, Stockholm, Sweden

Published: New in Csound version 3.59

schedule

schedule — Adds a new score event.

Description

Adds a new score event.

698

Chapter 15. Orchestra Opcodes and Operators

Syntax

schedule insnum, iwhen, idur [, ip4] [, ip5] [...]

Initialization

insnum -- instrument number. Equivalent to p1 in a score i statement .

iwhen -- start time of the new event. Equivalent to p2 in a score i statement .

idur -- duration of event. Equivalent to p3 in a score i statement .

ip4, ip5, ... -- Equivalent to p4, p5, etc., in a score i statement .

Performance

ktrigger -- trigger value for new event

schedule adds a new score event. The arguments, including options, are the same as in a score. The iwhen
time (p2) is measured from the time of this event.

If the duration is zero or negative the new event is of MIDI type, and inherits the release sub-event from the
scheduling instruction.

Examples

Here is an example of the schedule opcode. It uses the files schedule.orc and schedule.sco.

Example 15-1. Example of the schedule opcode.

/* schedule.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - oscillator with a high note.
instr 1

; Play Instrument #2 at the same time.
schedule 2, 0, p3

; Play a high note.
a1 oscils 10000, 880, 1
out a1

endin

; Instrument #2 - oscillator with a low note.
instr 2

; Play a low note.
a1 oscils 10000, 220, 1
out a1

endin
/* schedule.orc */

/* schedule.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

699

Chapter 15. Orchestra Opcodes and Operators

; Play Instrument #1 for half a second.
i 1 0 0.5
; Play Instrument #1 for half a second.
i 1 1 0.5
e
/* schedule.sco */

See Also

schedwhen

Credits

Author: John ffitch

Location: University of Bath/Codemist Ltd. Bath, UK

Published: November, 1998 (New in Csound version 3.491)

Based on work by Gabriel Maldonado

schedwhen

schedwhen — Adds a new score event.

Description

Adds a new score event.

Syntax

schedwhen ktrigger, kinsnum, kwhen, kdur [, ip4] [, ip5] [...]

Initialization

ip4, ip5, ... -- Equivalent to p4, p5, etc., in a score i statement .

Performance

ktrigger -- trigger value for new event

kinsnum -- instrument number. Equivalent to p1 in a score i statement .

kwhen -- start time of the new event. Equivalent to p2 in a score i statement .

kdur -- duration of event. Equivalent to p3 in a score i statement .

schedwhen adds a new score event. The event is only scheduled when the k-rate value ktrigger is first
non-zero. The arguments, including options, are the same as in a score. The iwhen time (p2) is measured
from the time of this event.

700

Chapter 15. Orchestra Opcodes and Operators

If the duration is zero or negative the new event is of MIDI type, and inherits the release sub-event from the
scheduling instruction.

Examples

Here is an example of the schedwhen opcode. It uses the files schedwhen.orc and schedwhen.sco.

Example 15-1. Example of the schedwhen opcode.

/* schedwhen.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1 - oscillator with a high note.
instr 1

; Use the fourth p-field as the trigger.
ktrigger = p4
kinsnum = 2
kwhen = 0
kdur = p3

; Play Instrument #2 at the same time, if the trigger is set.
schedwhen ktrigger, kinsnum, kwhen, kdur

; Play a high note.
a1 oscils 10000, 880, 1
out a1

endin

; Instrument #2 - oscillator with a low note.
instr 2

; Play a low note.
a1 oscils 10000, 220, 1
out a1

endin
/* schedwhen.orc */

/* schedwhen.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; p4 = trigger for Instrument #2 (when p4 > 0).
; Play Instrument #1 for half a second, trigger Instrument #2.
i 1 0 0.5 1
; Play Instrument #1 for half a second, no trigger.
i 1 1 0.5 0
e
/* schedwhen.sco */

701

Chapter 15. Orchestra Opcodes and Operators

See Also

schedule

Credits

Author: John ffitch

Location: University of Bath/Codemist Ltd. Bath, UK

Published: November, 1998 (New in Csound version 3.491)

Based on work by Gabriel Maldonado

seed

seed — Sets the global seed value.

Description

Sets the global seed value for all x-class noise generators, as well as other opcodes that use a random call, such
as grain. rand, randi, randh, rnd(x), and birnd(x) are not affected by seed.

Syntax

seed ival

Performance

Use of seed will provide predictable results from an orchestra using with random generators, when required
from multiple performances.

When specifying a seed value, ival should be an integer between 0 and 232. If ival = 0, the value of ival will be
derived from the system clock.

sekere

sekere — Semi-physical model of a sekere sound.

Description

sekere is a semi-physical model of a sekere sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

702

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar sekere iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 64.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

The default damping_amount is 0.999 which means that the default value of idamp is 0.5. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.

Examples

Here is an example of the sekere opcode. It uses the files sekere.orc and sekere.sco.

Example 15-1. Example of the sekere opcode.

/* sekere.orc */
;orchestra ---------------

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 01 ;an example of a sekere
a1 sekere p4, 0.01

out a1
endin

/* sekere.orc */

/* sekere.sco */
;score -------------------

i1 0 1 26000
e

/* sekere.sco */

See Also

cabasa, crunch, sandpaper , stix

703

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

semitone

semitone — Calculates a factor to raise/lower a frequency by a given amount of semitones.

Description

Calculates a factor to raise/lower a frequency by a given amount of semitones.

Syntax

semitone(x)

This function works at a-rate, i-rate, and k-rate.

Initialization

x -- a value expressed in semitones.

Performance

The value returned by the semitone function is a factor. You can multiply a frequency by this factor to
raise/lower it by the given amount of semitones.

Examples

Here is an example of the semitone opcode. It uses the files semitone.orc and semitone.sco.

Example 15-1. Example of the semitone opcode.

/* semitone.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; The root note is A above middle-C (440 Hz)
iroot = 440

704

Chapter 15. Orchestra Opcodes and Operators

; Raise the root note by three semitones to C.
isemitone = 3

; Calculate the new note.
ifactor = semitone(isemitone)
inew = iroot * ifactor

; Print out all of the values.
print iroot
print ifactor
print inew

endin
/* semitone.orc */

/* semitone.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* semitone.sco */

Its output should include lines like:

instr 1: iroot = 440.000
instr 1: ifactor = 1.189
instr 1: inew = 523.229

See Also

cent , db, octave

Credits

Author: Kevin Conder

New in version 4.16

sense

sense — Same as the sensekey opcode.

Description

Same as the sensekey opcode.

705

Chapter 15. Orchestra Opcodes and Operators

Syntax

kr sense

sensekey

sensekey — Returns the ASCII code of a key that has been pressed.

Description

Returns the ASCII code of a key that has been pressed, or -1 if no key has been pressed.

Syntax

kr sensekey

Performance

At release, this has not been properly verified, and seems not to work at all on Windows.

Note: This opcode can also be written as sense.

Examples

Here is an example of the sensekey opcode. It uses the files sensekey.orc and sensekey.sco.

Example 15-1. Example of the sensekey opcode.

/* sensekey.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

k1 sensekey
printk2 k1

endin
/* sensekey.orc */

/* sensekey.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for thirty seconds.
i 1 0 30
e
/* sensekey.sco */

706

Chapter 15. Orchestra Opcodes and Operators

Here is what the output should look like when the "q" button is pressed...

q i1 357967744.00000

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

October, 2000

New in Csound version 4.09. Renamed in Csound version 4.10.)

seqtime

seqtime — Generates a trigger signal according to the values stored in a table.

Description

Generates a trigger signal according to the values stored in a table.

Syntax

ktrig_out seqtime ktime_unit, kstart, kloop, kinitndx, kfn_times

Performance

ktrig_out -- output trigger signal

ktime_unit -- unit of measure of time, related to seconds.

kstart -- start index of looped section

kloop -- end index of looped section

kinitndx -- initial index

kfn_times -- number of table containing a sequence of times

This opcode handles timed-sequences of groups of values stored into a table.

seqtime generates a trigger signal (a sequence of impulses, see also trigger opcode), according to the values
stored in the kfn_times table. This table should contain a series of delta-times (i.e. times beetween to adjacent
events). The time units stored into table are expressed in seconds, but can be rescaled by means of
ktime_unit argument. The table can be filled with GEN02 or by means of an external text-file containing
numbers, with GEN23.

It is possible to start the sequence from a value different than the first, by assigning to initndx an index
different than zero (which corresponds to the first value of the table). Normally the sequence is looped, and
the start and end of loop can be adjusted by modifying kstart and kloop arguments. User must be sure that
values of these arguments (as well as initndx) correspond to valid table numbers, otherwise Csound will
crash (because no range-checking is implementeted).

707

Chapter 15. Orchestra Opcodes and Operators

It is possible to disable loop (one-shot mode) by assigning the same value both to kstart and kloop
arguments. In this case, the last read element will be the one corresponding to the value of such arguments.
Table can be read backward by assigning a negative kloop value. It is possible to trigger two events almost at
the same time (actually separated by a k-cycle) by giving a zero value to the corresponding delta-time. First
element contained in the table should be zero, if the user intends to send a trigger impulse, it should come
immediately after the orchestra instrument containing seqtime opcode.

Examples

Example 15-1. Example of the seqtime opcode.

instr 1
icps cpsmidi
iamp ampmidi 5000
ktrig seqtime 1, 1, 10, 0, 1
trigseq ktrig, 0, 10, 0, 2, kdur, kampratio, kfreqratio

schedkwhen ktrig, -1, -1, 2, 0, kdur, kampratio*iamp, kfreqratio*icps
endin

instr 2
**** put here your intrument code *******

out a1
endin

See Also

GEN02, GEN23, trigseq

Credits

Author: Gabriel Maldonado

New in version 4.06

setctrl

setctrl — Configurable slider controls for realtime user input.

Description

Configurable slider controls for realtime user input. Requires Winsound or TCL/TK. setctrl sets a slider to a
specific value, or sets a minimum or maximum range.

708

Chapter 15. Orchestra Opcodes and Operators

Syntax

setctrl inum, ival, itype

Initialization

inum -- number of the slider to set

ival -- value to be sent to the slider

itype -- type of value sent to the slider as follows:

• 1 -- set the current value. Initial value is 0.

• 2 -- set the minimum value. Default is 0.

• 3 -- set the maximum value. Default is 127.

• 4 -- set the label. (New in Csound version 4.09)

Performance

Calling setctrl will create a new slider on the screen. There is no theoretical limit to the number of sliders.
Windows and TCL/TK use only integers for slider values, so the values may need rescaling. GUIs usually pass
values at a fairly slow rate, so it may be advisable to pass the output of control through port .

Examples

Here is an example of the setctrl opcode. It uses the files setctrl.orc and setctrl.sco.

Example 15-1. Example of the setctrl opcode.

/* setctrl.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Display the label "Volume" on Slider #1.
setctrl 1, "Volume", 4
; Set Slider #1’s initial value to 20.
setctrl 1, 20, 1

; Capture and display the values for Slider #1.
k1 control 1
printk2 k1

; Play a simple oscillator.
; Use the values from Slider #1 for amplitude.
kamp = k1 * 128
a1 oscil kamp, 440, 1
out a1

endin
/* setctrl.orc */

709

Chapter 15. Orchestra Opcodes and Operators

/* setsctrl.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for thirty seconds.
i 1 0 30
e
/* setsctrl.sco */

Its output should include lines like this:

i1 38.00000
i1 40.00000
i1 43.00000

See Also

control

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

May, 2000

New in Csound version 4.06

sfilist

sfilist — Prints a list of all instruments of a previously loaded SoundFont2 (SF2) file.

Description

Prints a list of all instruments of a previously loaded SoundFont2 (SF2) sample file. These opcodes allow
management the sample-structure of SF2 files. In order to understand the usage of these opcodes, the user
must have some knowledge of the SF2 format, so a brief description of this format can be found in the
SoundFont2 File Format Appendix.

Syntax

sfilist ifilhandle

710

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

Performance

sfilist prints a list of all instruments of a previously loaded SF2 file to the console.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfinstr , sfinstrm, sfload, sfpassign, sfplay, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfinstr

sfinstr — Plays a SoundFont2 (SF2) sample instrument, generating a stereo sound.

Description

Plays a SoundFont2 (SF2) sample instrument, generating a stereo sound. These opcodes allow management
the sample-structure of SF2 files. In order to understand the usage of these opcodes, the user must have some
knowledge of the SF2 format, so a brief description of this format can be found in the SoundFont2 File Format
Appendix.

Syntax

ar1, ar2 sfinstr ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

instrnum -- number of an instrument of a SF2 file.

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

iflag (optional) -- flag regarding the behavior of xfreq and inotnum

711

Chapter 15. Orchestra Opcodes and Operators

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

sfinstr plays an SF2 instrument instead of a preset (an SF2 instrument is the base of a preset layer). instrnum
specifies the instrument number, and the user must be sure that the specified number belongs to an existing
instrument of a determinate soundfont bank. Notice that both xamp and xfreq can operate at k-rate as well as
a-rate, but both arguments must work at the same rate.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstrm, sfload, sfpassign, sfplay, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfinstr3

sfinstr3 — Plays a SoundFont2 (SF2) sample instrument, generating a stereo sound with cubic
interpolation.

Description

Plays a SoundFont2 (SF2) sample instrument, generating a stereo sound with cubic interpolation. These
opcodes allow management the sample-structure of SF2 files. In order to understand the usage of these
opcodes, the user must have some knowledge of the SF2 format, so a brief description of this format can be
found in the SoundFont2 File Format Appendix.

712

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar1, ar2 sfinstr3 ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

instrnum -- number of an instrument of a SF2 file.

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

iflag (optional) -- flag regarding the behavior of xfreq and inotnum

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

sfinstr3 is a cubic-interpolation version of sfinstr . Difference of sound-quality is noticeable specially in
bass-frequency-transposed samples. In high-freq-transposed samples the difference is less noticeable, and I
suggest to use linear-interpolation versions, because they are faster.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr3m, sfinstrm, sfinstr , sfload, sfpassign, sfplay3, sfplay3m, sfplay, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

713

Chapter 15. Orchestra Opcodes and Operators

sfinstr3m

sfinstr3m — Plays a SoundFont2 (SF2) sample instrument, generating a mono sound with cubic
interpolation.

Description

Plays a SoundFont2 (SF2) sample instrument, generating a mono sound with cubic interpolation. These
opcodes allow management the sample-structure of SF2 files. In order to understand the usage of these
opcodes, the user must have some knowledge of the SF2 format, so a brief description of this format can be
found in the SoundFont2 File Format Appendix.

Syntax

ar sfinstr3m ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

instrnum -- number of an instrument of a SF2 file.

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

iflag (optional) -- flag regarding the behavior of xfreq and inotnum

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

sfinstr3m is a cubic-interpolation version of sfinstrm. Difference of sound-quality is noticeable specially in
bass-frequency-transposed samples. In high-freq-transposed samples the difference is less noticeable, and I
suggest to use linear-interpolation versions, because they are faster.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

714

Chapter 15. Orchestra Opcodes and Operators

See Also

sfilist , sfinstr3, sfinstr , sfinstrm, sfload, sfpassign, sfplay3, sfplay3m, sfplay, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfinstrm

sfinstrm — Plays a SoundFont2 (SF2) sample instrument, generating a mono sound.

Description

Plays a SoundFont2 (SF2) sample instrument, generating a mono sound. These opcodes allow management
the sample-structure of SF2 files. In order to understand the usage of these opcodes, the user must have some
knowledge of the SF2 format, so a brief description of this format can be found in the SoundFont2 File Format
Appendix.

Syntax

ar sfinstrm ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

instrnum -- number of an instrument of a SF2 file.

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

iflag (optional) -- flag regarding the behavior of xfreq and inotnum

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

715

Chapter 15. Orchestra Opcodes and Operators

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

sfinstrm plays is a mono version of sfinstr . This is the fastest opcode of the SF2 family.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr , sfload, sfpassign, sfplay, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfload

sfload — Loads an entire SoundFont2 (SF2) sample file into memory.

Description

Loads an entire SoundFont2 (SF2) sample file into memory. These opcodes allow management the
sample-structure of SF2 files. In order to understand the usage of these opcodes, the user must have some
knowledge of the SF2 format, so a brief description of this format can be found in the SoundFont2 File Format
Appendix.

sfload should be placed in the header section of a Csound orchestra.

Syntax

ir sfload ifilename

Initialization

ir -- output to be used by other SF2 opcodes. For sfload, ir is ifilhandle. For sfpreset , ir is iprendx.

ifilename -- name of the SF2 file, with its complete path. It must be typed within double-quotes. Use “/” to
separate directories. This applies to DOS and Windows as well, where using a backslash will generate an error.

Performance

sfload loads an entire SF2 file into memory. It returns a file handle to be used by other opcodes. Several
instances of sfload can placed in the header section of an orchestra, allowing use of more than one SF2 file in
a single orchestra.

716

Chapter 15. Orchestra Opcodes and Operators

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr , sfinstrm, sfpassign, sfplay, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfpassign

sfpassign — Assigns all presets of a SoundFont2 (SF2) sample file to a sequence of progressive index
numbers.

Description

Assigns all presets of a previously loaded SoundFont2 (SF2) sample file to a sequence of progressive index
numbers. These opcodes allow management the sample-structure of SF2 files. In order to understand the
usage of these opcodes, the user must have some knowledge of the SF2 format, so a brief description of this
format can be found in the SoundFont2 File Format Appendix.

sfpassign should be placed in the header section of a Csound orchestra.

Syntax

sfpassign istartndx, ifilhandle

Initialization

istartndx -- starting index preset by the user in bulk preset assignments.

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

Performance

sfpassign assigns all presets of a previously loaded SF2 file to a sequence of progressive index numbers, to be
used later with the opcodes sfplay and sfplaym. istartndx specifies the starting index number. Any number of
sfpassign instances can be placed in the header section of an orchestra, each one assigning presets belonging
to different SF2 files. The user must take care that preset index numbers of different SF2 files do not overlap.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

717

Chapter 15. Orchestra Opcodes and Operators

See Also

sfilist , sfinstr , sfinstrm, sfload, sfplay, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfplay

sfplay — Plays a SoundFont2 (SF2) sample preset, generating a stereo sound.

Description

Plays a SoundFont2 (SF2) sample preset, generating a stereo sound. These opcodes allow management the
sample-structure of SF2 files. In order to understand the usage of these opcodes, the user must have some
knowledge of the SF2 format, so a brief description of this format can be found in the SoundFont2 File Format
Appendix.

Syntax

ar1, ar2 sfplay ivel, inotnum, xamp, xfreq, iprendx [, iflag]

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

iprendx -- preset index

iflag -- flag regarding the behavior of xfreq and inotnum

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

sfplay plays a preset, generating a stereo sound. ivel does not directly affect the amplitude of the output, but
informs sfplay about which sample should be chosen in multi-sample, velocity-split presets.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

718

Chapter 15. Orchestra Opcodes and Operators

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr , sfinstrm, sfload, sfpassign, sfplaym, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfplay3

sfplay3 — Plays a SoundFont2 (SF2) sample preset, generating a stereo sound with cubic interpolation.

Description

Plays a SoundFont2 (SF2) sample preset, generating a stereo sound with cubic interpolation. These opcodes
allow management the sample-structure of SF2 files. In order to understand the usage of these opcodes, the
user must have some knowledge of the SF2 format, so a brief description of this format can be found in the
SoundFont2 File Format Appendix.

Syntax

ar1, ar2 sfplay3 ivel, inotnum, xamp, xfreq, iprendx [, iflag]

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

iprendx -- preset index

iflag -- flag regarding the behavior of xfreq and inotnum

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

719

Chapter 15. Orchestra Opcodes and Operators

sfplay3 plays a preset, generating a stereo sound with cubic interpolation. ivel does not directly affect the
amplitude of the output, but informs sfplay3 about which sample should be chosen in multi-sample,
velocity-split presets.

sfplay3 is a cubic-interpolation version of sfplay. Difference of sound-quality is noticeable specially in
bass-frequency-transposed samples. In high-freq-transposed samples the difference is less noticeable, and I
suggest to use linear-interpolation versions, because they are faster.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay3 will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr3, sfinstr3m, sfinstr , sfinstrm, sfload, sfpassign, sfplay3m, sfplaym, sfplay, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfplay3m

sfplay3m — Plays a SoundFont2 (SF2) sample preset, generating a mono sound with cubic interpolation.

Description

Plays a SoundFont2 (SF2) sample preset, generating a mono sound with cubic interpolation. These opcodes
allow management the sample-structure of SF2 files. In order to understand the usage of these opcodes, the
user must have some knowledge of the SF2 format, so a brief description of this format can be found in the
SoundFont2 File Format Appendix.

Syntax

ar sfplay3m ivel, inotnum, xamp, xfreq, iprendx [, iflag]

720

Chapter 15. Orchestra Opcodes and Operators

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

iprendx -- preset index

iflag (optional) -- flag regarding the behavior of xfreq and inotnum

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay3m will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

sfplay3m is a mono version of sfplay3. It should be used with mono preset, or with the stereo presets in which
stereo output is not required. It is faster than sfplay3.

sfplay3m is also a cubic-interpolation version of sfplaym. Difference of sound-quality is noticeable specially
in bass-frequency-transposed samples. In high-freq-transposed samples the difference is less noticeable, and
I suggest to use linear-interpolation versions, because they are faster.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr3, sfinstr3m, sfinstr , sfinstrm, sfload, sfpassign, sfplay3, sfplaym, sfplay, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfplaym

sfplaym — Plays a SoundFont2 (SF2) sample preset, generating a mono sound.

721

Chapter 15. Orchestra Opcodes and Operators

Description

Plays a SoundFont2 (SF2) sample preset, generating a mono sound. These opcodes allow management the
sample-structure of SF2 files. In order to understand the usage of these opcodes, the user must have some
knowledge of the SF2 format, so a brief description of this format can be found in the SoundFont2 File Format
Appendix.

Syntax

ar sfplaym ivel, inotnum, xamp, xfreq, iprendx [, iflag]

Initialization

ivel -- velocity value

inotnum -- MIDI note number value

iprendx -- preset index

iflag (optional) -- flag regarding the behavior of xfreq and inotnum

Performance

xamp -- amplitude correction factor

xfreq -- frequency value or frequency multiplier, depending by iflag . When iflag = 0, xfreq is a multiplier of a
the default frequency, assigned by SF2 preset to the inotenum value. When iflag = 1, xfreq is the absolute
frequency of the output sound, in Hz. Default is 0.

When iflag = 0, inotnum sets the frequency of the output according to the MIDI note number used, and xfreq
is used as a multiplier. When iflag = 1, the frequency of the output, is set directly by xfreq. This allows the user
to use any kind of micro-tuning based scales. However, this method is designed to work correctly only with
presets tuned to the default equal temperament. Attempts to use this method with a preset already having
non-standard tunings, or with drum-kit-based presets, could give unexpected results.

Adjustment of the amplitude can be done by varying the xamp argument, which acts as a multiplier.

Notice that both xamp and xfreq can use k-rate as well as a-rate signals. Both arguments must use variables of
the same rate, or sfplay will not work correctly. iprendx must contain the number of a previously assigned
preset, or Csound will crash.

sfplaym is a mono version of sfplay. It should be used with mono preset, or with the stereo presets in which
stereo output is not required. It is faster than sfplay.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr , sfinstrm, sfload, sfpassign, sfplay, sfplist , sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

722

Chapter 15. Orchestra Opcodes and Operators

sfplist

sfplist — Prints a list of all presets of a SoundFont2 (SF2) sample file.

Description

Prints a list of all presets of a previously loaded SoundFont2 (SF2) sample file. These opcodes allow
management the sample-structure of SF2 files. In order to understand the usage of these opcodes, the user
must have some knowledge of the SF2 format, so a brief description of this format can be found in the
SoundFont2 File Format Appendix.

Syntax

sfplist ifilhandle

Initialization

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

Performance

sfplist prints a list of all presets of a previously loaded SF2 file to the console.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr , sfinstrm, sfload, sfpassign, sfplay, sfplaym, sfpreset

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

sfpreset

sfpreset — Assigns an existing preset of a SoundFont2 (SF2) sample file to an index number.

723

Chapter 15. Orchestra Opcodes and Operators

Description

Assigns an existing preset of a previously loaded SoundFont2 (SF2) sample file to an index number. These
opcodes allow management the sample-structure of SF2 files. In order to understand the usage of these
opcodes, the user must have some knowledge of the SF2 format, so a brief description of this format can be
found in the SoundFont2 File Format Appendix.

sfpreset should be placed in the header section of a Csound orchestra.

Syntax

ir sfpreset iprog, ibank, ifilhandle, iprendx

Initialization

ir -- output to be used by other SF2 opcodes. For sfload, ir is ifilhandle. For sfpreset , ir is iprendx.

iprog -- program number of a bank of presets in a SF2 file

ibank -- number of a specific bank of a SF2 file

ifilhandle -- unique number generated by sfload opcode to be used as an identifier for a SF2 file. Several SF2
files can be loaded and activated at the same time.

iprendx -- preset index

Performance

sfpreset assigns an existing preset of a previously loaded SF2 file to an index number, to be used later with the
opcodes sfplay and sfplaym. The user must previously know the program and the bank numbers of the preset
in order to fill the corresponding arguments. Any number of sfpreset instances can be placed in the header
section of an orchestra, each one assigning a different preset belonging to the same (or different) SF2 file to
different index numbers.

These opcodes only support the sample structure of SF2 files. The modulator structure of the SoundFont2
format is not supported in Csound. Any modulation or processing to the sample data is left to the Csound
user, bypassing all restrictions forced by the SF2 standard.

See Also

sfilist , sfinstr , sfinstrm, sfload, sfpassign, sfplay, sfplaym, sfplist

Credits

Author: Gabriel Maldonado

Italy

May, 2000 (New in Csound Version 4.07)

shaker

shaker — Sounds like the shaking of a maraca or similar gourd instrument.

724

Chapter 15. Orchestra Opcodes and Operators

Description

Audio output is a tone related to the shaking of a maraca or similar gourd instrument. The method is a
physically inspired model developed from Perry Cook, but re-coded for Csound.

Syntax

ar shaker kamp, kfreq, kbeans, kdamp, ktimes [, idecay]

Initialization

idecay -- If present indicates for how long at the end of the note the shaker is to be damped. The default value
is zero.

Performance

A note is played on a maraca-like instrument, with the arguments as below.

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kbeans -- The number of beans in the gourd. A value of 8 seems suitable,

kdamp -- The damping value of the shaker. Values of 0.98 to 1 seems suitable, with 0.99 a reasonable default.

ktimes -- Number of times shaken.

Note: The argument knum was redundant, so it was removed in version 3.49.

Examples

Here is an example of the shaker opcode. It uses the files shaker.orc and shaker.sco.

Example 15-1. Example of the shaker opcode.

/* shaker.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1
instr 1

a1 shaker 10000, 440, 8, 0.999, 100, 0
out a1

endin
/* shaker.orc */

/* shaker.sco */
i 1 0 1
e
/* shaker.sco */

725

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

Fixed the example thanks to a message from Istvan Varga.

sin

sin — Performs a sine function.

Description

Returns the sine of x (x in radians).

Syntax

sin(x) (no rate restriction)

Examples

Here is an example of the sin opcode. It uses the files sin.orc and sin.sco.

Example 15-1. Example of the sin opcode.

/* sin.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 25
i1 = sin(irad)

print i1
endin
/* sin.orc */

/* sin.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* sin.sco */

Its output should include a line like this:

726

Chapter 15. Orchestra Opcodes and Operators

instr 1: i1 = -0.132

See Also

cos, cosh, cosinv, sinh, sininv, tan, tanh, taninv

sinh

sinh — Performs a hyperbolic sine function.

Description

Returns the hyperbolic sine of x (x in radians).

Syntax

sinh(x) (no rate restriction)

Examples

Here is an example of the sinh opcode. It uses the files sinh.orc and sinh.sco.

Example 15-1. Example of the sinh opcode.

/* sinh.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 1
i1 = sinh(irad)

print i1
endin
/* sinh.orc */

/* sinh.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* sinh.sco */

Its output should a line like this:

727

Chapter 15. Orchestra Opcodes and Operators

instr 1: i1 = 1.175

See Also

cos, cosh, cosinv, sin, sininv, tan, tanh, taninv

sininv

sininv — Performs an arcsine function.

Description

Returns the arcsine of x (x in radians).

Syntax

sininv(x) (no rate restriction)

Examples

Here is an example of the sininv opcode. It uses the files sininv.orc and sininv.sco.

Example 15-1. Example of the sininv opcode.

/* sininv.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 0.5
i1 = sininv(irad)

print i1
endin
/* sininv.orc */

/* sininv.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* sininv.sco */

Its output should include a line like this:

728

Chapter 15. Orchestra Opcodes and Operators

instr 1: i1 = 0.524

See Also

cos, cosh, cosinv, sin, sinh, tan, tanh, taninv

sleighbells

sleighbells — Semi-physical model of a sleighbell sound.

Description

sleighbells is a semi-physical model of a sleighbell sound. It is one of the PhISEM percussion opcodes.
PhISEM (Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions
of multiple independent sound producing objects.

Syntax

ar sleighbells kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 32.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.9994 + (idamp * 0.002)

The default damping_amount is 0.9994 which means that the default value of idamp is 0. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 0.03.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 2500.

ifreq1 (optional) -- the first resonant frequency. The default value is 5300.

ifreq2 (optional) -- the second resonant frequency. The default value is 6500.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

729

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the sleighbells opcode. It uses the files sleighbells.orc and sleighbells.sco.

Example 15-1. Example of the sleighbells opcode.

/* sleighbells.orc */
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1: An example of sleighbells.
instr 1

a1 sleighbells 20000, 0.01

out a1
endin
/* sleighbells.orc */

/* sleighbells.sco */
i 1 0.00 0.25
i 1 0.30 0.25
i 1 0.60 0.25
i 1 0.90 0.25
i 1 1.20 0.25
i 1 1.50 0.25
i 1 1.80 0.25
i 1 2.10 0.25
i 1 2.40 0.25
i 1 2.70 0.25
i 1 3.00 0.25
e
/* sleighbells.sco */

See Also

bamboo, dripwater , guiro, tambourine

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

730

Chapter 15. Orchestra Opcodes and Operators

slider16

slider16 — Creates a bank of 16 different MIDI control message numbers.

Description

Creates a bank of 16 different MIDI control message numbers.

Syntax

i1,...,i16 slider16 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum16, imin16, imax16, init16, ifn16

k1,...,k16 slider16 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum16, imin16, imax16, init16, ifn16

Initialization

i1 ... i64 -- output values

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

slider16 is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider16 allows a bank of 16 different MIDI control message numbers.

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

In the i-rate version of slider16, there is not an initial value input argument, because the output is gotten
directly from current status of internal controller array of Csound.

See Also

s16b14, s32b14, slider16f , slider32, slider32f , slider64, slider64f , slider8, slider8f

731

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

slider16f

slider16f — Creates a bank of 16 different MIDI control message numbers, filtered before output.

Description

Creates a bank of 16 different MIDI control message numbers, filtered before output.

Syntax

k1,...,k16 slider16f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum16, imin16, imax16, init16,
ifn16, icutoff16

Initialization

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

slider16f is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider16f allows a bank of 16 different MIDI control message numbers. It filters the signal before output. This
eliminates discontinuities due to the low resolution of the MIDI (7 bit). The cutoff frequency can be set
separately for each controller (suggested range: .1 to 5 Hz).

732

Chapter 15. Orchestra Opcodes and Operators

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

Warning
slider16f does not output the required initial value immediately, but only after some k-cycles because the filter
slightly delays the output.

See Also

s16b14, s32b14, slider16, slider32, slider32f , slider64, slider64f , slider8, slider8f

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

slider32

slider32 — Creates a bank of 32 different MIDI control message numbers.

Description

Creates a bank of 32 different MIDI control message numbers.

Syntax

i1,...,i32 slider32 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum32, imin32, imax32, init32, ifn32

k1,...,k32 slider32 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum32, imin32, imax32, init32, ifn32

Initialization

i1 ... i64 -- output values

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

733

Chapter 15. Orchestra Opcodes and Operators

Performance

k1 ... k64 -- output values

slider32 is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider32 allows a bank of 32 different MIDI control message numbers.

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

In the i-rate version of slider32, there is not an initial value input argument, because the output is gotten
directly from current status of internal controller array of Csound.

See Also

s16b14, s32b14, slider16, slider16f , slider32f , slider64, slider64f , slider8, slider8f

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

slider32f

slider32f — Creates a bank of 32 different MIDI control message numbers, filtered before output.

Description

Creates a bank of 32 different MIDI control message numbers, filtered before output.

Syntax

k1,...,k32 slider32f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum32, imin32, imax32, init32,
ifn32, icutoff32

Initialization

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

734

Chapter 15. Orchestra Opcodes and Operators

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

slider32f is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider32f allows a bank of 32 different MIDI control message numbers. It filters the signal before output. This
eliminates discontinuities due to the low resolution of the MIDI (7 bit). The cutoff frequency can be set
separately for each controller (suggested range: .1 to 5 Hz).

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

Warning
slider32f opcodes do not output the required initial value immediately, but only after some k-cycles because the
filter slightly delays the output.

See Also

s16b14, s32b14, slider16, slider16f , slider32, slider64, slider64f , slider8, slider8f

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

slider64

slider64 — Creates a bank of 64 different MIDI control message numbers.

735

Chapter 15. Orchestra Opcodes and Operators

Description

Creates a bank of 64 different MIDI control message numbers.

Syntax

i1,...,i64 slider64 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum64, imin64, imax64, init64, ifn64

k1,...,k64 slider64 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum64, imin64, imax64, init64, ifn64

Initialization

i1 ... i64 -- output values

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

slider64 is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider64 allows a bank of 64 different MIDI control message numbers.

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

In the i-rate version of slider64, there is not an initial value input argument, because the output is gotten
directly from current status of internal controller array of Csound.

See Also

s16b14, s32b14, slider16, slider16f , slider32, slider32f , slider64f slider8, slider8f

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

736

Chapter 15. Orchestra Opcodes and Operators

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

slider64f

slider64f — Creates a bank of 64 different MIDI control message numbers, filtered before output.

Description

Creates a bank of 64 different MIDI control message numbers, filtered before output.

Syntax

k1,...,k64 slider64f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum64, imin64, imax64, init64,
ifn64, icutoff64

Initialization

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

slider64f is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider64f allows a bank of 64 different MIDI control message numbers. It filters the signal before output. This
eliminates discontinuities due to the low resolution of the MIDI (7 bit). The cutoff frequency can be set
separately for each controller (suggested range: .1 to 5 Hz).

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

737

Chapter 15. Orchestra Opcodes and Operators

Warning
slider64f opcodes do not output the required initial value immediately, but only after some k-cycles because the
filter slightly delays the output.

See Also

s16b14, s32b14, slider16, slider16f , slider32, slider32f , slider64, slider8, slider8f

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

slider8

slider8 — Creates a bank of 8 different MIDI control message numbers.

Description

Creates a bank of 8 different MIDI control message numbers.

Syntax

i1,...,i8 slider8 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum8, imin8, imax8, init8, ifn8

k1,...,k8 slider8 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum8, imin8, imax8, init8, ifn8

Initialization

i1 ... i64 -- output values

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

738

Chapter 15. Orchestra Opcodes and Operators

Performance

k1 ... k64 -- output values

slider8 is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider8 allows a bank of 8 different MIDI control message numbers.

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

In the i-rate version of slider8, there is not an initial value input argument, because the output is gotten
directly from current status of internal controller array of Csound.

See Also

s16b14, s32b14, slider16, slider16f , slider32, slider32f , slider64, slider64f , slider8f

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

slider8f

slider8f — Creates a bank of 8 different MIDI control message numbers, filtered before output.

Description

Creates a bank of 8 different MIDI control message numbers, filtered before output.

Syntax

k1,...,k8 slider8f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum8, imin8, imax8, init8, ifn8,
icutoff8

Initialization

ichan -- MIDI channel (1-16)

ictlnum1 ... ictlnum64 -- MIDI control number (0-127)

739

Chapter 15. Orchestra Opcodes and Operators

imin1 ... imin64 -- minimum values for each controller

imax1 ... imax64 -- maximum values for each controller

init1 ... init64 -- initial value for each controller

ifn1 ... ifn64 -- function table for conversion for each controller

icutoff1 ... icutoff64 -- low-pass filter cutoff frequency for each controller

Performance

k1 ... k64 -- output values

slider8f is a bank of MIDI controllers, useful when using MIDI mixer such as Kawai MM-16 or others for
changing whatever sound parameter in real-time. The raw MIDI control messages at the input port are
converted to agree with iminN and imaxN , and an initial value can be set. Also, an optional non-interpolated
function table with a custom translation curve is allowed, useful for enabling exponential response curves.

When no function table translation is required, set the ifnN value to 0, else set ifnN to a valid function table
number. When table translation is enabled (i.e. setting ifnN value to a non-zero number referring to an
already allocated function table), initN value should be set equal to iminN or imaxN value, else the initial
output value will not be the same as specified in initN argument.

slider8f allows a bank of 8 different MIDI control message numbers. It filters the signal before output. This
eliminates discontinuities due to the low resolution of the MIDI (7 bit). The cutoff frequency can be set
separately for each controller (suggested range: .1 to 5 Hz).

As the input and output arguments are many, you can split the line using ’\’ (backslash) character (new in
3.47 version) to improve the readability. Using these opcodes is considerably more efficient than using the
separate ones (ctrl7 and tonek) when more controllers are required.

Warning
slider8f opcodes do not output the required initial value immediately, but only after some k-cycles because the
filter slightly delays the output.

See Also

s16b14, s32b14, slider16, slider16f , slider32, slider32f , slider64, slider64f , slider8

Credits

Author: Gabriel Maldonado

Italy

December 1998 (New in Csound version 3.50)

Thanks goes to Rasmus Ekman for pointing out the correct MIDI channel and controller number ranges.

sndwarp

sndwarp — Reads a mono sound sample from a table and applies time-stretching and/or pitch modification.

740

Chapter 15. Orchestra Opcodes and Operators

Description

sndwarp reads sound samples from a table and applies time-stretching and/or pitch modification. Time and
frequency modification are independent from one another. For example, a sound can be stretched in time
while raising the pitch!

The window size and overlap arguments are important to the result and should be experimented with. In
general they should be as small as possible. For example, start with iwsize=sr/10 and ioverlap=15. Try
irandw=iwsize*.2. If you can get away with less overlaps, the program will be faster. But too few may cause an
audible flutter in the amplitude. The algorithm reacts differently depending upon the input sound and there
are no fixed rules for the best use in all circumstances. But with proper tuning, excellent results can be
achieved.

Syntax

ar [, ac] sndwarp xamp, xtimewarp, xresample, ifn1, ibeg, iwsize, irandw, ioverlap, ifn2, itimemode

Initialization

ifn1 -- the number of the table holding the sound samples which will be subjected to the sndwarp processing.
GEN01 is the appropriate function generator to use to store the sound samples from a pre-existing soundfile.

ibeg -- the time in seconds to begin reading in the table (or soundfile). When itimemode is non- zero, the
value of xtimewarp is offset by ibeg .

iwsize -- the window size in samples used in the time scaling algorithm.

irandw -- the bandwidth of a random number generator. The random numbers will be added to iwsize.

ioverlap -- determines the density of overlapping windows.

ifn2 -- a function used to shape the window. It is usually used to create a ramp of some kind from zero at the
beginning and back down to zero at the end of each window. Try using a half a sine (i.e.: f1 0 16384 9 .5 1 0)
which works quite well. Other shapes can also be used.

Performance

ar -- the single channel of output from the sndwarp unit generator. sndwarp assumes that the function table
holding the sampled signal is a mono one. This simply means that sndwarp will index the table by
single-sample frame increments. The user must be aware then that a stereo signal is used with sndwarp, time
and pitch will be altered accordingly.

ac (optional) -- a single-layer (no overlaps), unwindowed versions of the time and/or pitch altered signal.
They are supplied in order to be able to balance the amplitude of the signal output, which typically contains
many overlapping and windowed versions of the signal, with a clean version of the time-scaled and
pitch-shifted signal. The sndwarp process can cause noticeable changes in amplitude, (up and down), due to
a time differential between the overlaps when time-shifting is being done. When used with a balance unit , ac
can greatly enhance the quality of sound.

xamp -- the value by which to scale the amplitude (see note on the use of this when using ac).

xtimewarp -- determines how the input signal will be stretched or shrunk in time. There are two ways to use
this argument depending upon the value given for itimemode. When the value of itimemode is 0, xitimewarp
will scale the time of the sound. For example, a value of 2 will stretch the sound by 2 times. When itimemode
is any non-zero value then xtimewarp is used as a time pointer in a similar way in which the time pointer
works in lpread and pvoc. An example below illustrates this. In both cases, the pitch will not be altered by this
process. Pitch shifting is done independently using xresample.

xresample -- the factor by which to change the pitch of the sound. For example, a value of 2 will produce a
sound one octave higher than the original. The timing of the sound, however, will not be altered.

741

Chapter 15. Orchestra Opcodes and Operators

Examples

The below example shows a slowing down or stretching of the sound stored in the stored table (ifn1). Over the
duration of the note, the stretching will grow from no change from the original to a sound which is ten times
“slower” than the original. At the same time the overall pitch will move upward over the duration by an
octave.

iwindfun=1
isampfun=2
ibeg=0
iwindsize=2000
iwindrand=400
ioverlap=10
awarp line 1, p3, 1
aresamp line 1, p3, 2
kenv line 1, p3, .1
asig sndwarp kenv, awarp, aresamp, isampfun, ibeg, iwindsize, iwindrand, ioverlap,iwindfun,0

Now, here’s an example using xtimewarp as a time pointer and using stereo:

itimemode = 1
atime line 0, p3, 10
ar1, ar2 sndwarpst kenv, atime, aresamp, sampfun, ibeg, iwindsize, iwindrand, ioverlap, iwind-
fun, itimemode

In the above, atime advances the time pointer used in the sndwarp from 0 to 10 over the duration of the note.
If p3 is 20 then the sound will be two times slower than the original. Of course you can use a more complex
function than just a single straight line to control the time factor.

Now the same as above but using the balance function with the optional outputs:

asig,acmp sndwarp 1, awarp, aresamp, isampfun, ibeg, iwindsize, iwindrand, ioverlap, iwind-
fun, itimemode
abal balance asig, acmp

asig1,asig2,acmp1,acmp2 sndwarpst 1, atime, aresamp, sampfun, ibeg, iwindsize, iwindrand, iover-
lap, iwindfun, itimemode
abal1 balance asig1, acmp1
abal2 balance asig2, acmp2

In the above two examples notice the use of the balance unit. The output of balance can then be scaled,
enveloped, sent to an out or outs, and so on. Notice that the amplitude arguments to sndwarp and sndwarpst
are “1” in these examples. By scaling the signal after the sndwarp process, abal, abal1, and abal2 should
contain signals that have nearly the same amplitude as the original input signal to the sndwarp process. This
makes it much easier to predict the levels and avoid samples out of range or sample values that are too small.

More Advice: Only use the stereo version when you really need to be processing a stereo file. It is somewhat slower
than the mono version and if you use the balance function it is slower again. There is nothing wrong with using a mono
sndwarp in a stereo orchestra and sending the result to one or both channels of the stereo output!

742

Chapter 15. Orchestra Opcodes and Operators

See Also

sndwarpst

Credits

Author: Richard Karpen

Seattle, Wash

1997

sndwarpst

sndwarpst — Reads a stereo sound sample from a table and applies time-stretching and/or pitch
modification.

Description

sndwarpst reads stereo sound samples from a table and applies time-stretching and/or pitch modification.
Time and frequency modification are independent from one another. For example, a sound can be stretched
in time while raising the pitch!

The window size and overlap arguments are important to the result and should be experimented with. In
general they should be as small as possible. For example, start with iwsize=sr/10 and ioverlap=15. Try
irandw=iwsize*.2. If you can get away with less overlaps, the program will be faster. But too few may cause an
audible flutter in the amplitude. The algorithm reacts differently depending upon the input sound and there
are no fixed rules for the best use in all circumstances. But with proper tuning, excellent results can be
achieved.

Syntax

ar1, ar2 [,ac1] [, ac2] sndwarpst xamp, xtimewarp, xresample, ifn1, ibeg, iwsize, irandw, ioverlap, ifn2,
itimemode

Initialization

ifn1 -- the number of the table holding the sound samples which will be subjected to the sndwarp processing.
GEN01 is the appropriate function generator to use to store the sound samples from a pre-existing soundfile.

ibeg -- the time in seconds to begin reading in the table (or soundfile). When itimemode is non-zero, the
value of xtimewarp is offset by ibeg .

iwsize -- the window size in samples used in the time scaling algorithm.

irandw -- the bandwidth of a random number generator. The random numbers will be added to iwsize.

ioverlap -- determines the density of overlapping windows.

ifn2 -- a function used to shape the window. It is usually used to create a ramp of some kind from zero at the
beginning and back down to zero at the end of each window. Try using a half a sine (i.e.: f1 0 16384 9 .5 1 0)
which works quite well. Other shapes can also be used.

743

Chapter 15. Orchestra Opcodes and Operators

Performance

ar1, ar2 -- ar1 and ar2 are the stereo (left and right) outputs from sndwarpst . sndwarpst assumes that the
function table holding the sampled signal is a stereo one. sndwarpst will index the table by a two-sample
frame increment. The user must be aware then that if a mono signal is used with sndwarpst , time and pitch
will be altered accordingly.

ac1, ac2 -- ac1 and ac2 are single-layer (no overlaps), unwindowed versions of the time and/or pitch altered
signal. They are supplied in order to be able to balance the amplitude of the signal output, which typically
contains many overlapping and windowed versions of the signal, with a clean version of the time-scaled and
pitch-shifted signal. The sndwarpst process can cause noticeable changes in amplitude, (up and down), due
to a time differential between the overlaps when time-shifting is being done. When used with a balance unit,
ac1 and ac2 can greatly enhance the quality of sound. They are optional, but note that they must both be
present in the syntax (use both or neither). An example of how to use this is given below.

xamp -- the value by which to scale the amplitude (see note on the use of this when using ac1 and ac2).

xtimewarp -- determines how the input signal will be stretched or shrunk in time. There are two ways to use
this argument depending upon the value given for itimemode. When the value of itimemode is 0, xitimewarp
will scale the time of the sound. For example, a value of 2 will stretch the sound by 2 times. When itimemode
is any non-zero value then xtimewarp is used as a time pointer in a similar way in which the time pointer
works in lpread and pvoc. An example below illustrates this. In both cases, the pitch will not be altered by this
process. Pitch shifting is done independently using xresample.

xresample -- the factor by which to change the pitch of the sound. For example, a value of 2 will produce a
sound one octave higher than the original. The timing of the sound, however, will not be altered.

Examples

The below example shows a slowing down or stretching of the sound stored in the stored table (ifn1). Over the
duration of the note, the stretching will grow from no change from the original to a sound which is ten times
“slower” than the original. At the same time the overall pitch will move upward over the duration by an
octave.

iwindfun=1
isampfun=2
ibeg=0
iwindsize=2000
iwindrand=400
ioverlap=10
awarp line 1, p3, 1
aresamp line 1, p3, 2
kenv line 1, p3, .1
asig sndwarp kenv, awarp, aresamp, isampfun, ibeg, iwindsize, iwindrand, ioverlap,iwindfun,0

Now, here’s an example using xtimewarp as a time pointer and using stereo:

itimemode = 1
atime line 0, p3, 10
ar1, ar2 sndwarpst kenv, atime, aresamp, sampfun, ibeg, iwindsize, iwindrand, ioverlap, iwind-
fun, itimemode

In the above, atime advances the time pointer used in the sndwarp from 0 to 10 over the duration of the note.
If p3 is 20 then the sound will be two times slower than the original. Of course you can use a more complex
function than just a single straight line to control the time factor.

744

Chapter 15. Orchestra Opcodes and Operators

Now the same as above but using the balance function with the optional outputs:

asig,acmp sndwarp 1, awarp, aresamp, isampfun, ibeg, iwindsize, iwindrand, ioverlap, iwind-
fun, itimemode
abal balance asig, acmp

asig1,asig2,acmp1,acmp2 sndwarpst 1, atime, aresamp, sampfun, ibeg, iwindsize, iwindrand, iover-
lap, iwindfun, itimemode
abal1 balance asig1, acmp1
abal2 balance asig2, acmp2

In the above two examples notice the use of the balance unit. The output of balance can then be scaled,
enveloped, sent to an out or outs, and so on. Notice that the amplitude arguments to sndwarp and sndwarpst
are “1” in these examples. By scaling the signal after the sndwarp process, abal, abal1, and abal2 should
contain signals that have nearly the same amplitude as the original input signal to the sndwarp process. This
makes it much easier to predict the levels and avoid samples out of range or sample values that are too small.

More Advice: Only use the stereo version when you really need to be processing a stereo file. It is somewhat slower
than the mono version and if you use the balance function it is slower again. There is nothing wrong with using a mono
sndwarp in a stereo orchestra and sending the result to one or both channels of the stereo output!

See Also

sndwarp

Credits

Author: Richard Karpen

Seattle, Wash

1997

soundin

soundin — Reads audio data from an external device or stream.

Description

Reads audio data from an external device or stream.

Syntax

ar1 soundin ifilcod [, iskptim] [, iformat]

ar1, ar2 soundin ifilcod [, iskptim] [, iformat]

ar1, ar2, ar3 soundin ifilcod [, iskptim] [, iformat]

ar1, ar2, ar3, ar4 soundin ifilcod [, iskptim] [, iformat]

745

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifilcod -- integer or character-string denoting the source soundfile name. An integer denotes the file
soundin.filcod ; a character-string (in double quotes, spaces permitted) gives the filename itself, optionally a
full pathname. If not a full path, the named file is sought first in the current directory, then in that given by the
environment variable SSDIR (if defined) then by SFDIR. See also GEN01.

iskptim (optional, default=0) -- time in seconds of input sound to be skipped. The default value is 0.

iformat (optional, default=0) -- specifies the audio data file format:

• 1 = 8-bit signed char (high-order 8 bits of a 16-bit integer)

• 2 = 8-bit A-law bytes

• 3 = 8-bit U-law bytes

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats

If iformat = 0 it is taken from the soundfile header, and if no header from the Csound -o command-line flag.
The default value is 0.

Performance

soundin is functionally an audio generator that derives its signal from a pre-existing file. The number of
channels read in is controlled by the number of result cells, a1, a2, etc., which must match that of the input
file. A soundin opcode opens this file whenever the host instrument is initialized, then closes it again each
time the instrument is turned off.

There can be any number of soundin opcodes within a single instrument or orchestra. Two or more of them
can read simultaneously from the same external file.

Note to Windows users
Windows users typically use back-slashes, “\”, when specifying the paths of their files. As an example, a
Windows user might use the path “c:\music\samples\loop001.wav”. This is problematic because back-slashes
are normally used to specify special characters.

To correctly specify this path in Csound, one may alternately:

• Use forward slashes: c:/music/samples/loop001.wav

• Use back-slash special characters, “\\” : c:\\music\\samples\\loop001.wav

Examples

Here is an example of the soundin opcode. It uses the files soundin.orc, soundin.sco, beats.wav.

Example 15-1. Example of the soundin opcode.

/* soundin.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 44100

746

Chapter 15. Orchestra Opcodes and Operators

ksmps = 1
nchnls = 1

; Instrument #1 - play an audio file.
instr 1

asig soundin "beats.wav"
out asig

endin
/* soundin.orc */

/* soundin.sco */
/* Written by Kevin Conder */
; Play Instrument #1, the audio file, for three seconds.
i 1 0 3
e
/* soundin.sco */

See Also

diskin, in, inh, ino, inq, ins

Credits

Authors: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

Warning to Windows users added by Kevin Conder, April 2002

soundout

soundout — Writes audio output to a disk file.

Description

Writes audio output to a disk file.

Syntax

soundout asig1, ifilcod [, iformat]

Initialization

ifilcod -- integer or character-string denoting the destination soundfile name. An integer denotes the file
soundin.filcod; a character-string (in double quotes, spaces permitted) gives the filename itself, optionally a
full pathname. If not a full path, the named file is sought first in the current directory, then in that given by the
environment variable SSDIR (if defined) then by SFDIR. See also GEN01.

iformat (optional, default=0) -- specifies the audio data file format:

747

Chapter 15. Orchestra Opcodes and Operators

• 1 = 8-bit signed char (high-order 8 bits of a 16-bit integer)

• 2 = 8-bit A-law bytes

• 3 = 8-bit U-law bytes

• 4 = 16-bit short integers

• 5 = 32-bit long integers

• 6 = 32-bit floats

If iformat = 0 it is taken from the soundfile header, and if no header from the Csound -o command-line flag.
The default value is 0.

Performance

soundout writes audio output to a disk file.

See Also

out , outh, outo, outq, outq1, outq2, outq3, outq4, outs, outs1, outs2

Credits

Author: Barry L. Vercoe, Matt Ingalls/Mike Berry

MIT, Mills College

1993-1997

space

space — Distributes an input signal among 4 channels using cartesian coordinates.

Description

space takes an input signal and distributes it among 4 channels using Cartesian xy coordinates to calculate
the balance of the outputs. The xy coordinates can be defined in a separate text file and accessed through a
Function statement in the score using Gen28, or they can be specified using the optional kx, ky arguments.
The advantages to the former are:

1. A graphic user interface can be used to draw and edit the trajectory through the Cartesian plane

2. The file format is in the form time1 X1 Y1 time2 X2 Y2 time3 X3 Y3 allowing the user to define a
time-tagged trajectory

space then allows the user to specify a time pointer (much as is used for pvoc, lpread and some other units) to
have detailed control over the final speed of movement.

748

Chapter 15. Orchestra Opcodes and Operators

Syntax

a1, a2, a3, a4 space asig, ifn, ktime, kreverbsend, kx, ky

Initialization

ifn -- number of the stored function created using Gen28. This function generator reads a text file which
contains sets of three values representing the xy coordinates and a time-tag for when the signal should be
placed at that location. The file should look like:

0 -1 1
1 1 1
2 4 4
2.1 -4 -4
3 10 -10
5 -40 0

If that file were named “move” then the Gen28 call in the score would like:

f1 0 0 28 "move"

Gen28 takes 0 as the size and automatically allocates memory. It creates values to 10 milliseconds of
resolution. So in this case there will be 500 values created by interpolating X1 to X2 to X3 and so on, and Y1 to
Y2 to Y3 and so on, over the appropriate number of values that are stored in the function table. In the above
example, the sound will begin in the left front, over 1 second it will move to the right front, over another
second it move further into the distance but still in the left front, then in just 1/10th of a second it moves to
the left rear, a bit distant. Finally over the last .9 seconds the sound will move to the right rear, moderately
distant, and it comes to rest between the two left channels (due west!), quite distant. Since the values in the
table are accessed through the use of a time-pointer in the space unit, the actual timing can be made to follow
the file’s timing exactly or it can be made to go faster or slower through the same trajectory. If you have access
to the GUI that allows one to draw and edit the files, there is no need to create the text files manually. But as
long as the file is ASCII and in the format shown above, it doesn’t matter how it is made!

Important: If ifn is 0, then space will take its values for the xy coordinates from kx and ky .

Performance

The configuration of the xy coordinates in space places the signal in the following way:

• a1 is -1, 1

• a2 is 1, 1

• a3 is -1, -1

• a4 is 1, -1

This assumes a loudspeaker set up as a1 is left front, a2 is right front, a3 is left back, a4 is right back. Values
greater than 1 will result in sounds being attenuated, as if in the distance. space considers the speakers to be
at a distance of 1; smaller values of xy can be used, but space will not amplify the signal in this case. It will,

749

Chapter 15. Orchestra Opcodes and Operators

however balance the signal so that it can sound as if it were within the 4 speaker space. x=0, y=1, will place the
signal equally balanced between left and right front channels, x=y=0 will place the signal equally in all 4
channels, and so on. Although there must be 4 output signals from space, it can be used in a 2 channel
orchestra. If the xy’s are kept so that Y>=1, it should work well to do panning and fixed localization in a stereo
field.

asig -- input audio signal.

ktime -- index into the table containing the xy coordinates. If used like:

ktime line 0, 5, 5
a1, a2, a3, a4 space asig, 1, ktime, ...

with the file “move” described above, the speed of the signal’s movement will be exactly as described in that
file. However:

ktime line 0, 10, 5

the signal will move at half the speed specified. Or in the case of:

ktime line 5, 15, 0

the signal will move in the reverse direction as specified and 3 times slower! Finally:

ktime line 2, 10, 3

will cause the signal to move only from the place specified in line 3 of the text file to the place specified in line
5 of the text file, and it will take 10 seconds to do it.

kreverbsend -- the percentage of the direct signal that will be factored along with the distance as derived from
the XY coordinates to calculate signal amounts that can be sent to reverb units such as reverb, or reverb2.

kx, ky -- when ifn is 0, space and spdist will use these values as the XY coordinates to localize the signal.

Examples

instr 1
asig ;some audio signal
ktime line 0, p3, p10
a1, a2, a3, a4 space asig,1, ktime, .1
ar1, ar2, ar3, ar4 spsend

ga1 = ga1+ar1
ga2 = ga2+ar2
ga3 = ga3+ar3
ga4 = ga4+ar4

outq a1, a2, a3, a4
endin

750

Chapter 15. Orchestra Opcodes and Operators

instr 99 ; reverb instrument

a1 reverb2 ga1, 2.5, .5
a2 reverb2 ga2, 2.5, .5
a3 reverb2 ga3, 2.5, .5
a4 reverb2 ga4, 2.5, .5

outq a1, a2, a3, a4
ga1=0
ga2=0
ga3=0
ga4=0

In the above example, the signal, asig , is moved according to the data in Function #1 indexed by ktime. space
sends the appropriate amount of the signal internally to spsend. The outputs of the spsend are added to
global accumulators in a common Csound style and the global signals are used as inputs to the reverb units
in a separate instrument.

space can useful for quad and stereo panning as well as fixed placed of sounds anywhere between two
loudspeakers. Below is an example of the fixed placement of sounds in a stereo field using xy values from the
score instead of a function table.

instr 1
...
a1, a2, a3, a4 space asig, 0, 0, .1, p4, p5
ar1, ar2, ar3, ar4 spsend

ga1=ga1+ar1
ga2=ga2+ar2

outs a1, a2
endin

instr 99 ; reverb....
....

endin

A few notes: p4 and p5 are the X and Y values

;place the sound in the left speaker and near
i1 0 1 -1 1

;place the sound in the right speaker and far
i1 1 1 45 45

;place the sound equally between left and right and in the middle ground distance
i1 2 1 0 12

e

The next example shows a simple intuitive use of the distance values returned by spdist to simulate Doppler
shift.

ktime line 0, p3, 10
kdist spdist 1, ktime
kfreq = (ifreq * 340) / (340 + kdist)
asig oscili iamp, kfreq, 1

751

Chapter 15. Orchestra Opcodes and Operators

a1, a2, a3, a4 space asig, 1, ktime, .1
ar1, ar2, ar3, ar4 spsend

The same function and time values are used for both spdist and space. This insures that the distance values
used internally in the space unit will be the same as those returned by spdist to give the impression of a
Doppler shift!

See Also

spdist , spsend

Credits

Author: Richard Karpen

Seattle, Wash

1998 (New in Csound version 3.48)

spat3d

spat3d — Positions the input sound in a 3D space and allows moving the sound at k-rate.

Description

This opcode positions the input sound in a 3D space, with optional simulation of room acoustics, in various
output formats. spat3d allows moving the sound at k-rate (this movement is interpolated internally to
eliminate "zipper noise" if sr not equal to kr).

Syntax

aW, aX, aY, aZ spat3d ain, kX, kY, kZ, idist, ift, imode, imdel, iovr [, istor]

Initialization

idist -- For modes 0 to 3, idist is the unit circle distance in meters. For mode 4, idist is the distance between
microphones.

The following formulas describe amplitude and delay as a function of sound source distance from
microphone(s):

amplitude = 1 / (0.1 + distance)

delay = distance / 340 (in seconds)

Distance can be calculated as:

752

Chapter 15. Orchestra Opcodes and Operators

distance = sqrt(iXˆ2 + iYˆ2 + iZˆ2)

In Mode 4, distance can be calculated as:

distance from left mic = sqrt((iX + idist/2)ˆ2 + iYˆ2 + iZˆ2)
distance from right mic = sqrt((iX - idist/2)ˆ2 + iYˆ2 + iZˆ2)

With spat3d the distance between the sound source and any microphone should be at least (340 * 18) / sr
meters. Shorter distances will work, but may produce artifacts in some cases. There is no such limitation for
spat3di and spat3dt .

Sudden changes or discontinuities in sound source location can result in pops or clicks. Very fast movement
may also degrade quality.

ift -- Function table storing room parameters (for free field spatialization, set it to zero or negative). Table size
is 64. The values in the table are:

Room Parameter Purpose

0 Early reflection recursion depth (0 is the sound
source, 1 is the first reflection etc.) for spat3d and
spat3di. The number of echoes for four walls (front,
back, right, left) is: N = (2*R + 2) * R. If all six walls are
enabled: N = (((4*R + 6)*R + 8)*R) / 3

1 Late reflection recursion depth (used by spat3dt
only). spat3dt skips early reflections and renders
echoes up to this level. If early reflection depth is
negative, spat3d and spat3di will output zero, while
spat3dt will start rendering from the sound source.

2 imdel for spat3d. Overrides opcode parameter if
non-negative.

3 irlen for spat3dt. Overrides opcode parameter if
non-negative.

4 idist value. Overrides opcode parameter if >= 0.

5 Random seed (0 - 65535) -1 seeds from current time.

6 - 53 wall parameters (w = 6: ceil, w = 14: floor, w = 22:
front, w = 30: back, w = 38: right, w = 46: left)

w + 0 Enable reflections from this wall (0: no, 1: yes)

w + 1 Wall distance from listener (in meters)

w + 2 Randomization of wall distance (0 - 1) (in units of 1 /
(wall distance))

w + 3 Reflection level (-1 - 1)

w + 4 Parametric equalizer frequency in Hz.

w + 5 Parametric equalizer level (1.0: no filtering)

w + 6 Parametric equalizer Q (0.7071: no resonance)

w + 7 Parametric equalizer mode (0: peak EQ, 1: low shelf, 2:
high shelf)

753

Chapter 15. Orchestra Opcodes and Operators

imode -- Output mode

• 0: B format with W output only (mono)

aout = aW

• 1: B format with W and Y output (stereo)

aleft = aW + 0.7071*aY
aright = aW - 0.7071*aY

• 2: B format with W, X, and Y output (2D). This can be converted to UHJ:

aWre, aWim hilbert aW
aXre, aXim hilbert aX
aYre, aYim hilbert aY
aWXr = 0.0928*aXre + 0.4699*aWre
aWXiYr = 0.2550*aXim - 0.1710*aWim + 0.3277*aYre
aleft = aWXr + aWXiYr
aright = aWXr - aWXiYr

• 3: B format with all outputs (3D)

• 4: Simulates a pair of microphones (stereo output)

aW butterlp aW, ifreq ; recommended values for ifreq
aY butterlp aY, ifreq ; are around 1000 Hz
aleft = aW + aX
aright = aY + aZ

Mode 0 is the cheapest to calculate, while mode 4 is the most expensive.

In Mode 4, The optional lowpass filters can change the frequency response depending on direction. For
example, if the sound source is located left to the listener then the high frequencies are attenuated in the right
channel and slightly increased in the left. This effect can be disabled by not using filters. You can also
experiment with other filters (tone etc.) for better effect.

Note that mode 4 is most useful for listening with headphones, and is also more expensive to calculate than
the B-format (0 to 3) modes. The idist parameter in this case sets the distance between left and right
microphone; for headphones, values between 0.2 - 0.25 are recommended, although higher settings up to 0.4
may be used for wide stereo effects.

More information about B format can be found here:
http://www.york.ac.uk/inst/mustech/3d_audio/ambis2.htm

imdel -- Maximum delay time for spat3d in seconds. This has to be longer than the delay time of the latest
reflection (depends on room dimensions, sound source distance, and recursion depth; using this formula
gives a safe (although somewhat overestimated) value:

imdel = (R + 1) * sqrt(W*W + H*H + D*D) / 340.0

where R is the recursion depth, W, H, and D are the width, height, and depth of the room, respectively).

iovr -- Oversample ratio for spat3d (1 to 8). Setting it higher improves quality at the expense of memory and
CPU usage. The recommended value is 2.

istor (optional, default=0) -- Skip initialization if non-zero (default: 0).

754

Chapter 15. Orchestra Opcodes and Operators

Performance

aW, aX, aY, aZ -- Output signals

mode 0 mode 1 mode 2 mode 3 mode 4

aW W out W out W out W out left chn / low
freq.

aX 0 0 X out X out left chn / high
frq.

aY 0 Y out Y out Y out right chn / low
frq.

aZ 0 0 0 Z out right chn / high
fr.

ain -- Input signal

kX, kY, kZ -- Sound source coordinates (in meters)

If you encounter very slow performance (up to 100 times slower), it may be caused by denormals (this is also
true of many other IIR opcodes, including butterlp, pareq, hilbert , and many others). Underflows can be
avoided by:

• mixing low level DC or noise to the input signal, e.g.

atmp rnd31 1/1e24, 0, 0

aW, aX, aY, aZ spa3di ain + atmp, ...

or

aW, aX, aY, aZ spa3di ain + 1/1e24, ...

• reducing irlen in the case of spat3dt (which does not have an input signal). A value of about 0.005 is suitable
for most uses, although it also depends on EQ settings. If the equalizer is not used, “irlen” can be set to 0.

Examples

Here is a example of the spat3d opcode that outputs a stereo file. It uses the files spat3d_stereo.orc and
spat3d_stereo.sco.

Example 15-1. Stereo example of the spat3d opcode.

/* spat3d_stereo.orc */
/* Written by Istvan Varga */
sr = 48000
kr = 1000
ksmps = 48
nchnls = 2

/* room parameters */

idep = 3 /* early reflection depth */

itmp ftgen 1, 0, 64, -2, \
/* depth1, depth2, max delay, IR length, idist, seed */ \
idep, 48, -1, 0.01, 0.25, 123, \

755

Chapter 15. Orchestra Opcodes and Operators

1, 21.982, 0.05, 0.87, 4000.0, 0.6, 0.7, 2, /* ceil */ \
1, 1.753, 0.05, 0.87, 3500.0, 0.5, 0.7, 2, /* floor */ \
1, 15.220, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* front */ \
1, 9.317, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* back */ \
1, 17.545, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* right */ \
1, 12.156, 0.05, 0.87, 5000.0, 0.8, 0.7, 2 /* left */

instr 1

/* some source signal */

a1 phasor 150 ; oscillator
a1 butterbp a1, 500, 200 ; filter
a1 = taninv(a1 * 100)
a2 phasor 3 ; envelope
a2 mirror 40*a2, -100, 5
a2 limit a2, 0, 1
a1 = a1 * a2 * 9000

kazim line 0, 2.5, 360 ; move sound source around
kdist line 1, 10, 4 ; distance

; convert polar coordinates
kX = sin(kazim * 3.14159 / 180) * kdist
kY = cos(kazim * 3.14159 / 180) * kdist
kZ = 0

a1 = a1 + 0.000001 * 0.000001 ; avoid underflows

imode = 1 ; change this to 3 for 8 spk in a cube,
; or 1 for simple stereo

aW, aX, aY, aZ spat3d a1, kX, kY, kZ, 1.0, 1, imode, 2, 2

aW = aW * 1.4142

; stereo
;
aL = aW + aY /* left */
aR = aW - aY /* right */

; quad (square)
;
;aFL = aW + aX + aY /* front left */
;aFR = aW + aX - aY /* front right */
;aRL = aW - aX + aY /* rear left */
;aRR = aW - aX - aY /* rear right */

; eight channels (cube)
;
;aUFL = aW + aX + aY + aZ /* upper front left */
;aUFR = aW + aX - aY + aZ /* upper front right */
;aURL = aW - aX + aY + aZ /* upper rear left */
;aURR = aW - aX - aY + aZ /* upper rear right */
;aLFL = aW + aX + aY - aZ /* lower front left */
;aLFR = aW + aX - aY - aZ /* lower front right */
;aLRL = aW - aX + aY - aZ /* lower rear left */
;aLRR = aW - aX - aY - aZ /* lower rear right */

outs aL, aR

endin
/* spat3d_stereo.orc */

756

Chapter 15. Orchestra Opcodes and Operators

/* spat3d_stereo.sco */
/* Written by Istvan Varga */
i 1 0 10
e
/* spat3d_stereo.sco */

Here is a example of the spat3d opcode that outputs a UHJ file. It uses the files spat3d_UHJ.orc and
spat3d_UHJ.sco.

Example 15-2. UHJ example of the spat3d opcode.

/* spat3d_UHJ.orc */
/* Written by Istvan Varga */
sr = 48000
kr = 750
ksmps = 64
nchnls = 2

itmp ftgen 1, 0, 64, -2, \
/* depth1, depth2, max delay, IR length, idist, seed */ \
3, 48, -1, 0.01, 0.25, 123, \
1, 21.982, 0.05, 0.87, 4000.0, 0.6, 0.7, 2, /* ceil */ \
1, 1.753, 0.05, 0.87, 3500.0, 0.5, 0.7, 2, /* floor */ \
1, 15.220, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* front */ \
1, 9.317, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* back */ \
1, 17.545, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* right */ \
1, 12.156, 0.05, 0.87, 5000.0, 0.8, 0.7, 2 /* left */

instr 1

p3 = p3 + 1.0

kazim line 0.0, 4.0, 360.0 ; azimuth
kelev line 40, p3 - 1.0, -20 ; elevation
kdist = 2.0 ; distance
; convert coordinates
kX = kdist * cos(kelev * 0.01745329) * sin(kazim * 0.01745329)
kY = kdist * cos(kelev * 0.01745329) * cos(kazim * 0.01745329)
kZ = kdist * sin(kelev * 0.01745329)

; source signal
a1 phasor 160.0
a2 delay1 a1
a1 = a1 - a2
kffrq1 port 200.0, 0.8, 12000.0
affrq upsamp kffrq1
affrq pareq affrq, 5.0, 0.0, 1.0, 2
kffrq downsamp affrq
aenv4 phasor 3.0
aenv4 limit 2.0 - aenv4 * 8.0, 0.0, 1.0
a1 butterbp a1 * aenv4, kffrq, 160.0
aenv linseg 1.0, p3 - 1.0, 1.0, 0.04, 0.0, 1.0, 0.0
a_ = 4000000 * a1 * aenv + 0.00000001

; spatialize
a_W, a_X, a_Y, a_Z spat3d a_, kX, kY, kZ, 1.0, 1, 2, 2.0, 2

; convert to UHJ format (stereo)
aWre, aWim hilbert a_W
aXre, aXim hilbert a_X
aYre, aYim hilbert a_Y

757

Chapter 15. Orchestra Opcodes and Operators

aWXre = 0.0928*aXre + 0.4699*aWre
aWXim = 0.2550*aXim - 0.1710*aWim

aL = aWXre + aWXim + 0.3277*aYre
aR = aWXre - aWXim - 0.3277*aYre

outs aL, aR

endin
/* spat3d_UHJ.orc */

/* spat3d_UHJ.sco */
/* Written by Istvan Varga */
t 0 60

i 1 0.0 8.0
e
/* spat3d_UHJ.sco */

Here is a example of the spat3d opcode that outputs a quadrophonic file. It uses the files spat3d_quad.orc and
spat3d_quad.sco.

Example 15-3. Quadrophonic example of the spat3d opcode.

/* spat3d_quad.orc */
/* Written by Istvan Varga */
sr = 48000
kr = 1000
ksmps = 48
nchnls = 4

/* room parameters */

idep = 3 /* early reflection depth */

itmp ftgen 1, 0, 64, -2, \
/* depth1, depth2, max delay, IR length, idist, seed */ \
idep, 48, -1, 0.01, 0.25, 123, \
1, 21.982, 0.05, 0.87, 4000.0, 0.6, 0.7, 2, /* ceil */ \
1, 1.753, 0.05, 0.87, 3500.0, 0.5, 0.7, 2, /* floor */ \
1, 15.220, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* front */ \
1, 9.317, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* back */ \
1, 17.545, 0.05, 0.87, 5000.0, 0.8, 0.7, 2, /* right */ \
1, 12.156, 0.05, 0.87, 5000.0, 0.8, 0.7, 2 /* left */

instr 1

/* some source signal */

a1 phasor 150 ; oscillator
a1 butterbp a1, 500, 200 ; filter
a1 = taninv(a1 * 100)
a2 phasor 3 ; envelope
a2 mirror 40*a2, -100, 5
a2 limit a2, 0, 1
a1 = a1 * a2 * 9000

kazim line 0, 2.5, 360 ; move sound source around
kdist line 1, 10, 4 ; distance

758

Chapter 15. Orchestra Opcodes and Operators

; convert polar coordinates
kX = sin(kazim * 3.14159 / 180) * kdist
kY = cos(kazim * 3.14159 / 180) * kdist
kZ = 0

a1 = a1 + 0.000001 * 0.000001 ; avoid underflows

imode = 2 ; change this to 3 for 8 spk in a cube,
; or 1 for simple stereo

aW, aX, aY, aZ spat3d a1, kX, kY, kZ, 1.0, 1, imode, 2, 2

aW = aW * 1.4142

; stereo
;
;aL = aW + aY /* left */
;aR = aW - aY /* right */

; quad (square)
;
aFL = aW + aX + aY /* front left */
aFR = aW + aX - aY /* front right */
aRL = aW - aX + aY /* rear left */
aRR = aW - aX - aY /* rear right */

; eight channels (cube)
;
;aUFL = aW + aX + aY + aZ /* upper front left */
;aUFR = aW + aX - aY + aZ /* upper front right */
;aURL = aW - aX + aY + aZ /* upper rear left */
;aURR = aW - aX - aY + aZ /* upper rear right */
;aLFL = aW + aX + aY - aZ /* lower front left */
;aLFR = aW + aX - aY - aZ /* lower front right */
;aLRL = aW - aX + aY - aZ /* lower rear left */
;aLRR = aW - aX - aY - aZ /* lower rear right */

outq aFL, aFR, aRL, aRR

endin
/* spat3d_quad.orc */

/* spat3d_quad.sco */
/* Written by Istvan Varga */
t 0 60
i 1 0 10
e
/* spat3d_quad.sco */

See Also

spat3di, spat3dt

759

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Istvan Varga

2001

New in version 4.12

Updated April 2002 by Istvan Varga

spat3di

spat3di — Positions the input sound in a 3D space with the sound source position set at i-time.

Description

This opcode positions the input sound in a 3D space, with optional simulation of room acoustics, in various
output formats. With spat3di, sound source position is set at i-time.

Syntax

aW, aX, aY, aZ spat3di ain, iX, iY, iZ, idist, ift, imode [, istor]

Initialization

iX -- Sound source X coordinate in meters (positive: right, negative: left)

iY -- Sound source Y coordinate in meters (positive: front, negative: back)

iZ -- Sound source Z coordinate in meters (positive: up, negative: down)

idist -- For modes 0 to 3, idist is the unit circle distance in meters. For mode 4, idist is the distance between
microphones.

The following formulas describe amplitude and delay as a function of sound source distance from
microphone(s):

amplitude = 1 / (0.1 + distance)

delay = distance / 340 (in seconds)

Distance can be calculated as:

distance = sqrt(iXˆ2 + iYˆ2 + iZˆ2)

In Mode 4, distance can be calculated as:

distance from left mic = sqrt((iX + idist/2)ˆ2 + iYˆ2 + iZˆ2)
distance from right mic = sqrt((iX - idist/2)ˆ2 + iYˆ2 + iZˆ2)

760

Chapter 15. Orchestra Opcodes and Operators

With spat3d the distance between the sound source and any microphone should be at least (340 * 18) / sr
meters. Shorter distances will work, but may produce artifacts in some cases. There is no such limitation for
spat3di and spat3dt .

Sudden changes or discontinuities in sound source location can result in pops or clicks. Very fast movement
may also degrade quality.

ift -- Function table storing room parameters (for free field spatialization, set it to zero or negative). Table size
is 64. The values in the table are:

Room Parameter Purpose

0 Early reflection recursion depth (0 is the sound
source, 1 is the first reflection etc.) for spat3d and
spat3di. The number of echoes for four walls (front,
back, right, left) is: N = (2*R + 2) * R. If all six walls are
enabled: N = (((4*R + 6)*R + 8)*R) / 3

1 Late reflection recursion depth (used by spat3dt
only). spat3dt skips early reflections and renders
echoes up to this level. If early reflection depth is
negative, spat3d and spat3di will output zero, while
spat3dt will start rendering from the sound source.

2 imdel for spat3d. Overrides opcode parameter if
non-negative.

3 irlen for spat3dt. Overrides opcode parameter if
non-negative.

4 idist value. Overrides opcode parameter if >= 0.

5 Random seed (0 - 65535) -1 seeds from current time.

6 - 53 wall parameters (w = 6: ceil, w = 14: floor, w = 22:
front, w = 30: back, w = 38: right, w = 46: left)

w + 0 Enable reflections from this wall (0: no, 1: yes)

w + 1 Wall distance from listener (in meters)

w + 2 Randomization of wall distance (0 - 1) (in units of 1 /
(wall distance))

w + 3 Reflection level (-1 - 1)

w + 4 Parametric equalizer frequency in Hz.

w + 5 Parametric equalizer level (1.0: no filtering)

w + 6 Parametric equalizer Q (0.7071: no resonance)

w + 7 Parametric equalizer mode (0: peak EQ, 1: low shelf, 2:
high shelf)

imode -- Output mode

• 0: B format with W output only (mono)

aout = aW

• 1: B format with W and Y output (stereo)

aleft = aW + 0.7071*aY
aright = aW - 0.7071*aY

761

Chapter 15. Orchestra Opcodes and Operators

• 2: B format with W, X, and Y output (2D). This can be converted to UHJ:

aWre, aWim hilbert aW
aXre, aXim hilbert aX
aYre, aYim hilbert aY
aWXr = 0.0928*aXre + 0.4699*aWre
aWXiYr = 0.2550*aXim - 0.1710*aWim + 0.3277*aYre
aleft = aWXr + aWXiYr
aright = aWXr - aWXiYr

• 3: B format with all outputs (3D)

• 4: Simulates a pair of microphones (stereo output)

aW butterlp aW, ifreq ; recommended values for ifreq
aY butterlp aY, ifreq ; are around 1000 Hz
aleft = aW + aX
aright = aY + aZ

Mode 0 is the cheapest to calculate, while mode 4 is the most expensive.

In Mode 4, The optional lowpass filters can change the frequency response depending on direction. For
example, if the sound source is located left to the listener then the high frequencies are attenuated in the right
channel and slightly increased in the left. This effect can be disabled by not using filters. You can also
experiment with other filters (tone etc.) for better effect.

Note that mode 4 is most useful for listening with headphones, and is also more expensive to calculate than
the B-format (0 to 3) modes. The idist parameter in this case sets the distance between left and right
microphone; for headphones, values between 0.2 - 0.25 are recommended, although higher settings up to 0.4
may be used for wide stereo effects.

More information about B format can be found here:
http://www.york.ac.uk/inst/mustech/3d_audio/ambis2.htm

istor (optional, default=0) -- Skip initialization if non-zero (default: 0).

Performance

ain -- Input signal

aW, aX, aY, aZ -- Output signals

mode 0 mode 1 mode 2 mode 3 mode 4

aW W out W out W out W out left chn / low
freq.

aX 0 0 X out X out left chn / high
frq.

aY 0 Y out Y out Y out right chn / low
frq.

aZ 0 0 0 Z out right chn / high
fr.

If you encounter very slow performance (up to 100 times slower), it may be caused by denormals (this is also
true of many other IIR opcodes, including butterlp, pareq, hilbert , and many others). Underflows can be
avoided by:

762

Chapter 15. Orchestra Opcodes and Operators

• mixing low level DC or noise to the input signal, e.g.

atmp rnd31 1/1e24, 0, 0

aW, aX, aY, aZ spa3di ain + atmp, ...

or

aW, aX, aY, aZ spa3di ain + 1/1e24, ...

• reducing irlen in the case of spat3dt (which does not have an input signal). A value of about 0.005 is suitable
for most uses, although it also depends on EQ settings. If the equalizer is not used, “irlen” can be set to 0.

Examples

See the examples for spat3d.

See Also

spat3d, spat3dt

Credits

Author: Istvan Varga

2001

New in version 4.12

Updated April 2002 by Istvan Varga

spat3dt

spat3dt — Can be used to render an impulse response for a 3D space at i-time.

Description

This opcode positions the input sound in a 3D space, with optional simulation of room acoustics, in various
output formats. spat3dt can be used to render the impulse response at i-time, storing output in a function
table, suitable for convolution.

Syntax

spat3dt ioutft, iX, iY, iZ, idist, ift, imode, irlen [, iftnocl]

Initialization

ioutft -- Output ftable number for spat3dt. W, X, Y, and Z outputs are written interleaved to this table. If the
table is too short, output will be truncated.

iX -- Sound source X coordinate in meters (positive: right, negative: left)

iY -- Sound source Y coordinate in meters (positive: front, negative: back)

763

Chapter 15. Orchestra Opcodes and Operators

iZ -- Sound source Z coordinate in meters (positive: up, negative: down)

idist -- For modes 0 to 3, idist is the unit circle distance in meters. For mode 4, idist is the distance between
microphones.

The following formulas describe amplitude and delay as a function of sound source distance from
microphone(s):

amplitude = 1 / (0.1 + distance)

delay = distance / 340 (in seconds)

Distance can be calculated as:

distance = sqrt(iXˆ2 + iYˆ2 + iZˆ2)

In Mode 4, distance can be calculated as:

distance from left mic = sqrt((iX + idist/2)ˆ2 + iYˆ2 + iZˆ2)
distance from right mic = sqrt((iX - idist/2)ˆ2 + iYˆ2 + iZˆ2)

With spat3d the distance between the sound source and any microphone should be at least (340 * 18) / sr
meters. Shorter distances will work, but may produce artifacts in some cases. There is no such limitation for
spat3di and spat3dt .

Sudden changes or discontinuities in sound source location can result in pops or clicks. Very fast movement
may also degrade quality.

ift -- Function table storing room parameters (for free field spatialization, set it to zero or negative). Table size
is 64. The values in the table are:

Room Parameter Purpose

0 Early reflection recursion depth (0 is the sound
source, 1 is the first reflection etc.) for spat3d and
spat3di. The number of echoes for four walls (front,
back, right, left) is: N = (2*R + 2) * R. If all six walls are
enabled: N = (((4*R + 6)*R + 8)*R) / 3

1 Late reflection recursion depth (used by spat3dt
only). spat3dt skips early reflections and renders
echoes up to this level. If early reflection depth is
negative, spat3d and spat3di will output zero, while
spat3dt will start rendering from the sound source.

2 imdel for spat3d. Overrides opcode parameter if
non-negative.

3 irlen for spat3dt. Overrides opcode parameter if
non-negative.

4 idist value. Overrides opcode parameter if >= 0.

5 Random seed (0 - 65535) -1 seeds from current time.

764

Chapter 15. Orchestra Opcodes and Operators

Room Parameter Purpose

6 - 53 wall parameters (w = 6: ceil, w = 14: floor, w = 22:
front, w = 30: back, w = 38: right, w = 46: left)

w + 0 Enable reflections from this wall (0: no, 1: yes)

w + 1 Wall distance from listener (in meters)

w + 2 Randomization of wall distance (0 - 1) (in units of 1 /
(wall distance))

w + 3 Reflection level (-1 - 1)

w + 4 Parametric equalizer frequency in Hz.

w + 5 Parametric equalizer level (1.0: no filtering)

w + 6 Parametric equalizer Q (0.7071: no resonance)

w + 7 Parametric equalizer mode (0: peak EQ, 1: low shelf, 2:
high shelf)

imode -- Output mode

• 0: B format with W output only (mono)

aout = aW

• 1: B format with W and Y output (stereo)

aleft = aW + 0.7071*aY
aright = aW - 0.7071*aY

• 2: B format with W, X, and Y output (2D). This can be converted to UHJ:

aWre, aWim hilbert aW
aXre, aXim hilbert aX
aYre, aYim hilbert aY
aWXr = 0.0928*aXre + 0.4699*aWre
aWXiYr = 0.2550*aXim - 0.1710*aWim + 0.3277*aYre
aleft = aWXr + aWXiYr
aright = aWXr - aWXiYr

• 3: B format with all outputs (3D)

• 4: Simulates a pair of microphones (stereo output)

aW butterlp aW, ifreq ; recommended values for ifreq
aY butterlp aY, ifreq ; are around 1000 Hz
aleft = aW + aX
aright = aY + aZ

Mode 0 is the cheapest to calculate, while mode 4 is the most expensive.

In Mode 4, The optional lowpass filters can change the frequency response depending on direction. For
example, if the sound source is located left to the listener then the high frequencies are attenuated in the right
channel and slightly increased in the left. This effect can be disabled by not using filters. You can also
experiment with other filters (tone etc.) for better effect.

Note that mode 4 is most useful for listening with headphones, and is also more expensive to calculate than
the B-format (0 to 3) modes. The idist parameter in this case sets the distance between left and right

765

Chapter 15. Orchestra Opcodes and Operators

microphone; for headphones, values between 0.2 - 0.25 are recommended, although higher settings up to 0.4
may be used for wide stereo effects.

More information about B format can be found here:
http://www.york.ac.uk/inst/mustech/3d_audio/ambis2.htm

irlen -- Impulse response length of echoes (in seconds). Depending on filter parameters, values around
0.005-0.01 are suitable for most uses (higher values result in more accurate output, but slower rendering)

iftnocl (optional, default=0) -- Do not clear output ftable (mix to existing data) if set to 1, clear table before
writing if set to 0 (default: 0).

Performance

If you encounter very slow performance (up to 100 times slower), it may be caused by denormals (this is also
true of many other IIR opcodes, including butterlp, pareq, hilbert , and many others). Underflows can be
avoided by:

• mixing low level DC or noise to the input signal, e.g.

atmp rnd31 1/1e24, 0, 0

aW, aX, aY, aZ spa3di ain + atmp, ...

or

aW, aX, aY, aZ spa3di ain + 1/1e24, ...

• reducing irlen in the case of spat3dt (which does not have an input signal). A value of about 0.005 is suitable
for most uses, although it also depends on EQ settings. If the equalizer is not used, “irlen” can be set to 0.

Examples

See the examples for spat3d.

See Also

spat3d, spat3di

Credits

Author: Istvan Varga

2001

New in version 4.12

Updated April 2002 by Istvan Varga

spdist

spdist — Calculates distance values from xy coordinates.

766

Chapter 15. Orchestra Opcodes and Operators

Description

spdist uses the same xy data as space, also either from a text file using Gen28 or from x and y arguments given
to the unit directly. The purpose of this unit is to make available the values for distance that are calculated
from the xy coordinates.

In the case of space, the xy values are used to determine a distance which is used to attenuate the signal and
prepare it for use in spsend. But it is also useful to have these values for distance available to scale the
frequency of the signal before it is sent to the space unit.

Syntax

k1 spdist ifn, ktime, kx, ky

Initialization

ifn -- number of the stored function created using Gen28. This function generator reads a text file which
contains sets of three values representing the xy coordinates and a time-tag for when the signal should be
placed at that location. The file should look like:

0 -1 1
1 1 1
2 4 4
2.1 -4 -4
3 10 -10
5 -40 0

If that file were named "move" then the Gen28 call in the score would like:

f1 0 0 28 "move"

Gen28 takes 0 as the size and automatically allocates memory. It creates values to 10 milliseconds of
resolution. So in this case there will be 500 values created by interpolating X1 to X2 to X3 and so on, and Y1 to
Y2 to Y3 and so on, over the appropriate number of values that are stored in the function table. In the above
example, the sound will begin in the left front, over 1 second it will move to the right front, over another
second it move further into the distance but still in the left front, then in just 1/10th of a second it moves to
the left rear, a bit distant. Finally over the last .9 seconds the sound will move to the right rear, moderately
distant, and it comes to rest between the two left channels (due west!), quite distant. Since the values in the
table are accessed through the use of a time-pointer in the space unit, the actual timing can be made to follow
the file’s timing exactly or it can be made to go faster or slower through the same trajectory. If you have access
to the GUI that allows one to draw and edit the files, there is no need to create the text files manually. But as
long as the file is ASCII and in the format shown above, it doesn’t matter how it is made!

IMPORTANT: If ifn is 0 then space will take its values for the xy coordinates from kx and ky.

Performance

The configuration of the xy coordinates in space places the signal in the following way:

• a1 is -1, 1

• a2 is 1, 1

767

Chapter 15. Orchestra Opcodes and Operators

• a3 is -1, -1

• a4 is 1, -1

This assumes a loudspeaker set up as a1 is left front, a2 is right front, a3 is left back, a4 is right back. Values
greater than 1 will result in sounds being attenuated, as if in the distance. space considers the speakers to be
at a distance of 1; smaller values of xy can be used, but space will not amplify the signal in this case. It will,
however balance the signal so that it can sound as if it were within the 4 speaker space. x=0, y=1, will place the
signal equally balanced between left and right front channels, x=y=0 will place the signal equally in all 4
channels, and so on. Although there must be 4 output signals from space, it can be used in a 2 channel
orchestra. If the xy’s are kept so that Y>=1, it should work well to do panning and fixed localization in a stereo
field.

ktime -- index into the table containing the xy coordinates. If used like:

ktime line 0, 5, 5
a1, a2, a3, a4 space asig, 1, ktime, ...

with the file "move" described above, the speed of the signal’s movement will be exactly as described in that
file. However:

ktime line 0, 10, 5

the signal will move at half the speed specified. Or in the case of:

ktime line 5, 15, 0

the signal will move in the reverse direction as specified and 3 times slower! Finally:

ktime line 2, 10, 3

will cause the signal to move only from the place specified in line 3 of the text file to the place specified in line
5 of the text file, and it will take 10 seconds to do it.

kx, ky -- when ifn is 0, space and spdist will use these values as the XY coordinates to localize the signal.

Examples

instr 1
asig ;some audio signal
ktime line 0, p3, p10
a1, a2, a3, a4 space asig,1, ktime, .1
ar1, ar2, ar3, ar4 spsend

ga1 = ga1+ar1
ga2 = ga2+ar2
ga3 = ga3+ar3
ga4 = ga4+ar4

768

Chapter 15. Orchestra Opcodes and Operators

outq a1, a2, a3, a4
endin

instr 99 ; reverb instrument

a1 reverb2 ga1, 2.5, .5
a2 reverb2 ga2, 2.5, .5
a3 reverb2 ga3, 2.5, .5
a4 reverb2 ga4, 2.5, .5

outq a1, a2, a3, a4
ga1=0
ga2=0
ga3=0
ga4=0

In the above example, the signal, asig , is moved according to the data in Function #1 indexed by ktime. space
sends the appropriate amount of the signal internally to spsend. The outputs of the spsend are added to
global accumulators in a common Csound style and the global signals are used as inputs to the reverb units
in a separate instrument.

space can useful for quad and stereo panning as well as fixed placed of sounds anywhere between two
loudspeakers. Below is an example of the fixed placement of sounds in a stereo field using xy values from the
score instead of a function table.

instr 1
...
a1, a2, a3, a4 space asig, 0, 0, .1, p4, p5
ar1, ar2, ar3, ar4 spsend

ga1=ga1+ar1
ga2=ga2+ar2

outs a1, a2
endin

instr 99 ; reverb....
....

endin

A few notes: p4 and p5 are the X and Y values

;place the sound in the left speaker and near
i1 0 1 -1 1

;place the sound in the right speaker and far
i1 1 1 45 45

;place the sound equally between left and right and in the middle ground distance
i1 2 1 0 12

e

The next example shows a simple intuitive use of the distance values returned by spdist to simulate Doppler
shift.

ktime line 0, p3, 10

769

Chapter 15. Orchestra Opcodes and Operators

kdist spdist 1, ktime
kfreq = (ifreq * 340) / (340 + kdist)
asig oscili iamp, kfreq, 1

a1, a2, a3, a4 space asig, 1, ktime, .1
ar1, ar2, ar3, ar4 spsend

The same function and time values are used for both spdist and space. This insures that the distance values
used internally in the space unit will be the same as those returned by spdist to give the impression of a
Doppler shift!

See Also

space, spsend

Credits

Author: Richard Karpen

Seattle, Wash

1998 (New in Csound version 3.48)

specaddm

specaddm — Perform a weighted add of two input spectra.

Description

Perform a weighted add of two input spectra.

Syntax

wsig specaddm wsig1, wsig2 [, imul2]

Initialization

imul2 (optional, default=0) -- if non-zero, scale the wsig2 magnitudes before adding. The default value is 0.

Performance

wsig1 -- the first input spectra.

wsig2 -- the second input spectra.

Do a weighted add of two input spectra. For each channel of the two input spectra, the two magnitudes are
combined and written to the output according to:

magout = mag1in + mag2in * imul2

770

Chapter 15. Orchestra Opcodes and Operators

The operation is performed whenever the input wsig1 is sensed to be new. This unit will (at Initialization)
verify the consistency of the two spectra (equal size, equal period, equal mag types).

Examples

wsig2 specdiff wsig1 ; sense onsets
wsig3 specfilt wsig2, 2 ; absorb slowly

specdisp wsig2, .1 ; & display both spectra
specdisp wsig3, .1

See Also

specdiff , specfilt , spechist , specscal

specdiff

specdiff — Finds the positive difference values between consecutive spectral frames.

Description

Finds the positive difference values between consecutive spectral frames.

Syntax

wsig specdiff wsigin

Performance

wsig -- the output spectrum.

wsigin -- the input spectra.

Finds the positive difference values between consecutive spectral frames. At each new frame of wsigin, each
magnitude value is compared with its predecessor, and the positive changes written to the output spectrum.
This unit is useful as an energy onset detector.

Examples

wsig2 specdiff wsig1 ; sense onsets
wsig3 specfilt wsig2, 2 ; absorb slowly

specdisp wsig2, .1 ; & display both spectra
specdisp wsig3, .1

771

Chapter 15. Orchestra Opcodes and Operators

See Also

specaddm, specfilt , spechist , specscal

specdisp

specdisp — Displays the magnitude values of the spectrum.

Description

Displays the magnitude values of the spectrum.

Syntax

specdisp wsig, iprd [, iwtflg]

Initialization

iprd -- the period, in seconds, of each new display.

iwtflg (optional, default=0) -- wait flag. If non-zero, hold each display until released by the user. The default
value is 0 (no wait).

Performance

wsig -- the input spectrum.

Displays the magnitude values of spectrum wsig every iprd seconds (rounded to some integral number of
wsig ’s originating iprd).

Examples

ksum specsum wsig, 1 ; sum the spec bins, and ksmooth
if ksum < 2000 kgoto zero ; if sufficient amplitude

koct specptrk wsig ; pitch-track the signal
kgoto contin

zero:
koct = 0 ; else output zero

contin:

772

Chapter 15. Orchestra Opcodes and Operators

See Also

specsum

specfilt

specfilt — Filters each channel of an input spectrum.

Description

Filters each channel of an input spectrum.

Syntax

wsig specfilt wsigin, ifhtim

Initialization

ifhtim -- half-time constant.

Performance

wsigin -- the input spectrum.

Filters each channel of an input spectrum. At each new frame of wsigin, each magnitude value is injected into
a 1st-order lowpass recursive filter, whose half-time constant has been initially set by sampling the ftable
ifhtim across the (logarithmic) frequency space of the input spectrum. This unit effectively applies a
persistence factor to the data occurring in each spectral channel, and is useful for simulating the energy
integration that occurs during auditory perception. It may also be used as a time-attenuated running
histogram of the spectral distribution.

Examples

wsig2 specdiff wsig1 ; sense onsets
wsig3 specfilt wsig2, 2 ; absorb slowly

specdisp wsig2, .1 ; & display both spectra
specdisp wsig3, .1

See Also

specaddm, specdiff , spechist , specscal

773

Chapter 15. Orchestra Opcodes and Operators

spechist

spechist — Accumulates the values of successive spectral frames.

Description

Accumulates the values of successive spectral frames.

Syntax

wsig spechist wsigin

Performance

wsigin -- the input spectra.

Accumulates the values of successive spectral frames. At each new frame of wsigin, the
accumulations-to-date in each magnitude track are written to the output spectrum. This unit thus provides a
running histogram of spectral distribution.

Examples

wsig2 specdiff wsig1 ; sense onsets
wsig3 specfilt wsig2, 2 ; absorb slowly

specdisp wsig2, .1 ; & display both spectra
specdisp wsig3, .1

See Also

specaddm, specdiff , specfilt , specscal

specptrk

spectrk — Estimates the pitch of the most prominent complex tone in the spectrum.

Description

Estimate the pitch of the most prominent complex tone in the spectrum.

Syntax

koct, kamp specptrk wsig, kvar, ilo, ihi, istr, idbthresh, inptls, irolloff [, iodd] [, iconfs] [, interp] [, ifprd] [,
iwtflg]

774

Chapter 15. Orchestra Opcodes and Operators

Initialization

ilo, ihi, istr -- pitch range conditioners (low, high, and starting) expressed in decimal octave form.

idbthresh -- energy threshold (in decibels) for pitch tracking to occur. Once begun, tracking will be
continuous until the energy falls below one half the threshold (6 dB down), whence the koct and kamp
outputs will be zero until the full threshold is again surpassed. idbthresh is a guiding value. At initialization it
is first converted to the idbout mode of the source spectrum (and the 6 dB down point becomes .5, .25, or
1/root 2 for modes 0, 2 and 3). The values are also further scaled to allow for the weighted partial summation
used during correlation.The actual thresholding is done using the internal weighted and summed kamp
value that is visible as the second output parameter.

inptls, irolloff -- number of harmonic partials used as a matching template in the spectrally-based pitch
detection, and an amplitude rolloff for the set expressed as some fraction per octave (linear, so don’t roll off to
negative). Since the partials and rolloff fraction can affect the pitch following, some experimentation will be
useful: try 4 or 5 partials with .6 rolloff as an initial setting; raise to 10 or 12 partials with rolloff .75 for complex
timbres like the bassoon (weak fundamental). Computation time is dependent on the number of partials
sought. The maximum number is 16.

iodd (optional) -- if non-zero, employ only odd partials in the above set (e.g. inptls of 4 would employ partials
1,3,5,7). This improves the tracking of some instruments like the clarinet The default value is 0 (employ all
partials).

iconfs (optional) -- number of confirmations required for the pitch tracker to jump an octave, pro-rated for
fractions of an octave (i.e. the value 12 implies a semitone change needs 1 confirmation (two hits) at the
spectrum generating iprd). This parameter limits spurious pitch analyses such as octave errors. A value of 0
means no confirmations required; the default value is 10.

interp (optional) -- if non-zero, interpolate each output signal (koct , kamp) between incoming wsig frames.
The default value is 0 (repeat the signal values between frames).

ifprd (optional) -- if non-zero, display the internally computed spectrum of candidate fundamentals. The
default value is 0 (no display).

iwtftg (optional) -- wait flag. If non-zero, hold each display until released by the user. The default value is 0
(no wait).

Performance

At note initialization this unit creates a template of inptls harmonically related partials (odd partials, if iodd
non-zero) with amplitude rolloff to the fraction irolloff per octave. At each new frame of wsig , the spectrum
is cross-correlated with this template to provide an internal spectrum of candidate fundamentals (optionally
displayed). A likely pitch/amp pair (koct , kamp, in decimal octave and summed idbout form) is then
estimated. koct varies from the previous koct by no more than plus or minus kvar decimal octave units. It is
also guaranteed to lie within the hard limit range ilo -- ihi (decimal octave low and high pitch). kvar can be
dynamic, e.g. onset amp dependent. Pitch resolution uses the originating spectrum ifrqs bins/octave, with
further parabolic interpolation between adjacent bins. Settings of root magnitude, ifrqs = 24, iq = 15 should
capture all the inflections of interest. Between frames, the output is either repeated or interpolated at the
k-rate. (See spectrum.)

Examples

a1,a2 ins ; read a stereo clarinet in-
put

krms rms a1, 20 ; find a monaural rms value
kvar = 0.6 + krms/8000 ; & use to gate the pitch variance
wsig spectrum a1, .01, 7, 24, 15, 0, 3 ; get a 7-oct spectrum, 24 bibs/oct

specdisp wsig, .2 ; display this and now estimate
koct,ka spectrk wsig, kvar, 7.0, 10, 9, 20, 4, .7, 1, 5, 1, .2 ; the pch and amp
aosc oscil ka*ka*10, cpsoct(koct),2 ; & generate \ new tone with these

775

Chapter 15. Orchestra Opcodes and Operators

koct = (koct <7.0?7.0:koct) ; replace non pitch with low C
display koct-7.0, .25, 20 ; & display the pitch track
display ka, .25, 20 ; plus the summed root mag
outs a1, aosc ; output 1 original and 1 new track

specscal

specscal — Scales an input spectral datablock with spectral envelopes.

Description

Scales an input spectral datablock with spectral envelopes.

Syntax

wsig specscal wsigin, ifscale, ifthresh

Initialization

ifscale -- scale function table. A function table containing values by which a value’s magnitude is rescaled.

ifthresh -- threshold function table. If ifthresh is non-zero, each magnitude is reduced by its corresponding
table-value (to not less than zero)

Performance

wsig -- the output spectrum

wsigin -- the input spectra

Scales an input spectral datablock with spectral envelopes. Function tables ifthresh and ifscale are initially
sampled across the (logarithmic) frequency space of the input spectrum; then each time a new input
spectrum is sensed the sampled values are used to scale each of its magnitude channels as follows: if ifthresh
is non-zero, each magnitude is reduced by its corresponding table-value (to not less than zero); then each
magnitude is rescaled by the corresponding ifscale value, and the resulting spectrum written to wsig .

Examples

wsig2 specdiff wsig1 ; sense onsets
wsig3 specfilt wsig2, 2 ; absorb slowly

specdisp wsig2, .1 ; & display both spectra
specdisp wsig3, .1

776

Chapter 15. Orchestra Opcodes and Operators

See Also

specaddm, specdiff , specfilt , spechist

specsum

specsum — Sums the magnitudes across all channels of the spectrum.

Description

Sums the magnitudes across all channels of the spectrum.

Syntax

ksum specsum wsig [, interp]

Initialization

interp (optional, default-0) -- if non-zero, interpolate the output signal (koct or ksum). The default value is 0
(repeat the signal value between changes).

Performance

ksum -- the output signal.

wsig -- the input spectrum.

Sums the magnitudes across all channels of the spectrum. At each new frame of wsig , the magnitudes are
summed and released as a scalar ksum signal. Between frames, the output is either repeated or interpolated
at the k-rate. This unit produces a k-signal summation of the magnitudes present in the spectral data, and is
thereby a running measure of its moment-to-moment overall strength.

Examples

ksum specsum wsig, 1 ; sum the spec bins, and ksmooth
if ksum < 2000 kgoto zero ; if sufficient amplitude

koct specptrk wsig ; pitch-track the signal
kgoto contin

zero:
koct = 0 ; else output zero

contin:

777

Chapter 15. Orchestra Opcodes and Operators

See Also

specdisp

spectrum

spectrum — Generate a constant-Q, exponentially-spaced DFT.

Description

Generate a constant-Q, exponentially-spaced DFT across all octaves of a multiply-downsampled control or
audio input signal.

Syntax

wsig spectrum xsig, iprd, iocts, ifrqa [, iq] [, ihann] [, idbout] [, idsprd] [, idsinrs]

Initialization

ihann (optional) -- apply a Hamming or Hanning window to the input. The default is 0 (Hamming window)

idbout (optional) -- coded conversion of the DFT output:

• 0 = magnitude

• 1 = dB

• 2 = mag squared

• 3 = root magnitude

The default value is 0 (magnitude).

idisprd (optional) -- if non-zero, display the composite downsampling buffer every idisprd seconds. The
default value is 0 (no display).

idsines (optional) -- if non-zero, display the Hamming or Hanning windowed sinusoids used in DFT filtering.
The default value is 0 (no sinusoid display).

Performance

This unit first puts signal asig or ksig through iocts of successive octave decimation and downsampling, and
preserves a buffer of down-sampled values in each octave (optionally displayed as a composite buffer every
idisprd seconds). Then at every iprd seconds, the preserved samples are passed through a filter bank (ifrqs
parallel filters per octave, exponentially spaced, with frequency/bandwidth Q of iq), and the output
magnitudes optionally converted (idbout) to produce a band-limited spectrum that can be read by other
units.

The stages in this process are computationally intensive, and computation time varies directly with iocts,
ifrqs, iq, and inversely with iprd. Settings of ifrqs = 12, iq = 10, idbout = 3, and iprd = .02 will normally be
adequate, but experimentation is encouraged. ifrqs currently has a maximum of 120 divisions per octave. For
audio input, the frequency bins are tuned to coincide with A440.

This unit produces a self-defining spectral datablock wsig , whose characteristics used (iprd, iocts, ifrqs,
idbout) are passed via the data block itself to all derivative wsigs. There can be any number of spectrum units
in an instrument or orchestra, but all wsig names must be unique.

778

Chapter 15. Orchestra Opcodes and Operators

Examples

asig in ; get external audio
wsig spectrum asig,.02,6,12,33,0,1,1 ; downsample in 6 octs & calc a 72 pt dft (Q 33, dB out) ev-
ery 20 msecs

spsend

spsend — Generates output signals based on a previously defined space opcode.

Description

spsend depends upon the existence of a previously defined space. The output signals from spsend are derived
from the values given for xy and reverb in the space and are ready to be sent to local or global reverb units (see
example below).

Syntax

a1, a2, a3, a4 spsend

Performance

The configuration of the xy coordinates in space places the signal in the following way:

• a1 is -1, 1

• a2 is 1, 1

• a3 is -1, -1

• a4 is 1, -1

This assumes a loudspeaker set up as a1 is left front, a2 is right front, a3 is left back, a4 is right back. Values
greater than 1 will result in sounds being attenuated, as if in the distance. space considers the speakers to be
at a distance of 1; smaller values of xy can be used, but space will not amplify the signal in this case. It will,
however balance the signal so that it can sound as if it were within the 4 speaker space. x=0, y=1, will place the
signal equally balanced between left and right front channels, x=y=0 will place the signal equally in all 4
channels, and so on. Although there must be 4 output signals from space, it can be used in a 2 channel
orchestra. If the xy’s are kept so that Y>=1, it should work well to do panning and fixed localization in a stereo
field.

Examples

instr 1
asig ;some audio signal
ktime line 0, p3, p10
a1, a2, a3, a4 space asig,1, ktime, .1

779

Chapter 15. Orchestra Opcodes and Operators

ar1, ar2, ar3, ar4 spsend

ga1 = ga1+ar1
ga2 = ga2+ar2
ga3 = ga3+ar3
ga4 = ga4+ar4

outq a1, a2, a3, a4
endin

instr 99 ; reverb instrument

a1 reverb2 ga1, 2.5, .5
a2 reverb2 ga2, 2.5, .5
a3 reverb2 ga3, 2.5, .5
a4 reverb2 ga4, 2.5, .5

outq a1, a2, a3, a4
ga1=0
ga2=0
ga3=0
ga4=0

In the above example, the signal, asig , is moved according to the data in Function #1 indexed by ktime. space
sends the appropriate amount of the signal internally to spsend. The outputs of the spsend are added to
global accumulators in a common Csound style and the global signals are used as inputs to the reverb units
in a separate instrument.

space can useful for quad and stereo panning as well as fixed placed of sounds anywhere between two
loudspeakers. Below is an example of the fixed placement of sounds in a stereo field using xy values from the
score instead of a function table.

instr 1
...
a1, a2, a3, a4 space asig, 0, 0, .1, p4, p5
ar1, ar2, ar3, ar4 spsend

ga1=ga1+ar1
ga2=ga2+ar2

outs a1, a2
endin

instr 99 ; reverb....
....

endin

A few notes: p4 and p5 are the X and Y values

;place the sound in the left speaker and near
i1 0 1 -1 1

;place the sound in the right speaker and far
i1 1 1 45 45

;place the sound equally between left and right and in the middle ground distance
i1 2 1 0 12

e

780

Chapter 15. Orchestra Opcodes and Operators

The next example shows a simple intuitive use of the distance values returned by spdist to simulate Doppler
shift.

ktime line 0, p3, 10
kdist spdist 1, ktime
kfreq = (ifreq * 340) / (340 + kdist)
asig oscili iamp, kfreq, 1

a1, a2, a3, a4 space asig, 1, ktime, .1
ar1, ar2, ar3, ar4 spsend

The same function and time values are used for both spdist and space. This insures that the distance values
used internally in the space unit will be the same as those returned by spdist to give the impression of a
Doppler shift!

See Also

space, spdist

Credits

Author: Richard Karpen

Seattle, Wash

1998 (New in Csound version 3.48)

sqrt

sqrt — Returns a square root value.

Description

Returns the square root of x (x non-negative).

The argument value is restricted for log , log10, and sqrt .

Syntax

sqrt(x) (no rate restriction)

where the argument within the parentheses may be an expression. Value converters perform arithmetic
translation from units of one kind to units of another. The result can then be a term in a further expression.

781

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the sqrt opcode. It uses the files sqrt.orc and sqrt.sco.

Example 15-1. Example of the sqrt opcode.

/* sqrt.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 = sqrt(64)
print i1

endin
/* sqrt.orc */

/* sqrt.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* sqrt.sco */

Its output should include lines like this:

instr 1: i1 = 8.000

See Also

abs, exp, frac, int , log , log10, i

sr

sr — Sets the audio sampling rate.

Description

These statements are global value assignments, made at the beginning of an orchestra, before any instrument
block is defined. Their function is to set certain reserved symbol variables that are required for performance.
Once set, these reserved symbols can be used in expressions anywhere in the orchestra.

Syntax

sr = iarg

782

Chapter 15. Orchestra Opcodes and Operators

Initialization

sr = (optional) -- set sampling rate to iarg samples per second per channel. The default value is 10000.

In addition, any global variable can be initialized by an init-time assignment anywhere before the first instr
statement . All of the above assignments are run as instrument 0 (i-pass only) at the start of real performance.

Beginning with Csound version 3.46, sr may be omitted. Csound will attempt to calculate the omitted value
from the specified values, but it should evaluate to an integer.

Examples

sr = 10000
kr = 500
ksmps = 20
gi1 = sr/2.
ga init 0
itranspose = octpch(.0l)

See Also

kr , ksmps, nchnls

stix

stix — Semi-physical model of a stick sound.

Description

stix is a semi-physical model of a stick sound. It is one of the PhISEM percussion opcodes. PhISEM
(Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions of
multiple independent sound producing objects.

Syntax

ar stix iamp, idettack [, inum] [, idamp] [, imaxshake]

Initialization

iamp -- Amplitude of output. Note: As these instruments are stochastic, this is only a approximation.

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 30.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.998 + (idamp * 0.002)

783

Chapter 15. Orchestra Opcodes and Operators

The default damping_amount is 0.998 which means that the default value of idamp is 0. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 1.0.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional) -- amount of energy to add back into the system. The value should be in range 0 to 1.

Examples

Here is an example of the stix opcode. It uses the files stix.orc and stix.sco.

Example 15-1. Example of the stix opcode.

/* stix.orc */
;orchestra ---------------

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 01 ;an example of stix
a1 line 20, p3, 20 ;preset amplitude increase
a2 stix p4, 0.01 ;stix needs a little amp help at these settings
a3 product a1, a2 ;increase amplitude

out a3
endin

/* stix.orc */

/* stix.sco */
;score -------------------

i1 0 1 26000
e

/* stix.sco */

See Also

cabasa, crunch, sandpaper , sekere

Credits

Author: Perry Cook, part of the PhOLIES (Physically-Oriented Library of Imitated Environmental Sounds)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

784

Chapter 15. Orchestra Opcodes and Operators

streson

streson — A string resonator with variable fundamental frequency.

Description

An audio signal is modified by a string resonator with variable fundamental frequency.

Syntax

ar streson asig, kfr, ifdbgain

Initialization

ifdbgain -- feedback gain, between 0 and 1, of the internal delay line. A value close to 1 creates a slower decay
and a more pronounced resonance. Small values may leave the input signal unaffected. Depending on the
filter frequency, typical values are > .9.

Performance

asig -- the input audio signal.

kfr -- the fundamental frequency of the string.

streson passes the input asig through a network composed of comb, low-pass and all-pass filters, similar to
the one used in some versions of the Karplus-Strong algorithm, creating a string resonator effect. The
fundamental frequency of the “string” is controlled by the k-rate variable kfr .This opcode can be used to
simulate sympathetic resonances to an input signal.

streson is an adaptation of the StringFlt object of the SndObj Sound Object Library developed by the author.

Examples

Here is an example of the streson opcode. It uses the files streson.orc and streson.sco.

Example 15-1. Example of the streson opcode.

/* streson.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a normal sine wave.
asig oscils 8000, 440, 1

; Vary the fundamental frequency of the string
; resonator linearly from 220 to 880 Hertz.
kfr line 220, p3, 880
ifdbgain = 0.95

; Run our sine wave through the string resonator.
astres streson asig, kfr, ifdbgain

785

Chapter 15. Orchestra Opcodes and Operators

; The resonance can get quite loud.
; So we’ll clip the signal at 30,000.
a1 clip astres, 1, 30000
out a1

endin
/* streson.orc */

/* streson.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for five seconds.
i 1 0 5
e
/* streson.sco */

Credits

Author: Victor Lazzarini

Music Department

National University of Ireland, Maynooth

Maynooth, Co. Kildare

1998 (New in Csound version 3.494)

strset

strset — Allows a string to be linked with a numeric value.

Description

Allows a string to be linked with a numeric value.

Syntax

strset iarg, istring

Initialization

iarg -- the numeric value.

istring -- the alphanumeric string (in double-quotes).

strset (optional) allows a string, such as a filename, to be linked with a numeric value. Its use is optional.

786

Chapter 15. Orchestra Opcodes and Operators

Examples

The following statement, used in the orchestra header, will allow the numeric value 10 to substituted
anywhere the soundfile asound.wav is called for.

strset 10, "asound.wav"

See Also

pset

subinstr

subinstr — Creates and runs a numbered instrument instance.

Description

Creates an instance of another instrument and is used as if it were an opcode.

Syntax

a1, [...] [, a8] subinstr instrnum [, p4] [, p5] [...]

Initialization

instrnum -- Number of the instrument to be called.

For more information about specifying input and output interfaces, see Calling an Instrument within an
Instrument .

Performance

a1, ..., a8 -- The audio output from the called instrument. This is generated using the signal output opcodes.

p4, p5, ... -- Additional input values the are mapped to the called instrument p-fields, starting with p4.

The called instrument’s p2 and p3 values will be identical to the host instrument’s values. While the host
instrument can control its own duration, any such attempts inside the called instrument will most likely have
no effect.

See Also

Calling an Instrument within an Instrument , event , schedule

787

Chapter 15. Orchestra Opcodes and Operators

Credits

New in version 4.21

sum

sum — Sums any number of a-rate signals.

Description

Sums any number of a-rate signals.

Syntax

ar sum asig1 [, asig2] [, asig3] [...]

Performance

asig1, asig2, ... -- a-rate signals to be summed (mixed or added).

Credits

Author: Gabriel Maldonado

Italy

April, 1999

New in Csound version 3.54

svfilter

svfilter — A resonant second order filter, with simultaneous lowpass, highpass and bandpass outputs.

Description

Implementation of a resonant second order filter, with simultaneous lowpass, highpass and bandpass
outputs.

Syntax

alow, ahigh, aband svfilter asig, kcf, kq [, iscl]

788

Chapter 15. Orchestra Opcodes and Operators

Initialization

iscl -- coded scaling factor, similar to that in reson. A non-zero value signifies a peak response factor of 1, i.e.
all frequencies other than kcf are attenuated in accordance with the (normalized) response curve. A zero
value signifies no scaling of the signal, leaving that to some later adjustment (see balance). The default value
is 0.

Performance

svfilter is a second order state-variable filter, with k-rate controls for cutoff frequency and Q. As Q is
increased, a resonant peak forms around the cutoff frequency. svfilter has simultaneous lowpass, highpass,
and bandpass filter outputs; by mixing the outputs together, a variety of frequency responses can be
generated. The state-variable filter, or "multimode" filter was a common feature in early analog synthesizers,
due to the wide variety of sounds available from the interaction between cutoff, resonance, and output mix
ratios. svfilter is well suited to the emulation of "analog" sounds, as well as other applications where resonant
filters are called for.

asig -- Input signal to be filtered.

kcf -- Cutoff or resonant frequency of the filter, measured in Hz.

kq -- Q of the filter, which is defined (for bandpass filters) as bandwidth/cutoff. kq should be in a range
between 1 and 500. As kq is increased, the resonance of the filter increases, which corresponds to an increase
in the magnitude and "sharpness" of the resonant peak. When using svfilter without any scaling of the signal
(where iscl is either absent or 0), the volume of the resonant peak increases as Q increases. For high values of
Q, it is recommended that iscl be set to a non-zero value, or that an external scaling function such as balance
is used.

svfilter is based upon an algorithm in Hal Chamberlin’s Musical Applications of Microprocessors (Hayden
Books, 1985).

Examples

Here is an example of the svfilter opcode. It uses the files svfilter.orc and svfilter.sco.

Example 15-1. Example of the svfilter opcode.

/* svfilter.orc */
; Orchestra file for resonant filter sweep of a sawtooth-like waveform.

; The seperate outputs of the filter are scaled by values from the score,
; and are mixed together.
sr = 44100
kr = 2205
ksmps = 20
nchnls = 1

instr 1

idur = p3
ifreq = p4
iamp = p5
ilowamp = p6 ; determines amount of lowpass output in signal
ihighamp = p7 ; determines amount of highpass output in signal
ibandamp = p8 ; determines amount of bandpass output in signal
iq = p9 ; value of q

iharms = (sr*.4) / ifreq

asig gbuzz 1, ifreq, iharms, 1, .9, 1 ; Sawtooth-like waveform
kfreq linseg 1, idur * 0.5, 4000, idur * 0.5, 1 ; Envelope to control filter cutoff

789

Chapter 15. Orchestra Opcodes and Operators

alow, ahigh, aband svfilter asig, kfreq, iq

aout1 = alow * ilowamp
aout2 = ahigh * ihighamp
aout3 = aband * ibandamp
asum = aout1 + aout2 + aout3
kenv linseg 0, .1, iamp, idur -.2, iamp, .1, 0 ; Simple amplitude envelope

out asum * kenv

endin
/* svfilter.orc */

/* svfilter.sco */
f1 0 8192 9 1 1 .25

i1 0 5 100 1000 1 0 0 5 ; lowpass sweep
i1 5 5 200 1000 1 0 0 30 ; lowpass sweep, octave higher, higher q
i1 10 5 100 1000 0 1 0 5 ; highpass sweep
i1 15 5 200 1000 0 1 0 30 ; highpass sweep, octave higher, higher q
i1 20 5 100 1000 0 0 1 5 ; bandpass sweep
i1 25 5 200 1000 0 0 1 30 ; bandpass sweep, octave higher, higher q
i1 30 5 200 2000 .4 .6 0 ; notch sweep - notch formed by combining highpass and lowpass outputs
e

/* svfilter.sco */

Credits

Author: Sean Costello

Seattle, Washington

1999

New in Csound version 3.55

table

table — Accesses table values by direct indexing.

Description

Accesses table values by direct indexing.

Syntax

ar table andx, ifn [, ixmode] [, ixoff] [, iwrap]

ir table indx, ifn [, ixmode] [, ixoff] [, iwrap]

kr table kndx, ifn [, ixmode] [, ixoff] [, iwrap]

790

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifn -- function table number.

ixmode (optional) -- index data mode. The default value is 0.

• 0 = raw index

• 1 = normalized (0 to 1)

ixoff (optional) -- amount by which index is to be offset. For a table with origin at center, use tablesize/2 (raw)
or .5 (normalized). The default value is 0.

iwrap (optional) -- wraparound index flag. The default value is 0.

• 0 = nowrap (index < 0 treated as index=0; index tablesize sticks at index=size)

• 1 = wraparound.

Performance

table invokes table lookup on behalf of init, control or audio indices. These indices can be raw entry numbers
(0,l,2...size - 1) or scaled values (0 to 1-e). Indices are first modified by the offset value then checked for range
before table lookup (see iwrap). If index is likely to be full scale, or if interpolation is being used, the table
should have an extended guard point. table indexed by a periodic phasor (see phasor) will simulate an
oscillator.

Examples

Here is an example of the table opcode. It uses the files table.orc and table.sco.

Example 15-1. Example of the table opcode.

/* table.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Vary our index linearly from 0 to 1.
kndx line 0, p3, 1

; Read Table #1 with our index.
ifn = 1
ixmode = 1
kfreq table kndx, ifn, ixmode

; Generate a sine waveform, use our table values
; to vary its frequency.
a1 oscil 20000, kfreq, 2
out a1

endin
/* table.orc */

791

Chapter 15. Orchestra Opcodes and Operators

/* table.sco */
/* Written by Kevin Conder */
; Table #1, a line from 200 to 2,000.
f 1 0 1025 -7 200 1024 2000
; Table #2, a sine wave.
f 2 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* table.sco */

See Also

tablei, table3, oscil1, oscil1i, osciln

table3

table3 — Accesses table values by direct indexing with cubic interpolation.

Description

Accesses table values by direct indexing with cubic interpolation.

Syntax

ar table3 andx, ifn [, ixmode] [, ixoff] [, iwrap]

ir table3 indx, ifn [, ixmode] [, ixoff] [, iwrap]

kr table3 kndx, ifn [, ixmode] [, ixoff] [, iwrap]

Initialization

ifn -- function table number.

ixmode (optional) -- index data mode. The default value is 0.

• 0 = raw index

• 1 = normalized (0 to 1)

ixoff (optional) -- amount by which index is to be offset. For a table with origin at center, use tablesize/2 (raw)
or .5 (normalized). The default value is 0.

iwrap (optional) -- wraparound index flag. The default value is 0.

• 0 = nowrap (index < 0 treated as index=0; index tablesize sticks at index=size)

• 1 = wraparound.

792

Chapter 15. Orchestra Opcodes and Operators

Performance

table3 is experimental, and is identical to tablei, except that it uses cubic interpolation. (New in Csound
version 3.50.)

See Also

table, tablei, oscil1, oscil1i, osciln

tablecopy

tablecopy — Simple, fast table copy opcode.

Description

Simple, fast table copy opcode.

Syntax

tablecopy kdft, ksft

Performance

kdft -- Destination function table.

ksft -- Number of source function table.

tablecopy -- Simple, fast table copy opcode. Takes the table length from the destination table, and reads from
the start of the source table. For speed reasons, does not check the source length - just copies regardless - in
“wrap” mode. This may read through the source table several times. A source table with length 1 will cause all
values in the destination table to be written to its value.

tablecopy cannot read or write the guardpoint. To read it use table, with ndx = the table length. Likewise use
table write to write it.

To write the guardpoint to the value in location 0, use tablegpw.

This is primarily to change function tables quickly in a real-time situation.

See Also

tablegpw, tablemix, tableicopy, tableigpw, tableimix

Credits

Author: Robin Whittle

Australia

May 1997

793

Chapter 15. Orchestra Opcodes and Operators

tablegpw

tablegpw — Writes a table’s guard point.

Description

Writes a table’s guard point.

Syntax

tablegpw kfn

Performance

kfn -- Table number to be interrogated

tablegpw -- For writing the table’s guard point, with the value which is in location 0. Does nothing if table
does not exist.

Likely to be useful after manipulating a table with tablemix or tablecopy.

See Also

tablecopy, tablemix, tableicopy, tableigpw, tableimix

Credits

Author: Robin Whittle

Australia

May 1997

tablei

tablei — Accesses table values by direct indexing with linear interpolation.

Description

Accesses table values by direct indexing with linear interpolation.

Syntax

ar tablei andx, ifn [, ixmode] [, ixoff] [, iwrap]

ir tablei indx, ifn [, ixmode] [, ixoff] [, iwrap]

kr tablei kndx, ifn [, ixmode] [, ixoff] [, iwrap]

794

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifn -- function table number. tablei requires the extended guard point.

ixmode (optional) -- index data mode. The default value is 0.

• 0 = raw index

• 1 = normalized (0 to 1)

ixoff (optional) -- amount by which index is to be offset. For a table with origin at center, use tablesize/2 (raw)
or .5 (normalized). The default value is 0.

iwrap (optional) -- wraparound index flag. The default value is 0.

• 0 = nowrap (index < 0 treated as index=0; index tablesize sticks at index=size)

• 1 = wraparound.

Performance

tablei is a interpolating unit in which the fractional part of index is used to interpolate between adjacent table
entries. The smoothness gained by interpolation is at some small cost in execution time (see also oscili, etc.),
but the interpolating and non-interpolating units are otherwise interchangeable. Note that when tablei uses
a periodic index whose modulo n is less than the power of 2 table length, the interpolation process requires
that there be an (n+ 1)th table value that is a repeat of the 1st (see f Statement in score).

See Also

table, table3, oscil1, oscil1i, osciln

tableicopy

tableicopy — Simple, fast table copy opcode.

Description

Simple, fast table copy opcode.

Syntax

tableicopy idft, isft

Initialization

idft -- Destination function table.

isft -- Number of source function table.

795

Chapter 15. Orchestra Opcodes and Operators

Performance

tableicopy -- Simple, fast table copy opcodes. Takes the table length from the destination table, and reads
from the start of the source table. For speed reasons, does not check the source length - just copies regardless
- in "wrap" mode. This may read through the source table several times. A source table with length 1 will
cause all values in the destination table to be written to its value.

tableicopy cannot read or write the guardpoint. To read it use table, with ndx = the table length. Likewise use
table write to write it.

To write the guardpoint to the value in location 0, use tablegpw.

This is primarily to change function tables quickly in a real-time situation.

See Also

tablecopy, tablegpw, tablemix, tableigpw, tableimix

Credits

Author: Robin Whittle

Australia

May 1997

tableigpw

tableigpw — Writes a table’s guard point.

Description

Writes a table’s guard point.

Syntax

tableigpw ifn

Initialization

ifn -- Table number to be interrogated

Performance

tableigpw -- For writing the table’s guard point, with the value which is in location 0. Does nothing if table
does not exist.

Likely to be useful after manipulating a table with tablemix or tablecopy.

796

Chapter 15. Orchestra Opcodes and Operators

See Also

tablecopy, tablegpw, tablemix, tableicopy, tableimix

Credits

Author: Robin Whittle

Australia

May 1997

tableikt

tableikt — Provides k-rate control over table numbers.

Description

k-rate control over table numbers.

The standard Csound opcode tablei, when producing a k- or a-rate result, can only use an init-time variable
to select the table number. tableikt accepts k-rate control as well as i-time. In all other respects they are
similar to the original opcodes.

Syntax

ar tableikt xndx, kfn [, ixmode] [, ixoff] [, iwrap]

kr tableikt kndx, kfn [, ixmode] [, ixoff] [, iwrap]

Initialization

ixmode -- if 0, xndx and ixoff ranges match the length of the table. if non-zero xndx and ixoff have a 0 to 1
range. Default is 0

ixoff -- if 0, total index is controlled directly by xndx, ie. the indexing starts from the start of the table. If
non-zero, start indexing from somewhere else in the table. Value must be positive and less than the table
length (ixmode = 0) or less than 1 (ixmode not equal to 0). Default is 0.

iwrap -- if iwrap = 0, Limit mode: when total index is below 0, then final index is 0.Total index above table
length results in a final index of the table length - high out of range total indexes stick at the upper limit of the
table. If iwrap not equal to 0, Wrap mode: total index is wrapped modulo the table length so that all total
indexes map into the table. For instance, in a table of length 8, xndx = 5 and ixoff = 6 gives a total index of 11,
which wraps to a final index of 3. Default is 0.

Performance

kndx -- Index into table, either a positive number range

xndx -- matching the table length (ixmode = 0) or a 0 to 1 range (ixmode not equal to 0)

kfn -- Table number. Must be >= 1. Floats are rounded down to an integer. If a table number does not point to
a valid table, or the table has not yet been loaded (GEN01) then an error will result and the instrument will be
de-activated.

797

Chapter 15. Orchestra Opcodes and Operators

Caution with k-rate table numbers
At k-rate, if a table number of < 1 is given, or the table number points to a non-existent table, or to one which
has a length of 0 (it is to be loaded from a file later) then an error will result and the instrument will be
deactivated. kfn must be initialized at the appropriate rate using init . Attempting to load an i-rate value into kfn
will result in an error.

See Also

tablekt

Credits

Robin Whittle

Australia

1997

tableimix

tableimix — Mixes two tables.

Description

Mixes two tables.

Syntax

tableimix idft, idoff, ilen, is1ft, is1off, is1g, is2ft, is2off, is2g

Initialization

idft -- Destination function table.

idoff -- Offset to start writing from. Can be negative.

ilen -- Number of write operations to perform. Negative means work backwards.

is1ft , is2ft -- Source function tables. These can be the same as the destination table, if care is exercised about
direction of copying data.

is1off , is2off -- Offsets to start reading from in source tables.

is1g , is2g -- Gains to apply when reading from the source tables. The results are added and the sum is written
to the destination table.

Performance

tableimix -- This opcode mixes from two tables, with separate gains into the destination table. Writing is done
for klen locations, usually stepping forward through the table - if klen is positive. If it is negative, then the

798

Chapter 15. Orchestra Opcodes and Operators

writing and reading order is backwards - towards lower indexes in the tables. This bi-directional option makes
it easy to shift the contents of a table sideways by reading from it and writing back to it with a different offset.

If klen is 0, no writing occurs. Note that the internal integer value of klen is derived from the ANSI C floor()
function - which returns the next most negative integer. Hence a fractional negative klen value of -2.3 would
create an internal length of 3, and cause the copying to start from the offset locations and proceed for two
locations to the left.

The total index for table reading and writing is calculated from the starting offset for each table, plus the
index value, which starts at 0 and then increments (or decrements) by 1 as mixing proceeds.

These total indexes can potentially be very large, since there is no restriction on the offset or the klen.
However each total index for each table is ANDed with a length mask (such as 0000 0111 for a table of length
8) to form a final index which is actually used for reading or writing. So no reading or writing can occur
outside the tables. This is the same as “wrap” mode in table read and write. These opcodes do not read or
write the guardpoint. If a table has been rewritten with one of these, then if it has a guardpoint which is
supposed to contain the same value as the location 0, then call tablegpw afterwards.

The indexes and offsets are all in table steps - they are not normalized to 0 - 1. So for a table of length 256, klen
should be set to 256 if all the table was to be read or written.

The tables do not need to be the same length - wrapping occurs individually for each table.

See Also

tablecopy, tablegpw, tablemix, tableicopy, tableigpw

Credits

Author: Robin Whittle

Australia

May 1997

tableiw

tableiw — Change the contents of existing function tables.

Description

This opcode operates on existing function tables, changing their contents. tableiw is used when all inputs are
init time variables or constants and you only want to run it at the initialization of the instrument. The valid
combinations of variable types are shown by the first letter of the variable names.

Syntax

tableiw isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]

Initialization

isig -- Input value to write to the table.

indx -- Index into table, either a positive number range matching the table length (ixmode = 0) or a 0 to 1
range (ixmode not equal to 0)

799

Chapter 15. Orchestra Opcodes and Operators

ifn -- Table number. Must be = 1. Floats are rounded down to an integer. If a table number does not point to a
valid table, or the table has not yet been loaded (GEN01) then an error will result and the instrument will be
de-activated.

ixmode (optional, default=0) -- index mode.

• 0 = indx and ixoff ranges match the length of the table.

• not equal to 0 = indx and ixoff have a 0 to 1 range.

ixoff (optional, default=0) -- index offset.

• 0 = Total index is controlled directly by indx, i.e. the indexing starts from the start of the table.

• Not equal to 0 = Start indexing from somewhere else in the table. Value must be positive and less than the
table length (ixmode = 0) or less than 1 (ixmode not equal to 0).

iwgmode (optional, default=0) -- Wrap and guard point mode.

• 0 = Limit mode.

• 1 = Wrap mode.

• 2 = Guardpoint mode.

Performance

Limit mode (0)

Limit the total index (indx + ixoff) to between 0 and the guard point. For a table of length 5, this means that
locations 0 to 3 and location 4 (the guard point) can be written. A negative total index writes to location 0.

Wrap mode (1)

Wrap total index value into locations 0 to E, where E is either one less than the table length or the factor of 2
number which is one less than the table length. For example, wrap into a 0 to 3 range - so that total index 6
writes to location 2.

Guardpoint mode (2)

The guardpoint is written at the same time as location 0 is written - with the same value.

This facilitates writing to tables which are intended to be read with interpolation for producing smooth cyclic
waveforms. In addition, before it is used, the total index is incremented by half the range between one
location and the next, before being rounded down to the integer address of a table location.

Normally (iwgmode = 0 or 1) for a table of length 5 - which has locations 0 to 3 as the main table and location
4 as the guard point, a total index in the range of 0 to 0.999 will write to location 0. ("0.999" means just less
than 1.0.) 1.0 to 1.999 will write to location 1 etc. A similar pattern holds for all total indexes 0 to 4.999
(igwmode = 0) or to 3.999 (igwmode = 1). igwmode = 0 enables locations 0 to 4 to be written - with the
guardpoint (4) being written with a potentially different value from location 0.

With a table of length 5 and the iwgmode = 2, then when the total index is in the range 0 to 0.499, it will write
to locations 0 and 4. Range 0.5 to 1.499 will write to location 1 etc. 3.5 to 4.0 will also write to locations 0 and 4.

800

Chapter 15. Orchestra Opcodes and Operators

This way, the writing operation most closely approximates the results of interpolated reading. Guard point
mode should only be used with tables that have a guardpoint.

Guardpoint mode is accomplished by adding 0.5 to the total index, rounding to the next lowest integer,
wrapping it modulo the factor of two which is one less than the table length, writing the table (locations 0 to 3
in our example) and then writing to the guard point if index = 0.

See Also

tablew, tablewkt

Credits

Author: Robin Whittle

Australia

May 1997

Updated August 2002, thanks go to Abram Hindle for pointing out the correct syntax.

tablekt

tablekt — Provides k-rate control over table numbers.

Description

k-rate control over table numbers.

The standard Csound opcode table when producing a k- or a-rate result, can only use an init-time variable to
select the table number. tablekt accepts k-rate control as well as i-time. In all other respects they are similar
to the original opcodes.

Syntax

ar tablekt xndx, kfn [, ixmode] [, ixoff] [, iwrap]

kr tablekt kndx, kfn [, ixmode] [, ixoff] [, iwrap]

Initialization

ixmode -- if 0, xndx and ixoff ranges match the length of the table. if non-zero xndx and ixoff have a 0 to 1
range. Default is 0

ixoff -- if 0, total index is controlled directly by xndx, ie. the indexing starts from the start of the table. If
non-zero, start indexing from somewhere else in the table. Value must be positive and less than the table
length (ixmode = 0) or less than 1 (ixmode not equal to 0). Default is 0.

iwrap -- if iwrap = 0, Limit mode: when total index is below 0, then final index is 0.Total index above table
length results in a final index of the table length - high out of range total indexes stick at the upper limit of the
table. If iwrap not equal to 0, Wrap mode: total index is wrapped modulo the table length so that all total
indexes map into the table. For instance, in a table of length 8, xndx = 5 and ixoff = 6 gives a total index of 11,
which wraps to a final index of 3. Default is 0.

801

Chapter 15. Orchestra Opcodes and Operators

Performance

kndx -- Index into table, either a positive number range

xndx -- matching the table length (ixmode = 0) or a 0 to 1 range (ixmode not equal to 0)

kfn -- Table number. Must be >= 1. Floats are rounded down to an integer. If a table number does not point to
a valid table, or the table has not yet been loaded (GEN01) then an error will result and the instrument will be
de-activated.

Caution with k-rate table numbers
At k-rate, if a table number of < 1 is given, or the table number points to a non-existent table, or to one which
has a length of 0 (it is to be loaded from a file later) then an error will result and the instrument will be
deactivated. kfn must be initialized at the appropriate rate using init . Attempting to load an i-rate value into kfn
will result in an error.

See Also

tableikt

Credits

Robin Whittle

Australia

1997

tablemix

tablemix — Mixes two tables.

Description

Mixes two tables.

Syntax

tablemix kdft, kdoff, klen, ks1ft, ks1off, ks1g, ks2ft, ks2off, ks2g

Performance

kdft -- Destination function table.

kdoff -- Offset to start writing from. Can be negative.

klen -- Number of write operations to perform. Negative means work backwards.

ks1ft , ks2ft -- Source function tables. These can be the same as the destination table, if care is exercised about
direction of copying data.

ks1off , ks2off -- Offsets to start reading from in source tables.

802

Chapter 15. Orchestra Opcodes and Operators

ks1g , ks2g -- Gains to apply when reading from the source tables. The results are added and the sum is
written to the destination table.

tablemix -- This opcode mixes from two tables, with separate gains into the destination table. Writing is done
for klen locations, usually stepping forward through the table - if klen is positive. If it is negative, then the
writing and reading order is backwards - towards lower indexes in the tables. This bi-directional option makes
it easy to shift the contents of a table sideways by reading from it and writing back to it with a different offset.

If klen is 0, no writing occurs. Note that the internal integer value of klen is derived from the ANSI C floor()
function - which returns the next most negative integer. Hence a fractional negative klen value of -2.3 would
create an internal length of 3, and cause the copying to start from the offset locations and proceed for two
locations to the left.

The total index for table reading and writing is calculated from the starting offset for each table, plus the
index value, which starts at 0 and then increments (or decrements) by 1 as mixing proceeds.

These total indexes can potentially be very large, since there is no restriction on the offset or the klen.
However each total index for each table is ANDed with a length mask (such as 0000 0111 for a table of length
8) to form a final index which is actually used for reading or writing. So no reading or writing can occur
outside the tables. This is the same as “wrap” mode in table read and write. These opcodes do not read or
write the guardpoint. If a table has been rewritten with one of these, then if it has a guardpoint which is
supposed to contain the same value as the location 0, then call tablegpw afterwards.

The indexes and offsets are all in table steps - they are not normalized to 0 - 1. So for a table of length 256, klen
should be set to 256 if all the table was to be read or written.

The tables do not need to be the same length - wrapping occurs individually for each table.

See Also

tablecopy, tablegpw, tableicopy, tableigpw, tableimix

Credits

Author: Robin Whittle

Australia

May 1997

tableng

tableng — Interrogates a function table for length.

Description

Interrogates a function table for length.

Syntax

ir tableng ifn

kr tableng kfn

803

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifn -- Table number to be interrogated

Performance

kfn -- Table number to be interrogated

tableng returns the length of the specified table. This will be a power of two number in most circumstances. It
will not show whether a table has a guardpoint or not. It seems this information is not available in the table’s
data structure. If the specified table is not found, then 0 will be returned.

Likely to be useful for setting up code for table manipulation operations, such as tablemix and tablecopy.

Credits

Author: Robin Whittle

Australia

May 1997

tablera

tablera — Reads tables in sequential locations.

Description

These opcodes read and write tables in sequential locations to and from an a-rate variable. Some thought is
required before using them. They have at least two major, and quite different, applications which are
discussed below.

Syntax

ar tablera kfn, kstart, koff

Performance

ar -- a-rate destination for reading ksmps values from a table.

kfn -- i- or k-rate number of the table to read or write.

kstart -- Where in table to read or write.

koff -- i- or k-rate offset into table. Range unlimited - see explanation at end of this section.

In one application, these are intended to be used in pairs, or with several tablera opcodes before a tablewa --
all sharing the same kstart variable.

These read from and write to sequential locations in a table at audio rates, with ksmps floats being written
and read each cycle.

tablera starts reading from location kstart . tablewa starts writing to location kstart , and then writes to kstart
with the number of the location one more than the one it last wrote. (Note that for tablewa, kstart is both an
input and output variable.) If the writing index reaches the end of the table, then no further writing occurs
and zero is written to kstart .

804

Chapter 15. Orchestra Opcodes and Operators

For instance, if the table’s length was 16 (locations 0 to 15), and ksmps was 5. Then the following steps would
occur with repetitive runs of the tablewa opcode, assuming that kstart started at 0.

Run Number Initial kstart Final kstart Locations Written

1 0 5 0 1 2 3 4

2 5 10 5 6 7 8 9

3 10 15 10 11 12 13 14

4 15 0 15

This is to facilitate processing table data using standard a-rate orchestra code between the tablera and
tablewa opcodes. They allow all Csound k-rate operators to be used (with caution) on a-rate variables -
something that would only be possible otherwise by ksmps = 1, downsamp and upsamp.

Several cautions

• The k-rate code in the processing loop is really running at a-rate, so time dependent functions like
port and oscil work faster than normal - their code is expecting to be running at k-rate.

• This system will produce undesirable results unless the ksmps fits within the table length. For
instance a table of length 16 will accommodate 1 to 16 samples, so this example will work with ksmps
= 1 to 16.

Both these opcodes generate an error and deactivate the instrument if a table with length< ksmps is selected.
Likewise an error occurs if kstart is below 0 or greater than the highest entry in the table - if kstart = table
length.

• kstart is intended to contain integer values between 0 and (table length - 1). Fractional values above this
should not affect operation but do not achieve anything useful.

• These opcodes are not interpolating, and the kstart and koff parameters always have a range of 0 to (table
length - 1) - not 0 to 1 as is available in other table read/write opcodes. koff can be outside this range but it
is wrapped around by the final AND operation.

• These opcodes are permanently in wrap mode. When koff is 0, no wrapping needs to occur, since the
kstart++ index will always be within the table’s normal range. koff not equal to 0 can lead to wrapping.

• The offset does not affect the number of read/write cycles performed, or the value written to kstart by
tablewa.

• These opcodes cannot read or write the guardpoint. Use tablegpw to write the guardpoint after
manipulations have been done with tablewa.

Examples

kstart = 0

lab1:
atemp tablera ktabsource, kstart, 0 ; Read 5 values from table into an

; a-rate variable.

atemp = log(atemp) ; Process the values using a-rate
; code.

805

Chapter 15. Orchestra Opcodes and Operators

kstart tablewa ktabdest, atemp, 0 ; Write it back to the table

if ktemp 0 goto lab1 ; Loop until all table locations
; have been processed.

The above example shows a processing loop, which runs every k-cycle, reading each location in the table
ktabsource, and writing the log of those values into the same locations of table ktabdest .

This enables whole tables, parts of tables (with offsets and different control loops) and data from several
tables at once to be manipulated with a-rate code and written back to another (or to the same) table. This is a
bit of a fudge, but it is faster than doing it with k-rate table read and write code.

Another application is:

kzero = 0
kloop = 0

kzero tablewa 23, asignal, 0 ; ksmps a-rate samples written
; into locations 0 to (ksmps -1) of table 23.

lab1: ktemp table kloop, 23 ; Start a loop which runs ksmps times,
; in which each cycle processes one of

[Some code to manipulate] ; table 23’s values with k-rate orchestra
[the value of ktemp.] ; code.

tablew ktemp, kloop, 23 ; Write the processed value to the table.

kloop = kloop + 1 ; Increment the kloop, which is both the
; pointer into the table and the loop

if kloop < ksmps goto lab1 ; counter. Keep looping until all values
; in the table have been processed.

asignal tablera 23, 0, 0 ; Copy the table contents back
; to an a-rate variable.

koff -- This is an offset which is added to the sum of kstart and the internal index variable which steps
through the table. The result is then ANDed with the lengthmask (000 0111 for a table of length 8 - or 9 with
guardpoint) and that final index is used to read or write to the table. koff can be any value. It is converted into
a long using the ANSI floor() function so that -4.3 becomes -5. This is what we would want when using offsets
which range above and below zero.

Ideally this would be an optional variable, defaulting to 0, however with the existing Csound orchestra read
code, such default parameters must be init time only. We want k-rate here, so we cannot have a default.

tableseg

tableseg — Creates a new function table by making linear segments between values in stored function
tables.

806

Chapter 15. Orchestra Opcodes and Operators

Description

tableseg is like linseg but interpolate between values in a stored function tables. The result is a new function
table passed internally to any following vpvoc which occurs before a subsequent tableseg (much like
lpread/lpreson pairs work). The uses of these are described below under vpvoc.

Note: this opcode can also be written as ktableseg .

Syntax

tableseg ifn1, idur1, ifn2 [, idur2] [, ifn3] [...]

Initialization

ifn1, ifn2, ifn3, etc. -- function table numbers. ifn1, ifn2, and so on, must be the same size.

idur1, idur2, etc. -- durations during which interpolation from one table to the next will take place.

See Also

pvbufread, pvcross, pvinterp, pvread, tablexseg

Credits

Author: Richard Karpen

Seattle, Wash

1997

tablew

tablew — Change the contents of existing function tables.

Description

This opcode operates on existing function tables, changing their contents. tablew is for writing at k- or at
a-rates, with the table number being specified at init time. The valid combinations of variable types are
shown by the first letter of the variable names.

Syntax

tablew asig, andx, ifn [, ixmode] [, ixoff] [, iwgmode]

tablew isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]

tablew ksig, kndx, ifn [, ixmode] [, ixoff] [, iwgmode]

807

Chapter 15. Orchestra Opcodes and Operators

Initialization

asig , isig, ksig -- The value to be written into the table.

andx, indx, kndx -- Index into table, either a positive number range matching the table length (ixmode = 0) or
a 0 to 1 range (ixmode != 0)

ifn -- Table number. Must be = 1. Floats are rounded down to an integer. If a table number does not point to a
valid table, or the table has not yet been loaded (GEN01) then an error will result and the instrument will be
de-activated.

ixmode (optional, default=0) -- index mode.

• 0 = xndx and ixoff ranges match the length of the table.

• !=0 = xndx and ixoff have a 0 to 1 range.

ixoff (optional, default=0) -- index offset.

• 0 = Total index is controlled directly by xndx, i.e. the indexing starts from the start of the table.

• !=0 = Start indexing from somewhere else in the table. Value must be positive and less than the table length
(ixmode = 0) or less than 1 (ixmode != 0).

iwgmode (optional, default=0) -- Wrap and guardpoint mode.

• 0 = Limit mode.

• 1 = Wrap mode.

• 2 = Guardpoint mode.

Performance

Limit mode (0)

Limit the total index (ndx + ixoff) to between 0 and the guard point. For a table of length 5, this means that
locations 0 to 3 and location 4 (the guard point) can be written. A negative total index writes to location 0.

Wrap mode (1)

Wrap total index value into locations 0 to E, where E is either one less than the table length or the factor of 2
number which is one less than the table length. For example, wrap into a 0 to 3 range - so that total index 6
writes to location 2.

Guardpoint mode (2)

The guardpoint is written at the same time as location 0 is written - with the same value.

This facilitates writing to tables which are intended to be read with interpolation for producing smooth cyclic
waveforms. In addition, before it is used, the total index is incremented by half the range between one
location and the next, before being rounded down to the integer address of a table location.

Normally (igwmode = 0 or 1) for a table of length 5 - which has locations 0 to 3 as the main table and location
4 as the guard point, a total index in the range of 0 to 0.999 will write to location 0. ("0.999" means just less
than 1.0.) 1.0 to 1.999 will write to location 1 etc. A similar pattern holds for all total indexes 0 to 4.999

808

Chapter 15. Orchestra Opcodes and Operators

(igwmode = 0) or to 3.999 (igwmode = 1). igwmode = 0 enables locations 0 to 4 to be written - with the
guardpoint (4) being written with a potentially different value from location 0.

With a table of length 5 and the iwgmode = 2, then when the total index is in the range 0 to 0.499, it will write
to locations 0 and 4. Range 0.5 to 1.499 will write to location 1 etc. 3.5 to 4.0 will also write to locations 0 and 4.

This way, the writing operation most closely approximates the results of interpolated reading. Guard point
mode should only be used with tables that have a guardpoint.

Guardpoint mode is accomplished by adding 0.5 to the total index, rounding to the next lowest integer,
wrapping it modulo the factor of two which is one less than the table length, writing the table (locations 0 to 3
in our example) and then writing to the guard point if index = 0.

tablew has no output value. The last three parameters are optional and have default values of 0.

Caution with k-rate table numbers

At k-rate or a-rate, if a table number of < 1 is given, or the table number points to a non-existent table, or to
one which has a length of 0 (it is to be loaded from a file later) then an error will result and the instrument will
be deactivated. kfn and afn must be initialized at the appropriate rate using init . Attempting to load an i-rate
value into kfn or afn will result in an error.

See Also

tableiw, tablewkt

Credits

Author: Robin Whittle

Australia

May 1997

tablewa

tablewa — Writes tables in sequential locations.

Description

These opcodes read and write tables in sequential locations to and from an a-rate variable. Some thought is
required before using them. They have at least two major, and quite different, applications which are
discussed below.

Syntax

kstart tablewa kfn, asig, koff

809

Chapter 15. Orchestra Opcodes and Operators

Performance

kstart -- Where in table to read or write.

kfn -- i- or k-rate number of the table to read or write.

asig -- a-rate signal to read from when writing to the table.

koff -- i- or k-rate offset into table. Range unlimited - see explanation at end of this section.

In one application, these are intended to be used in pairs, or with several tablera opcodes before a tablewa --
all sharing the same kstart variable.

These read from and write to sequential locations in a table at audio rates, with ksmps floats being written
and read each cycle.

tablera starts reading from location kstart . tablewa starts writing to location kstart , and then writes to kstart
with the number of the location one more than the one it last wrote. (Note that for tablewa, kstart is both an
input and output variable.) If the writing index reaches the end of the table, then no further writing occurs
and zero is written to kstart .

For instance, if the table’s length was 16 (locations 0 to 15), and ksmps was 5. Then the following steps would
occur with repetitive runs of the tablewa opcode, assuming that kstart started at 0.

Run Number Initial kstart Final kstart Locations Written

1 0 5 0 1 2 3 4

2 5 10 5 6 7 8 9

3 10 15 10 11 12 13 14

4 15 0 15

This is to facilitate processing table data using standard a-rate orchestra code between the tablera and
tablewa opcodes. They allow all Csound k-rate operators to be used (with caution) on a-rate variables -
something that would only be possible otherwise by ksmps = 1, downsamp and upsamp.

Several cautions

• The k-rate code in the processing loop is really running at a-rate, so time dependent functions like
port and oscil work faster than normal - their code is expecting to be running at k-rate.

• This system will produce undesirable results unless the ksmps fits within the table length. For
instance a table of length 16 will accommodate 1 to 16 samples, so this example will work with ksmps
= 1 to 16.

Both these opcodes generate an error and deactivate the instrument if a table with length< ksmps is selected.
Likewise an error occurs if kstart is below 0 or greater than the highest entry in the table - if kstart = table
length.

• kstart is intended to contain integer values between 0 and (table length - 1). Fractional values above this
should not affect operation but do not achieve anything useful.

• These opcodes are not interpolating, and the kstart and koff parameters always have a range of 0 to (table
length - 1) - not 0 to 1 as is available in other table read/write opcodes. koff can be outside this range but it
is wrapped around by the final AND operation.

• These opcodes are permanently in wrap mode. When koff is 0, no wrapping needs to occur, since the
kstart++ index will always be within the table’s normal range. koff not equal to 0 can lead to wrapping.

• The offset does not affect the number of read/write cycles performed, or the value written to kstart by
tablewa.

810

Chapter 15. Orchestra Opcodes and Operators

• These opcodes cannot read or write the guardpoint. Use tablegpw to write the guardpoint after
manipulations have been done with tablewa.

Examples

kstart = 0

lab1:
atemp tablera ktabsource, kstart, 0 ; Read 5 values from table into an

; a-rate variable.

atemp = log(atemp) ; Process the values using a-rate
; code.

kstart tablewa ktabdest, atemp, 0 ; Write it back to the table

if ktemp 0 goto lab1 ; Loop until all table locations
; have been processed.

The above example shows a processing loop, which runs every k-cycle, reading each location in the table
ktabsource, and writing the log of those values into the same locations of table ktabdest .

This enables whole tables, parts of tables (with offsets and different control loops) and data from several
tables at once to be manipulated with a-rate code and written back to another (or to the same) table. This is a
bit of a fudge, but it is faster than doing it with k-rate table read and write code.

Another application is:

kzero = 0
kloop = 0

kzero tablewa 23, asignal, 0 ; ksmps a-rate samples written
; into locations 0 to (ksmps -1) of table 23.

lab1: ktemp table kloop, 23 ; Start a loop which runs ksmps times,
; in which each cycle processes one of

[Some code to manipulate] ; table 23’s values with k-rate orchestra
[the value of ktemp.] ; code.

tablew ktemp, kloop, 23 ; Write the processed value to the table.

kloop = kloop + 1 ; Increment the kloop, which is both the
; pointer into the table and the loop

if kloop < ksmps goto lab1 ; counter. Keep looping until all values
; in the table have been processed.

asignal tablera 23, 0, 0 ; Copy the table contents back
; to an a-rate variable.

koff -- This is an offset which is added to the sum of kstart and the internal index variable which steps
through the table. The result is then ANDed with the lengthmask (000 0111 for a table of length 8 - or 9 with
guardpoint) and that final index is used to read or write to the table. koff can be any value. It is converted into

811

Chapter 15. Orchestra Opcodes and Operators

a long using the ANSI floor() function so that -4.3 becomes -5. This is what we would want when using offsets
which range above and below zero.

Ideally this would be an optional variable, defaulting to 0, however with the existing Csound orchestra read
code, such default parameters must be init time only. We want k-rate here, so we cannot have a default.

tablewkt

tablewkt — Change the contents of existing function tables.

Description

This opcode operates on existing function tables, changing their contents. tablewkt uses a k-rate variable for
selecting the table number. The valid combinations of variable types are shown by the first letter of the
variable names.

Syntax

tablewkt asig, andx, kfn [, ixmode] [, ixoff] [, iwgmode]

tablewkt ksig, kndx, kfn [, ixmode] [, ixoff] [, iwgmode]

Initialization

asig , ksig -- The value to be written into the table.

andx, kndx -- Index into table, either a positive number range matching the table length (ixmode = 0) or a 0 to
1 range (ixmode != 0)

kfn -- Table number. Must be = 1. Floats are rounded down to an integer. If a table number does not point to a
valid table, or the table has not yet been loaded (GEN01) then an error will result and the instrument will be
de-activated.

ixmode -- index mode. Default is zero.

• 0 = xndx and ixoff ranges match the length of the table.

• Not equal to 0 = xndx and ixoff have a 0 to 1 range.

ixoff -- index offset. Default is 0.

• 0 = Total index is controlled directly by xndx, i.e. the indexing starts from the start of the table.

• Not equal to 0 = Start indexing from somewhere else in the table. Value must be positive and less than the
table length (ixmode = 0) or less than 1 (ixmode != 0).

iwgmode -- table writing mode. Default is 0.

• 0 = Limit mode.

• 1 = Wrap mode.

• 2 = Guardpoint mode.

812

Chapter 15. Orchestra Opcodes and Operators

Performance

Limit mode (0)

Limit the total index (ndx + ixoff) to between 0 and the guard point. For a table of length 5, this means that
locations 0 to 3 and location 4 (the guard point) can be written. A negative total index writes to location 0.

Wrap mode (1)

Wrap total index value into locations 0 to E, where E is one less than either the table length or the factor of 2
number which is one less than the table length. For example, wrap into a 0 to 3 range - so that total index 6
writes to location 2.

Guardpoint mode (2)

The guardpoint is written at the same time as location 0 is written - with the same value.

This facilitates writing to tables which are intended to be read with interpolation for producing smooth cyclic
waveforms. In addition, before it is used, the total index is incremented by half the range between one
location and the next, before being rounded down to the integer address of a table location.

Normally (igwmode = 0 or 1) for a table of length 5 - which has locations 0 to 3 as the main table and location
4 as the guard point, a total index in the range of 0 to 0.999 will write to location 0. ("0.999" means just less
than 1.0.) 1.0 to 1.999 will write to location 1 etc. A similar pattern holds for all total indexes 0 to 4.999
(igwmode = 0) or to 3.999 (igwmode = 1). igwmode = 0 enables locations 0 to 4 to be written - with the
guardpoint (4) being written with a potentially different value from location 0.

With a table of length 5 and the iwgmode = 2, then when the total index is in the range 0 to 0.499, it will write
to locations 0 and 4. Range 0.5 to 1.499 will write to location 1 etc. 3.5 to 4.0 will also write to locations 0 and 4.

This way, the writing operation most closely approximates the results of interpolated reading. Guard point
mode should only be used with tables that have a guardpoint.

Guardpoint mode is accomplished by adding 0.5 to the total index, rounding to the next lowest integer,
wrapping it modulo the factor of two which is one less than the table length, writing the table (locations 0 to 3
in our example) and then writing to the guard point if index = 0.

Caution with k-rate table numbers

At k-rate or a-rate, if a table number of < 1 is given, or the table number points to a non-existent table, or to
one which has a length of 0 (it is to be loaded from a file later) then an error will result and the instrument will
be deactivated. kfn and afn must be initialized at the appropriate rate using init . Attempting to load an i-rate
value into kfn or afn will result in an error.

See Also

tableiw, tablew

Credits

Author: Robin Whittle

Australia

May 1997

813

Chapter 15. Orchestra Opcodes and Operators

tablexkt

tablexkt — Reads function tables with linear, cubic, or sinc interpolation.

Description

Reads function tables with linear, cubic, or sinc interpolation.

Syntax

ar tablexkt xndx, kfn, kwarp, iwsize [, ixmode] [, ixoff] [, iwrap]

Initialization

iwsize -- This parameter controls the type of interpolation to be used:

• 2: Use linear interpolation. This is the lowest quality, but also the fastest mode.

• 4: Cubic interpolation. Slightly better quality than iwsize = 2, at the expense of being somewhat slower.

• 8 and above (up to 1024): sinc interpolation with window size set to iwsize (should be an integer multiply of
4). Better quality than linear or cubic interpolation, but very slow. When transposing up, a kwarp value
above 1 can be used for anti-aliasing (this is even slower).

ixmode1 (optional) -- index data mode. The default value is 0.

• 0: raw index

• any non-zero value: normalized (0 to 1)

Notes: if tablexkt is used to play back samples with looping (e.g. table index is generated by lphasor), there must be at
least iwsize / 2 extra samples after the loop end point for interpolation, otherwise audible clicking may occur (also, at
least iwsize / 2 samples should be before the loop start point).

ixoff (optional) -- amount by which index is to be offset. For a table with origin at center, use tablesize / 2
(raw) or 0.5 (normalized). The default value is 0.

iwrap (optional) -- wraparound index flag. The default value is 0.

• 0: Nowrap (index< 0 treated as index = 0; index>= tablesize (or 1.0 in normalized mode) sticks at the guard
point).

• any non-zero value: Index is wrapped to the allowed range (not including the guard point in this case).

Note: iwrap also applies to extra samples for interpolation.

814

Chapter 15. Orchestra Opcodes and Operators

Performance

ar -- audio output

xndx -- table index

kfn -- function table number

kwarp -- if greater than 1, use sin (x / kwarp) / x function for sinc interpolation, instead of the default sin (x) /
x. This is useful to avoid aliasing when transposing up (kwarp should be set to the transpose factor in this
case, e.g. 2.0 for one octave), however it makes rendering up to twice as slow. Also, iwsize should be at least
kwarp * 8. This feature is experimental, and may be optimized both in terms of speed and quality in new
versions.

Note: kwarp has no effect if it is less than, or equal to 1, or linear or cubic interpolation is used.

Credits

Author: Istvan Varga

January 2002

New in version 4.18

tablexseg

tablexseg — Creates a new function table by making exponential segments between values in stored
function tables.

Description

tablexseg is like expseg but interpolate between values in a stored function tables. The result is a new function
table passed internally to any following vpvoc which occurs before a subsequent tablexseg (much like
lpread/lpreson pairs work). The uses of these are described below under vpvoc.

Syntax

tablexseg ifn1, idur1, ifn2 [, idur2] [, ifn3] [...]

Initialization

ifn1, ifn2, ifn3, etc. -- function table numbers. ifn1, ifn2, and so on, must be the same size.

idur1, idur2, etc. -- durations during which interpolation from one table to the next will take place.

See Also

pvbufread, pvcross, pvinterp, pvread, tableseg

815

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Richard Karpen

Seattle, Wash

1997

tambourine

tambourine — Semi-physical model of a tambourine sound.

Description

tambourine is a semi-physical model of a tambourine sound. It is one of the PhISEM percussion opcodes.
PhISEM (Physically Informed Stochastic Event Modeling) is an algorithmic approach for simulating collisions
of multiple independent sound producing objects.

Syntax

ar tambourine kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

Initialization

idettack -- period of time over which all sound is stopped

inum (optional) -- The number of beads, teeth, bells, timbrels, etc. If zero, the default value is 32.

idamp (optional) -- the damping factor, as part of this equation:

damping_amount = 0.9985 + (idamp * 0.002)

The default damping_amount is 0.9985 which means that the default value of idamp is 0. The maximum
damping_amount is 1.0 (no damping). This means the maximum value for idamp is 0.75.

The recommended range for idamp is usually below 75% of the maximum value.

imaxshake (optional, default=0) -- amount of energy to add back into the system. The value should be in
range 0 to 1.

ifreq (optional) -- the main resonant frequency. The default value is 2300.

ifreq1 (optional) -- the first resonant frequency. The default value is 5600.

ifreq2 (optional) -- the second resonant frequency. The default value is 8100.

Performance

kamp -- Amplitude of output. Note: As these instruments are stochastic, this is only an approximation.

816

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the tambourine opcode. It uses the files tambourine.orc and tambourine.sco.

Example 15-1. Example of the tambourine opcode.

/* tambourine.orc */
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1: An example of a tambourine.
instr 01

a1 tambourine 15000, 0.01

out a1
endin
/* tambourine.orc */

/* tambourine.sco */
i 1 0 1
e
/* tambourine.sco */

See Also

bamboo, dripwater , guiro, sleighbells

Credits

Author: Perry Cook, part of the PhISEM (Physically Informed Stochastic Event Modeling)

Adapted by John ffitch

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

Added notes by Rasmus Ekman on May 2002.

tan

tan — Performs a tangent function.

Description

Returns the tangent of x (x in radians).

817

Chapter 15. Orchestra Opcodes and Operators

Syntax

tan(x) (no rate restriction)

Examples

Here is an example of the tan opcode. It uses the files tan.orc and tan.sco.

Example 15-1. Example of the tan opcode.

/* tan.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 25
i1 = tan(irad)

print i1
endin
/* tan.orc */

/* tan.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* tan.sco */

Its output should include a line like this:

instr 1: i1 = -0.134

See Also

cos, cosh, cosinv, sin, sinh, sininv, tan, taninv

tanh

tanh — Performs a hyperbolic tangent function.

Description

Returns the hyperbolic tangent of x (x in radians).

818

Chapter 15. Orchestra Opcodes and Operators

Syntax

tanh(x) (no rate restriction)

Examples

Here is an example of the tanh opcode. It uses the files tanh.orc and tanh.sco.

Example 15-1. Example of the tanh opcode.

/* tanh.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 1
i1 = tanh(irad)

print i1
endin
/* tanh.orc */

/* tanh.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* tanh.sco */

Its output should include a line like this:

instr 1: i1 = 0.762

See Also

cos, cosh, cosinv, sin, sinh, sininv, tan, taninv

taninv

taninv — Performs an arctangent function.

Description

Returns the arctangent of x (x in radians).

819

Chapter 15. Orchestra Opcodes and Operators

Syntax

taninv(x) (no rate restriction)

Examples

Here is an example of the taninv opcode. It uses the files taninv.orc and taninv.sco.

Example 15-1. Example of the taninv opcode.

/* taninv.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

irad = 0.5
i1 = taninv(irad)

print i1
endin
/* taninv.orc */

/* taninv.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* taninv.sco */

Its output should include a line like this:

instr 1: i1 = 0.464

See Also

cos, cosh, cosinv, sin, sinh, sininv, tan, tanh, taninv2

taninv2

taninv2 — Returns an arctangent.

Description

Returns the arctangent of iy/ix, ky/kx, or ay/ax.

820

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar taninv2 ay, ax

ir taninv2 iy, ix

kr taninv2 ky, kx

Returns the arctangent of iy/ix, ky/kx, or ay/ax. If y is zero, taninv2 returns zero regardless of the value of x. If x
is zero, the return value is:

• PI/2, if y is positive.

• -PI/2, if y is negative.

• 0, if y is 0.

Initialization

iy, ix -- values to be converted

Performance

ky, kx -- control rate signals to be converted

ay, ax -- audio rate signals to be converted

Examples

Here is an example of the taninv2 opcode. It uses the files taninv2.orc and taninv2.sco.

Example 15-1. Example of the taninv2 opcode.

/* taninv2.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Returns the arctangent for 1/2.
i1 taninv2 1, 2

print i1
endin
/* taninv2.orc */

/* taninv2.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* taninv2.sco */

Its output should include a line like this:

821

Chapter 15. Orchestra Opcodes and Operators

instr 1: i1 = 0.464

See Also

taninv

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

Corrected on May 2002, thanks to Istvan Varga.

tbvcf

tbvcf — Models some of the filter characteristics of a Roland TB303 voltage-controlled filter.

Description

This opcode attempts to model some of the filter characteristics of a Roland TB303 voltage-controlled filter.
Euler’s method is used to approximate the system, rather than traditional filter methods. Cutoff frequency, Q,
and distortion are all coupled. Empirical methods were used to try to unentwine, but frequency is only
approximate as a result. Future fixes for some problems with this opcode may break existing orchestras
relying on this version of tbvcf .

Syntax

ar tbvcf asig, xfco, xres, kdist, kasym

Performance

asig -- input signal. Should be normalized to±1.

xfco -- filter cutoff frequency. Optimum range is 10,000 to 1500. Values below 1000 may cause problems.

xres -- resonance or Q. Typically in the range 0 to 2.

kdist -- amount of distortion. Typical value is 2. Changing kdist significantly from 2 may cause odd
interaction with xfco and xres.

kasym -- asymmetry of resonance. Typically in the range 0 to 1.

822

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the tbvcf opcode. It uses the files tbvcf.orc and tbvcf.sco.

Example 15-1. Example of the tbvcf opcode.

/* tbvcf.orc */
;---
; TBVCF Test
; Coded by Hans Mikelson December, 2000
;---

sr = 44100 ; Sample rate
kr = 4410 ; Kontrol rate
ksmps = 10 ; Samples/Kontrol period
nchnls = 2 ; Normal stereo
zakinit 50, 50

instr 10

idur = p3 ; Duration
iamp = p4 ; Amplitude
ifqc = cpspch(p5) ; Pitch to frequency
ipanl = sqrt(p6) ; Pan left
ipanr = sqrt(1-p6) ; Pan right
iq = p7
idist = p8
iasym = p9

kdclck linseg 0, .002, 1, idur-.004, 1, .002, 0 ; Declick envelope

kfco expseg 10000, idur, 1000 ; Frequency envelope

ax vco 1, ifqc, 2, 1 ; Square wave
ay tbvcf ax, kfco, iq, idist, iasym ; TB-VCF
ay buthp ay/1, 100 ; Hi-pass

outs ay*iamp*ipanl*kdclck, ay*iamp*ipanr*kdclck
endin

/* tbvcf.orc */

/* tbvcf.sco */
f1 0 65536 10 1

; TeeBee Test
; Sta Dur Amp Pitch Pan Q Dist1 Asym
i10 0 0.2 32767 7.00 .5 0.0 2.0 0.0
i10 0.3 0.2 32767 7.00 .5 0.8 2.0 0.0
i10 0.6 0.2 32767 7.00 .5 1.6 2.0 0.0
i10 0.9 0.2 32767 7.00 .5 2.4 2.0 0.0
i10 1.2 0.2 32767 7.00 .5 3.2 2.0 0.0
i10 1.5 0.2 32767 7.00 .5 4.0 2.0 0.0
i10 1.8 0.2 32767 7.00 .5 0.0 2.0 0.25
i10 2.1 0.2 32767 7.00 .5 0.8 2.0 0.25
i10 2.4 0.2 32767 7.00 .5 1.6 2.0 0.25
i10 2.7 0.2 32767 7.00 .5 2.4 2.0 0.25
i10 3.0 0.2 32767 7.00 .5 3.2 2.0 0.25
i10 3.3 0.2 32767 7.00 .5 4.0 2.0 0.25
i10 3.6 0.2 32767 7.00 .5 0.0 2.0 0.5
i10 3.9 0.2 32767 7.00 .5 0.8 2.0 0.5
i10 4.2 0.2 32767 7.00 .5 1.6 2.0 0.5
i10 4.5 0.2 32767 7.00 .5 2.4 2.0 0.5
i10 4.8 0.2 32767 7.00 .5 3.2 2.0 0.5
i10 5.1 0.2 32767 7.00 .5 4.0 2.0 0.5
i10 5.4 0.2 32767 7.00 .5 0.0 2.0 0.75

823

Chapter 15. Orchestra Opcodes and Operators

i10 5.7 0.2 32767 7.00 .5 0.8 2.0 0.75
i10 6.0 0.2 32767 7.00 .5 1.6 2.0 0.75
i10 6.3 0.2 32767 7.00 .5 2.4 2.0 0.75
i10 6.6 0.2 32767 7.00 .5 3.2 2.0 0.75
i10 6.9 0.2 32767 7.00 .5 4.0 2.0 0.75
i10 7.2 0.2 32767 7.00 .5 0.0 2.0 1.0
i10 7.5 0.2 32767 7.00 .5 0.8 2.0 1.0
i10 7.8 0.2 32767 7.00 .5 1.6 2.0 1.0
i10 8.1 0.2 32767 7.00 .5 2.4 2.0 1.0
i10 8.4 0.2 32767 7.00 .5 3.2 2.0 1.0
i10 8.7 0.2 32767 7.00 .5 4.0 2.0 1.0
e
/* tbvcf.sco */

Credits

Author: Hans Mikelson

December, 2000 -- January, 2001

New in Csound 4.10

tempest

tempest — Estimate the tempo of beat patterns in a control signal.

Description

Estimate the tempo of beat patterns in a control signal.

Syntax

ktemp tempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim, ixfdbak, istartempo, ifn [, idisprd] [, itweek]

Initialization

iprd -- period between analyses (in seconds). Typically about .02 seconds.

imindur -- minimum duration (in seconds) to serve as a unit of tempo. Typically about .2 seconds.

imemdur -- duration (in seconds) of the kin short-term memory buffer which will be scanned for periodic
patterns. Typically about 3 seconds.

ihp -- half-power point (in Hz) of a low-pass filter used to smooth input kin prior to other processing. This
will tend to suppress activity that moves much faster. Typically 2 Hz.

ithresh -- loudness threshold by which the low-passed kin is center-clipped before being placed in the
short-term buffer as tempo-relevant data. Typically at the noise floor of the incoming data.

ihtim -- half-time (in seconds) of an internal forward-masking filter that masks new kin data in the presence
of recent, louder data. Typically about .005 seconds.

ixfdbak -- proportion of this unit’s anticipated value to be mixed with the incoming kin prior to all
processing. Typically about .3.

824

Chapter 15. Orchestra Opcodes and Operators

istartempo -- initial tempo (in beats per minute). Typically 60.

ifn -- table number of a stored function (drawn left-to-right) by which the short-term memory data is
attenuated over time.

idisprd (optional) -- if non-zero, display the short-term past and future buffers every idisprd seconds
(normally a multiple of iprd). The default value is 0 (no display).

itweek (optional) -- fine-tune adjust this unit so that it is stable when analyzing events controlled by its own
output. The default value is 1 (no change).

Performance

tempest examines kin for amplitude periodicity, and estimates a current tempo. The input is first low-pass
filtered, then center-clipped, and the residue placed in a short-term memory buffer (attenuated over time)
where it is analyzed for periodicity using a form of autocorrelation. The period, expressed as a tempo in beats
per minute, is output as ktemp. The period is also used internally to make predictions about future amplitude
patterns, and these are placed in a buffer adjacent to that of the input. The two adjacent buffers can be
periodically displayed, and the predicted values optionally mixed with the incoming signal to simulate
expectation.

This unit is useful for sensing the metric implications of any k-signal (e.g.- the RMS of an audio signal, or the
second derivative of a conducting gesture), before sending to a tempo statement.

Examples

Here is an example of the tempest opcode. It uses the files tempest.orc, tempest.sco, and beats.wav.

Example 15-1. Example of the tempest opcode.

/* tempest.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use the "beats.wav" sound file.
asig soundin "beats.wav"
; Extract the pitch and the envelope.
kcps, krms pitchamdf asig, 150, 500, 200

iprd = 0.01
imindur = 0.1
imemdur = 3
ihp = 1
ithresh = 30
ihtim = 0.005
ixfdbak = 0.05
istartempo = 110
ifn = 1

; Estimate its tempo.
k1 tempest krms, iprd, imindur, imemdur, ihp, ithresh, ihtim, ixfdbak, istartempo, ifn
printk2 k1

out asig
endin
/* tempest.orc */

825

Chapter 15. Orchestra Opcodes and Operators

/* tempest.sco */
; Table #1, a declining line.
f 1 0 128 16 1 128 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* tempest.sco */

The tempo of the audio file “beats.wav” is 120 beats per minute. In this examples, tempest will print out its
best guess as the audio file plays. Its output should include lines like this:

. i1 118.24654

. i1 121.72949

tempo

tempo — Apply tempo control to an uninterpreted score.

Description

Apply tempo control to an uninterpreted score.

Syntax

tempo ktempo, istartempo

Initialization

istartempo -- initial tempo (in beats per minute). Typically 60.

Performance

ktempo -- The tempo to which the score will be adjusted.

tempo allows the performance speed of Csound scored events to be controlled from within an orchestra. It
operates only in the presence of the Csound -t flag. When that flag is set, scored events will be performed
from their uninterpreted p2 and p3 (beat) parameters, initially at the given command-line tempo. When a
tempo statement is activated in any instrument (ktempo 0.), the operating tempo will be adjusted to ktempo
beats per minute. There may be any number of tempo statements in an orchestra, but coincident activation is
best avoided.

826

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the tempo opcode. Remember, it only works if you use the -t flag with Csound. The
example uses the files tempo.orc and tempo.sco.

Example 15-1. Example of the tempo opcode.

/* tempo.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; If the fourth p-field is 1, increase the tempo.
if (p4 == 1) kgoto speedup

kgoto playit

speedup:
; Increase the tempo to 150 beats per minute.
tempo 150, 60

playit:
a1 oscil 10000, 440, 1
out a1

endin
/* tempo.orc */

/* tempo.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; p4 = plays at a faster tempo (when p4=1).
; Play Instrument #1 at the normal tempo, repeat 3 times.
r3
i 1 00.00 00.10 0
i 1 00.25 00.10 0
i 1 00.50 00.10 0
i 1 00.75 00.10 0
s

; Play Instrument #1 at a faster tempo, repeat 3 times.
r3
i 1 00.00 00.10 1
i 1 00.25 00.10 1
i 1 00.50 00.10 1
i 1 00.75 00.10 1
s

e
/* tempo.sco */

827

Chapter 15. Orchestra Opcodes and Operators

See Also

tempoval

tempoval

tempoval — Reads the current value of the tempo.

Description

Reads the current value of the tempo.

Syntax

kr tempoval

Performance

kr -- the value of the tempo. If a tempo is set, it returns the percentage increase/decrease from the original
tempo of 60 beats per minute. If no tempo is set, this value will be 60 (for 60 beats per minute).

Examples

Here is an example of the tempoval opcode. Remember, it only works if you use the -t flag with Csound. It
uses the files tempoval.orc and tempoval.sco.

Example 15-1. Example of the tempoval opcode.

/* tempoval.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Adjust the tempo to 120 beats per minute.
tempo 120, 60

; Get the tempo value.
kval tempoval

printks "kval = %f\\n", 0.1, kval
endin
/* tempoval.orc */

/* tempoval.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* tempoval.sco */

828

Chapter 15. Orchestra Opcodes and Operators

Since 120 beats per minute is a 50% increase over the original 60 beats per minute, its output should include
lines like:

kval = 0.500000

See Also

tempo

Credits

Author: Kevin Conder

New in version 4.15

tigoto

tigoto — Transfer control at i-time when a new note is being tied onto a previously held note

Description

Similar to igoto but effective only during an i-time pass at which a new note is being “tied” onto a previously
held note. (See i Statement) It does not work when a tie has not taken place. Allows an instrument to skip
initialization of units according to whether a proposed tie was in fact successful. (See also tival, delay).

Syntax

tigoto label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

See Also

cigoto, goto, if , igoto, kgoto, timout

Credits

Added a note by Jim Aikin.

829

Chapter 15. Orchestra Opcodes and Operators

timeinstk

timeinstk — Read absolute time in k-rate cycles.

Description

Read absolute time, in k-rate cycles, since the start of an instance of an instrument.

Syntax

kr timeinstk

kr timeinsts

Performance

timeinstk is for time in k-rate cycles. So with:

sr = 44100
kr = 6300
ksmps = 7

then after half a second, the timek opcode would report 3150. It will always report an integer.

timeinstk produces a k-rate variable for output. There are no input parameters.

timeinstk is similar to timek except it returns the time since the start of this instance of the instrument.

Examples

Here is an example of the timeinstk opcode. It uses the files timeinstk.orc and timeinstk.sco.

Example 15-1. Example of the timeinstk opcode.

/* timeinstk.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the value from timeinstk every half-second.
k1 timeinstk
printks "k1 = %f samples\\n", 0.5, k1

endin
/* timeinstk.orc */

/* timeinstk.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* timeinstk.sco */

830

Chapter 15. Orchestra Opcodes and Operators

Its output should include lines like this:

k1 = 1.000000 samples
k1 = 2205.000000 samples
k1 = 4410.000000 samples
k1 = 6615.000000 samples
k1 = 8820.000000 samples

See Also

timeinsts, timek, times

Credits

Author: Robin Whittle

Australia

May 1997

timeinsts

timeinsts — Read absolute time in seconds.

Description

Read absolute time, in seconds, since the start of an instance of an instrument.

Syntax

kr timeinsts

Performance

Time in seconds is available with timeinsts. This would return 0.5 after half a second.

timeinsts produces a k-rate variable for output. There are no input parameters.

timeinsts is similar to times except it returns the time since the start of this instance of the instrument.

Examples

Here is an example of the timeinsts opcode. It uses the files timeinsts.orc and timeinsts.sco.

Example 15-1. Example of the timeinsts opcode.

/* timeinsts.orc */
/* Written by Kevin Conder */
; Initialize the global variables.

831

Chapter 15. Orchestra Opcodes and Operators

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the value from timeinsts every half-second.
k1 timeinsts
printks "k1 = %f seconds\\n", 0.5, k1

endin
/* timeinsts.orc */

/* timeinsts.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* timeinsts.sco */

Its output should include lines like this:

k1 = 0.000227 seconds
k1 = 0.500000 seconds
k1 = 1.000000 seconds
k1 = 1.500000 seconds
k1 = 2.000000 seconds

See Also

timeinstk, timek, times

Credits

Author: Robin Whittle

Australia

May 1997

timek

timek — Read absolute time in k-rate cycles.

Description

Read absolute time, in k-rate cycles, since the start of the performance.

832

Chapter 15. Orchestra Opcodes and Operators

Syntax

ir timek

kr timek

Performance

timek is for time in k-rate cycles. So with:

sr = 44100
kr = 6300
ksmps = 7

then after half a second, the timek opcode would report 3150. It will always report an integer.

timek can produce a k-rate variable for output. There are no input parameters.

timek can also operate only at the start of the instance of the instrument. It produces an i-rate variable
(starting with i or gi) as its output.

Examples

Here is an example of the timek opcode. It uses the files timek.orc and timek.sco.

Example 15-1. Example of the timek opcode.

/* timek.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print out the value from timek every half-second.
k1 timek
printks "k1 = %f samples\\n", 0.5, k1

endin
/* timek.orc */

/* timek.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* timek.sco */

Its output should include lines like this:

k1 = 1.000000 samples
k1 = 2205.000000 samples
k1 = 4410.000000 samples
k1 = 6615.000000 samples
k1 = 8820.000000 samples

833

Chapter 15. Orchestra Opcodes and Operators

See Also

timeinstk, timensts, times

Credits

Author: Robin Whittle

Australia

May 1997

times

times — Read absolute time in seconds.

Description

Read absolute time, in seconds, since the start of the performance.

Syntax

ir times

kr times

Performance

Time in seconds is available with times. This would return 0.5 after half a second.

times can both produce a k-rate variable for output. There are no input parameters.

times can also operate at the start of the instance of the instrument. It produces an i-rate variable (starting
with i or gi) as its output.

Examples

Here is an example of the times opcode. It uses the files times.orc and times.sco.

Example 15-1. Example of the times opcode.

/* times.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

834

Chapter 15. Orchestra Opcodes and Operators

; Print out the value from times every half-second.
k1 times
printks "k1 = %f seconds\\n", 0.5, k1

endin
/* times.orc */

/* times.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* times.sco */

Its output should include lines like this:

k1 = 0.000227 seconds
k1 = 0.500000 seconds
k1 = 1.000000 seconds
k1 = 1.500000 seconds
k1 = 2.000000 seconds

See Also

timeinstk, timeinsts, timek

Credits

Author: Robin Whittle

Australia

May 1997

timout

timout — Conditional branch during p-time depending on elapsed note time.

Description

Conditional branch during p-time depending on elapsed note time. istrt and idur specify time in seconds.
The branch to label will become effective at time istrt , and will remain so for just idur seconds. Note that
timout can be reinitialized for multiple activation within a single note (see example under reinit).

Syntax

timout istrt, idur, label

where label is in the same instrument block and is not an expression, and where R is one of the Relational
operators (<, =, <=, ==, !=) (and = for convenience, see also under Conditional Values).

835

Chapter 15. Orchestra Opcodes and Operators

See Also

goto, if , igoto, kgoto, tigoto

Credits

Added a note by Jim Aikin.

tival

tival — Puts the value of the instrument’s internal “tie-in” flag into the named i-rate variable.

Syntax

ir tival

Description

Puts the value of the instrument’s internal “tie-in” flag into the named i-rate variable.

Initialization

Puts the value of the instrument’s internal “tie-in” flag into the named i-rate variable. Assigns 1 if this note
has been “tied” onto a previously held note (see i statement); assigns 0 if no tie actually took place. (See also
tigoto.)

See Also

=, divz, init

tlineto

tlineto — Generate glissandos starting from a control signal.

Description

Generate glissandos starting from a control signal with a trigger.

Syntax

kr tlineto ksig, ktime, ktrig

836

Chapter 15. Orchestra Opcodes and Operators

Performance

kr -- Output signal.

ksig -- Input signal.

ktime -- Time length of glissando in seconds.

ktrig -- Trigger signal.

tlineto is similar to lineto but can be applied to any kind of signal (not only stepped signals) without
producing discontinuities. Last value of each segment is sampled and held from input signal each time ktrig
value is set to a nonzero value. Normally ktrig signal consists of a sequence of zeroes (see trigger opcode).

The effect of glissando is quite different from port . Since in these cases, the lines are straight. Also the context
of useage is different.

See Also

lineto

Credits

Author: Gabriel Maldonado

New in Version 4.13

tone

tone — A first-order recursive low-pass with variable frequency response.

Description

A first-order recursive low-pass with variable frequency response.

Syntax

ar tone asig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

ar -- the output audio signal.

asig -- the input audio signal.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

tone implements a first-order recursive low-pass filter in which the variable khp (in Hz) determines the
response curve’s half-power point. Half power is defined as peak power / root 2.

837

Chapter 15. Orchestra Opcodes and Operators

See Also

areson, aresonk, atone, atonek, port , portk, reson, resonk, tonek

tonek

tonek — A first-order recursive low-pass filter with variable frequency response.

Description

A first-order recursive low-pass filter with variable frequency response.

Syntax

kr tonek ksig, khp [, iskip]

Initialization

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

kr -- the output signal at control-rate.

ksig -- the input signal at control-rate.

khp -- the response curve’s half-power point, in Hertz. Half power is defined as peak power / root 2.

tonek is like tone except its output is at control-rate rather than audio rate.

See Also

areson, aresonk, atone, atonek, port , portk, reson, resonk, tone

tonex

tonex — Emulates a stack of filters using the tone opcode.

Description

tonex is equivalent to a filter consisting of more layers of tone with the same arguments, serially connected.
Using a stack of a larger number of filters allows a sharper cutoff. They are faster than using a larger number
instances in a Csound orchestra of the old opcodes, because only one initialization and k- cycle are needed at
time and the audio loop falls entirely inside the cache memory of processor.

838

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar tonex asig, khp [, inumlayer] [, iskip]

Initialization

inumlayer (optional) -- number of elements in the filter stack. Default value is 4.

iskip (optional, default=0) -- initial disposition of internal data space. Since filtering incorporates a feedback
loop of previous output, the initial status of the storage space used is significant. A zero value will clear the
space; a non-zero value will allow previous information to remain. The default value is 0.

Performance

asig -- input signal

khp -- the response curve’s half-power point. Half power is defined as peak power / root 2.

See Also

atonex, resonx

Credits

Author: Gabriel Maldonado (adapted by John ffitch)

Italy

New in Csound version 3.49

transeg

transeg — Constructs a user-definable envelope.

Description

Constructs a user-definable envelope.

Syntax

ar transeg ia, idur, itype, ib [, idur2] [, itype] [, ic] ...

kr transeg ia, idur, itype, ib [, idur2] [, itype] [, ic] ...

Initialization

ia -- starting value.

ib, ic, etc. -- value after idur seconds.

idur, idur2, etc. -- duration in seconds of segment

839

Chapter 15. Orchestra Opcodes and Operators

itype, itype2, etc. -- if 0, a straight line is produced. If non-zero, then transeg creates the following curve, for n
steps:

ibeg + (ivalue - ibeg) * (1 - exp(i*itype/(n-1))) / (1 - exp(itype))

Performance

If itype > 0, there is a slowly rising, fast decaying (convex) curve, while if itype < 0, the curve is fast rising,
slowly decaying (concave). See also GEN16.

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

October, 2000

New in Csound version 4.09

Thanks goes to Matt Gerassimoff for pointing out the correct command syntax.

trigger

trigger — Informs when a krate signal crosses a threshold.

Description

Informs when a krate signal crosses a threshold.

Syntax

kout trigger ksig, kthreshold, kmode

Performance

ksig -- input signal

kthreshold -- trigger threshold

kmode -- can be 0 , 1 or 2

Normally trigger outputs zeroes: only each time ksig crosses kthreshold trigger outputs a 1. There are three
modes of using ktrig :

• kmode = 0 - (down-up) ktrig outputs a 1 when current value of ksig is higher than kthreshold, while old
value of ksig was equal to or lower than kthreshold.

• kmode = 1 - (up-down) ktrig outputs a 1 when current value of ksig is lower than kthreshold while old value
of ksig was equal or higher than kthreshold.

840

Chapter 15. Orchestra Opcodes and Operators

• kmode = 2 - (both) ktrig outputs a 1 in both the two previous cases.

Examples

Here is an example of the trigger opcode. It uses the files trigger.orc and trigger.sco.

Example 15-1. Example of the trigger opcode.

/* trigger.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a square-wave low frequency oscillator as the trigger.
klf lfo 1, 10, 3
ktr trigger klf, 1, 2

; When the value of the trigger isn’t equal to 0, print it out.
if (ktr == 0) kgoto contin

; Print the value of the trigger and the time it occurred.
ktm times
printks "time = %f seconds, trigger = %f\\n", 0, ktm, ktr

contin:
; Continue with processing.

endin
/* trigger.orc */

/* trigger.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* trigger.sco */

Its output should include lines like this:

time = 0.050340 seconds, trigger = 1.000000
time = 0.150340 seconds, trigger = 1.000000
time = 0.250340 seconds, trigger = 1.000000
time = 0.350340 seconds, trigger = 1.000000
time = 0.450340 seconds, trigger = 1.000000
time = 0.550340 seconds, trigger = 1.000000
time = 0.650340 seconds, trigger = 1.000000
time = 0.750340 seconds, trigger = 1.000000
time = 0.850340 seconds, trigger = 1.000000
time = 0.950340 seconds, trigger = 1.000000

841

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.49

trigseq

trigseq — Accepts a trigger signal as input and outputs a group of values.

Description

Accepts a trigger signal as input and outputs a group of values.

Syntax

trigseq ktrig_in, kstart, kloop, kinitndx, kfn_values, kout1 [, kout2] [...]

Performance

ktrig_in -- input trigger signal

kstart -- start index of looped section

kloop -- end index of looped section

kinitndx -- initial index

kfn_values -- numer of a table containing a sequence of groups of values

kout1 -- output values

kout2, ... (optional) -- more output values

This opcode handles timed-sequences of groups of values stored into a table.

trigseq accepts a trigger signal (ktrig_in) as input and outputs group of values (contained in the kfn_values
table) each time ktrig_in assumes a non-zero value. Each time a group of values is triggered, table pointer is
advanced of a number of positions corresponding to the number of group-elements, in order to point to the
next group of values. The number of elements of groups is determined by the number of koutX arguments.

It is possible to start the sequence from a value different than the first, by assigning to initndx an index
different than zero (which corresponds to the first value of the table). Normally the sequence is looped, and
the start and end of loop can be adjusted by modifying kstart and kloop arguments. User must be sure that
values of these arguments (as well as kinitndx) correspond to valid table numbers, otherwise Csound will
crash because no range-checking is implemented.

It is possible to disable loop (one-shot mode) by assigning the same value both to kstart and kloop
arguments. In this case, the last read element will be the one corresponding to the value of such arguments.
Table can be read backward by assigning a negative kloop value.

trigseq is designed to be used together with seqtime or trigger opcodes.

842

Chapter 15. Orchestra Opcodes and Operators

See Also

seqtime, trigger

Credits

Author: John ffitch (from material by Ville Pulkki.)

New in version 4.06

trirand

trirand — Linear distribution random number generator.

Description

Linear distribution random number generator. This is an x-class noise generator.

Syntax

ar trirand krange

ir trirand krange

kr trirand krange

Performance

krange -- the range of the random numbers (-krange to +krange).

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the trirand opcode. It uses the files trirand.orc and trirand.sco.

Example 15-1. Example of the trirand opcode.

/* trirand.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.

843

Chapter 15. Orchestra Opcodes and Operators

instr 1
; Generate a random number between -1 and 1.
; krange = 1

i1 trirand 1

print i1
endin
/* trirand.orc */

/* trirand.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* trirand.sco */

Its output should include lines like this:

instr 1: i1 = 7506.261

See Also

betarand, bexprnd, cauchy, exprand, gauss, linrand, pcauchy, poisson, unirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

turnoff

turnoff — Enables an instrument to turn itself off.

Description

Enables an instrument to turn itself off.

Syntax

turnoff

844

Chapter 15. Orchestra Opcodes and Operators

Performance

turnoff -- this p-time statement enables an instrument to turn itself off. Whether of finite duration or “held”,
the note currently being performed by this instrument is immediately removed from the active note list. No
other notes are affected.

Examples

The following example uses the turnoff opcode. It will cause a note to terminate when a control signal passes
a certain threshold (here the Nyquist frequency). It uses the files turnoff.orc and turnoff.sco.

Example 15-1. Example of the turnoff opcode.

/* turnoff.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

k1 expon 440, p3/10,880 ; begin gliss and continue
if k1 < sr/2 kgoto contin ; until Nyquist detected

turnoff ; then quit

contin:
a1 oscil 10000, k1, 1
out a1

endin
/* turnoff.orc */

/* turnoff.sco */
; Table #1: an ordinary sine wave.
f 1 0 32768 10 1

; Play Instrument #1 for 4 seconds.
i 1 0 4
e
/* turnoff.sco */

See Also

ihold

turnon

turnon — Activate an instrument for an indefinite time.

845

Chapter 15. Orchestra Opcodes and Operators

Description

Activate an instrument for an indefinite time.

Syntax

turnon insnum [, itime]

Initialization

insnum -- instrument number to be activated

itime (optional, default=0) -- delay, in seconds, after which instrument insnum will be activated. Default is 0.

Performance

turnon activates instrument insnum after a delay of itime seconds, or immediately if itime is not specified.
Instrument is active until explicitly turned off. (See turnoff .)

unirand

unirand — Uniform distribution random number generator (positive values only).

Description

Uniform distribution random number generator (positive values only). This is an x-class noise generator.

Syntax

ar unirand krange

ir unirand krange

kr unirand krange

Performance

krange -- the range of the random numbers (0 - krange).

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

846

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the unirand opcode. It uses the files unirand.orc and unirand.sco.

Example 15-1. Example of the unirand opcode.

/* unirand.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Generate a random number between 0 and 1.
; krange = 1

i1 unirand 1

print i1
endin
/* unirand.orc */

/* unirand.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* unirand.sco */

Its output should include lines like this:

instr 1: i1 = 0.840

See Also

betarand, bexprnd, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, weibull

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

upsamp

upsamp — Modify a signal by up-sampling.

847

Chapter 15. Orchestra Opcodes and Operators

Description

Modify a signal by up-sampling.

Syntax

ar upsamp ksig

Performance

upsamp converts a control signal to an audio signal. It does it by simple repetition of the kval. upsamp is a
slightly more efficient form of the assignment, asig = ksig .

Examples

asrc buzz 10000,440,20, 1 ; band-limited pulse train
adif diff asrc ; emphasize the highs
anew balance adif, asrc ; but retain the power
agate reson asrc,0,440 ; use a lowpass of the original
asamp samphold anew, agate ; to gate the new audiosig
aout tone asamp,100 ; smooth out the rough edges

See Also

diff , downsamp, integ , interp, samphold

urd

urd — A discrete user-defined-distribution random generator that can be used as a function.

Description

A discrete user-defined-distribution random generator that can be used as a function.

Syntax

aout = urd(ktableNum)

iout = urd(itableNum)

kout = urd(ktableNum)

848

Chapter 15. Orchestra Opcodes and Operators

Initialization

itableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

Performance

ktableNum -- number of table containing the random-distribution function. Such table is generated by the
user. See GEN40, GEN41, and GEN42. The table length does not need to be a power of 2

urd is the same opcode as duserrnd, but can be used in function fashion.

For a tutorial about random distribution histograms and functions see:

• D. Lorrain. "A panoply of stochastic cannons". In C. Roads, ed. 1989. Music machine. Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

See Also

cuserrnd, duserrnd

Credits

Author: Gabriel Maldonado

New in Version 4.16

valpass

valpass — Variably reverberates an input signal with a flat frequency response.

Description

Variably reverberates an input signal with a flat frequency response.

Syntax

ar valpass asig, krvt, xlpt, imaxlpt [, iskip] [, insmps]

Initialization

imaxlpt -- maximum loop time for klpt

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

insmps (optional, default=0) -- delay amount, as a number of samples.

849

Chapter 15. Orchestra Opcodes and Operators

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

xlpt -- variable loop time in seconds, same as ilpt in comb. Loop time can be as large as imaxlpt .

This filter reiterates input with an echo density determined by loop time ilpt . The attenuation rate is
independent and is determined by krvt , the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Its output will begin to appear immediately.

See Also

alpass, comb, reverb, vcomb

Credits

Author: William “Pete” Moss (vcomb and valpass)

University of Texas at Austin

Austin, Texas USA

January 2002

vbap16

vbap16 — Distributes an audio signal among 16 channels.

Description

Distributes an audio signal among 16 channels.

Syntax

ar1, ..., ar16 vbap16 asig, iazim [, ielev] [, ispread]

Initialization

iazim -- azimuth angle of the virtual source

ielev (optional) -- elevation angle of the virtual source

ispread (optional) -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude
panning is used. When ispread is increased, the number of loudspeakers used in panning increases. If value is
100, the sound is applied to all loudspeakers.

Performance

asig -- audio signal to be panned

vbap16 takes an input signal, asig , and distribute it among 16 outputs, according to the controls iazim and
ielev, and the configured loudspeaker placement. If idim = 2, ielev is set to zero. The distribution is performed
using Vector Base Amplitude Panning (VBAP - See reference). VBAP distributes the signal using loudspeaker

850

Chapter 15. Orchestra Opcodes and Operators

data configured with vbaplsinit . The signal is applied to, at most, two loudspeakers in 2-D loudspeaker
configurations, and three loudspeakers in 3-D loudspeaker configurations. If the virtual source is panned
outside the region spanned by loudspeakers, the nearest loudspeakers are used in panning.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16move, vbap4, vbap4move, vbap8, vbap8move, vbaplsinit , vbapz, vbapzmove

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

851

Chapter 15. Orchestra Opcodes and Operators

vbap16move

vbap16move — Distribute an audio signal among 16 channels with moving virtual sources.

Description

Distribute an audio signal among 16 channels with moving virtual sources.

Syntax

ar1, ..., ar16 vbap16move asig, ispread, ifldnum, ifld1 [, ifld2] [...]

Initialization

ispread -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude panning is
used. When ispread is increased, the number of loudspeakers used in panning increases. If value is 100, the
sound is applied to all loudspeakers.

ifldnum -- number of fields (absolute value must be 2 or larger). If ifldnum is positive, the virtual source
movement is a polyline specified by given directions. Each transition is performed in an equal time interval. If
ifldnum is negative, specified angular velocities are applied to the virtual source during specified relative time
intervals (see below).

ifld1, ifld2, ... -- azimuth angles or angular velocities, and relative durations of movement phases.

Performance

asig -- audio signal to be panned

vbap16move allows the use of moving virtual sources. If ifldnum is positive, the fields represent directions of
virtual sources and equal times, iazi1, [iele1,] iazi2, [iele2,], etc. The position of the virtual source is
interpolated between directions starting from the first direction and ending at the last. Each interval is
interpolated in time that is fraction total_time / number_of_intervals of the duration of the sound event.

If ifldnum is negative, the fields represent angular velocities and equal times. The first field is, however, the
starting direction, iazi1, [iele1,] iazi_vel1, [iele_vel1,] iazi_vel2, [iele_vel2,] Each velocity is applied to the
note that is fraction total_time / number_of_velocities of the duration of the sound event. If the elevation of
the virtual source becomes greater than 90 degrees or less than 0 degrees, the polarity of angular velocity is
changed. Thus the elevational angular velocity produces a virtual source that moves up and down between 0
and 90 degrees.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1

852

Chapter 15. Orchestra Opcodes and Operators

asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap4, vbap4move, vbap8, vbap8move, vbaplsinit , vbapz, vbapzmove

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

vbap4

vbap4 — Distributes an audio signal among 4 channels.

Description

Distributes an audio signal among 4 channels.

Syntax

ar1, ar2, ar3, ar4 vbap4 asig, iazim [, ielev] [, ispread]

853

Chapter 15. Orchestra Opcodes and Operators

Initialization

iazim -- azimuth angle of the virtual source

ielev (optional) -- elevation angle of the virtual source

ispread (optional) -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude
panning is used. When ispread is increased, the number of loudspeakers used in panning increases. If value is
100, the sound is applied to all loudspeakers.

Performance

asig -- audio signal to be panned

vbap4 takes an input signal, asig and distributes it among 4 outputs, according to the controls iazim and
ielev, and the configured loudspeaker placement. If idim = 2, ielev is set to zero. The distribution is performed
using Vector Base Amplitude Panning (VBAP - See reference). VBAP distributes the signal using loudspeaker
data configured with vbaplsinit . The signal is applied to, at most, two loudspeakers in 2-D loudspeaker
configurations, and three loudspeakers in 3-D loudspeaker configurations. If the virtual source is panned
outside the region spanned by loudspeakers, the nearest loudspeakers are used in panning.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap16move, vbap4move, vbap8, vbap8move, vbaplsinit , vbapz, vbapzmove

854

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

vbap4move

vbap4move — Distributes an audio signal among 4 channels with moving virtual sources.

Description

Distributes an audio signal among 4 channels with moving virtual sources.

Syntax

ar1, ar2, ar3, ar4 vbap4move asig, ispread, ifldnum, ifld1 [, ifld2] [...]

Initialization

ispread -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude panning is
used. When ispread is increased, the number of loudspeakers used in panning increases. If value is 100, the
sound is applied to all loudspeakers.

ifldnum -- number of fields (absolute value must be 2 or larger). If ifldnum is positive, the virtual source
movement is a polyline specified by given directions. Each transition is performed in an equal time interval. If
ifldnum is negative, specified angular velocities are applied to the virtual source during specified relative time
intervals (see below).

ifld1, ifld2, ... -- azimuth angles or angular velocities, and relative durations of movement phases (see below).

Performance

asig -- audio signal to be panned

vbap4move allows the use of moving virtual sources. If ifldnum is positive, the fields represent directions of
virtual sources and equal times, iazi1, [iele1,] iazi2, [iele2,], etc. The position of the virtual source is
interpolated between directions starting from the first direction and ending at the last. Each interval is
interpolated in time that is fraction total_time / number_of_intervals of the duration of the sound event.

If ifldnum is negative, the fields represent angular velocities and equal times. The first field is, however, the
starting direction, iazi1, [iele1,] iazi_vel1, [iele_vel1,] iazi_vel2, [iele_vel2,] Each velocity is applied to the
note that is fraction total_time / number_of_velocities of the duration of the sound event. If the elevation of

855

Chapter 15. Orchestra Opcodes and Operators

the virtual source becomes greater than 90 degrees or less than 0 degrees, the polarity of angular velocity is
changed. Thus the elevational angular velocity produces a virtual source that moves up and down between 0
and 90 degrees.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap16move, vbap4, vbap8, vbap8move, vbaplsinit , vbapz, vbapzmove

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

856

Chapter 15. Orchestra Opcodes and Operators

vbap8

vbap8 — Distributes an audio signal among 8 channels.

Description

Distributes an audio signal among 8 channels.

Syntax

ar1, ..., ar8 vbap8 asig, iazim [, ielev] [, ispread]

Initialization

iazim -- azimuth angle of the virtual source

ielev (optional) -- elevation angle of the virtual source

ispread (optional) -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude
panning is used. When ispread is increased, the number of loudspeakers used in panning increases. If value is
100, the sound is applied to all loudspeakers.

Performance

asig -- audio signal to be panned

vbap8 takes an input signal, asig , and distributes it among 8 outputs, according to the controls iazim and
ielev, and the configured loudspeaker placement. If idim = 2, ielev is set to zero. The distribution is performed
using Vector Base Amplitude Panning (VBAP - See reference). VBAP distributes the signal using loudspeaker
data configured with vbaplsinit . The signal is applied to, at most, two loudspeakers in 2-D loudspeaker
configurations, and three loudspeakers in 3-D loudspeaker configurations. If the virtual source is panned
outside the region spanned by loudspeakers, the nearest loudspeakers are used in panning.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

857

Chapter 15. Orchestra Opcodes and Operators

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap16move, vbap4, vbap4move, vbap8move, vbaplsinit , vbapz, vbapzmove

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

vbap8move

vbap8move — Distributes an audio signal among 8 channels with moving virtual sources.

Description

Distributes an audio signal among 8 channels with moving virtual sources.

Syntax

ar1, ..., ar8 vbap8move asig, ispread, ifldnum, ifld1 [, ifld2] [...]

Initialization

ispread -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude panning is
used. When ispread is increased, the number of loudspeakers used in panning increases. If value is 100, the
sound is applied to all loudspeakers.

ifldnum -- number of fields (absolute value must be 2 or larger). If ifldnum is positive, the virtual source
movement is a polyline specified by given directions. Each transition is performed in an equal time interval. If

858

Chapter 15. Orchestra Opcodes and Operators

ifldnum is negative, specified angular velocities are applied to the virtual source during specified relative time
intervals (see below).

ifld1, ifld2, ... -- azimuth angles or angular velocities, and relative durations of movement phases (see below).

Performance

asig -- audio signal to be panned

vbap8move allows the use of moving virtual sources. If ifldnum is positive, the fields represent directions of
virtual sources and equal times, iazi1, [iele1,] iazi2, [iele2,], etc. The position of the virtual source is
interpolated between directions starting from the first direction and ending at the last. Each interval is
interpolated in time that is fraction total_time / number_of_intervals of the duration of the sound event.

If ifldnum is negative, the fields represent angular velocities and equal times. The first field is, however, the
starting direction, iazi1, [iele1,] iazi_vel1, [iele_vel1,] iazi_vel2, [iele_vel2,] Each velocity is applied to the
note that is fraction total_time / number_of_velocities of the duration of the sound event. If the elevation of
the virtual source becomes greater than 90 degrees or less than 0 degrees, the polarity of angular velocity is
changed. Thus the elevational angular velocity produces a virtual source that moves up and down between 0
and 90 degrees.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap16move, vbap4, vbap4move, vbap8, vbaplsinit , vbapz, vbapzmove

859

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

vbaplsinit

vbaplsinit — Configures VBAP output according to loudspeaker parameters.

Description

Configures VBAP output according to loudspeaker parameters.

Syntax

vbaplsinit idim, ilsnum [, idir1] [, idir2] [...] [, idir32]

Initialization

idim -- dimensionality of loudspeaker array. Either 2 or 3.

ilsnum -- number of loudspeakers. In two dimensions, the number can vary from 2 to 16. In three
dimensions, the number can vary from 3 and 16.

idir1, idir2, ..., idir32 -- directions of loudspeakers. Number of directions must be less than or equal to 16. In
two-dimensional loudspeaker positioning, idirn is the azimuth angle respective to nth channel. In
three-dimensional loudspeaker positioning, fields are the azimuth and elevation angles of each loudspeaker
consequently (azi1, ele1, azi2, ele2, etc.).

Performance

VBAP distributes the signal using loudspeaker data configured with vbaplsinit . The signal is applied to, at
most, two loudspeakers in 2-D loudspeaker configurations, and three loudspeakers in 3-D loudspeaker
configurations. If the virtual source is panned outside the region spanned by loudspeakers, the nearest
loudspeakers are used in panning.

860

Chapter 15. Orchestra Opcodes and Operators

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap16move, vbap4, vbap4move, vbap8, vbap8move, vbapz, vbapzmove

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

861

Chapter 15. Orchestra Opcodes and Operators

vbapz

vbapz — Writes a multi-channel audio signal to a ZAK array.

Description

Writes a multi-channel audio signal to a ZAK array.

Syntax

vbapz inumchnls, istartndx, asig, iazim [, ielev] [, ispread]

Initialization

inumchnls -- number of channels to write to the ZA array. Must be in the range 2 - 256.

istartndx -- first index or position in the ZA array to use

iazim -- azimuth angle of the virtual source

ielev (optional) -- elevation angle of the virtual source

ispread (optional) -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude
panning is used. When ispread is increased, the number of loudspeakers used in panning increases. If value is
100, the sound is applied to all loudspeakers.

Performance

asig -- audio signal to be panned

The opcode vbapz is the multiple channel analog of the opcodes like vbap4, working on inumchnls and using
a ZAK array for output.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

862

Chapter 15. Orchestra Opcodes and Operators

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap16move, vbap4, vbap4move, vbap8, vbap8move, vbaplsinit , vbapzmove

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

vbapzmove

vbapzmove — Writes a multi-channel audio signal to a ZAK array with moving virtual sources.

Description

Writes a multi-channel audio signal to a ZAK array with moving virtual sources.

Syntax

vbapzmove inumchnls, istartndx, asig, idur, ispread, ifldnum, ifld1, ifld2, [...]

Initialization

inumchnls -- number of channels to write to the ZA array. Must be in the range 2 - 256.

istartndx -- first index or position in the ZA array to use

ispread -- spreading of the virtual source (range 0 - 100). If value is zero, conventional amplitude panning is
used. When ispread is increased, the number of loudspeakers used in panning increases. If value is 100, the
sound is applied to all loudspeakers.

ifldnum -- number of fields (absolute value must be 2 or larger). If ifldnum is positive, the virtual source
movement is a polyline specified by given directions. Each transition is performed in an equal time interval. If
ifldnum is negative, specified angular velocities are applied to the virtual source during specified relative time
intervals (see below).

863

Chapter 15. Orchestra Opcodes and Operators

ifld1, ifld2, ... -- azimuth angles or angular velocities, and relative durations of movement phases (see below).

Performance

asig -- audio signal to be panned

The opcode vbapzmove is the multiple channel analog of the opcodes like vbap4move, working on inumchnls
and using a ZAK array for output.

Examples

Example 15-1. 2-D panning example with stationary virtual sources

sr = 4100
kr = 441
ksmps = 100
nchnls = 4
vbaplsinit 2, 6, 0, 45, 90, 135, 200, 245, 290, 315

instr 1
asig oscil 20000, 440, 1
a1,a2,a3,a4,a5,a6,a7,a8 vbap8 asig, p4, 0, 20 ;p4 = azimuth

;render twice with alternate outq statements
; to obtain two 4 channel .wav files:

outq a1,a2,a3,a4
; outq a5,a6,a7,a8

endin

Reference

Ville Pulkki: “Virtual Sound Source Positioning Using Vector Base Amplitude Panning” Journal of the Audio
Engineering Society, 1997 June, Vol. 45/6, p. 456.

See Also

vbap16, vbap16move, vbap4, vbap4move, vbap8, vbap8move, vbaplsinit , vbapz

Credits

Author: Ville Pulkki

Sibelius Academy Computer Music Studio

Laboratory of Acoustics and Audio Signal Processing

Helsinki University of Technology

Helsinki, Finland

May, 2000 (New in Csound Version 4.07)

John ffitch (vbapz, vbabzmove)

864

Chapter 15. Orchestra Opcodes and Operators

University of Bath/Codemist Ltd.

Bath, UK

May, 2000 (New in Csound Version 4.07)

vco

vco — Implementation of a band limited, analog modeled oscillator.

Description

Implementation of a band limited, analog modeled oscillator, based on integration of band limited impulses.
vco can be used to simulate a variety of analog wave forms.

Syntax

ar vco xamp, xcps, iwave, kpw [, ifn] [, imaxd] [, ileak] [, inyx] [, iphs]

Initialization

iwave -- determines the waveform:

• iwave = 1 - sawtooth

• iwave = 2 - Square/PWM

• iwave = 3 - triangle/Saw/Ramp

ifn (optional, default = 1) -- should be the table number of a of a stored sine wave.

imaxd (optional, default = 1) -- is the maximum delay time. A time of 1/ifqc may be required for the pwm and
triangle waveform. To bend the pitch down this value must be as large as 1/(minimum frequency).

ileak (optional, default = 0) -- If ileak is between zero and one (0 < ileak < 1) then ileak is used as the leaky
integrator value. Otherwise a leaky integrator value of .999 is used for the saw and square waves and .995 is
used for the triangle wave. This can be used to “flatten” the square wave or “straighten” the saw wave at low
frequencies by setting ileak to .99999 or a similar value. This should give a hollower sounding square wave.

inyx (optional, default = .5) -- This is used to determine the number of harmonics in the band limited pulse.
All overtones up to sr * inyx will be used. The default gives sr * .5 (sr / 2). For sr / 4 use inyx = .25. This can
generate a “fatter” sound in some cases.

iphs (optional, default = 0) -- This is a phase value. There is an artifact (bug-like feature) in vco which occurs
during the first half cycle of the square wave which causes the waveform to be greater in magnitude than all
others. The value of iphs has an effect on this artifact. In particular setting iphs to .5 will cause the first half
cycle of the square wave to resemble a small triangle wave. This may be more desirable than the large wave
artifact which is the current default.

Performance

kpw -- determines the pulse width when iwave is set to 2, and determines Saw/Ramp character when iwave
is set to 3. The value of kpw should be between 0 and 1. A value of .5 will generate a square wave or a triangle
wave depending on iwave.

865

Chapter 15. Orchestra Opcodes and Operators

xamp -- determines the amplitude

xcps -- is the frequency of the wave in cycles per second.

Examples

Here is an example of the vco opcode. It uses the files vco.orc and vco.sco.

Example 15-1. Example of the vco opcode.

/* vco.orc */
; Initialize the global variables.
sr = 44100
kr = 44100
ksmps = 1
nchnls = 1

; Instrument #1
instr 1

; Set the amplitude.
kamp = p4

; Set the frequency.
kcps = cpspch(p5)

; Select the wave form.
iwave = p6

; Set the pulse-width/saw-ramp character.
kpw init 0.5

; Use Table #1.
ifn = 1

; Generate the waveform.
asig vco kamp, kcps, iwave, kpw, ifn

; Output and amplification.
out asig

endin
/* vco.orc */

/* vco.sco */
; Table #1, a sine wave.
f 1 0 65536 10 1

; Define the score.
; p4 = raw amplitude (0-32767)
; p5 = frequency, in pitch-class notation.
; p6 = the waveform (1=Saw, 2=Square/PWM, 3=Tri/Saw-Ramp-Mod)
i 1 00 02 20000 05.00 1
i 1 02 02 20000 05.00 2
i 1 04 02 20000 05.00 3

i 1 06 02 20000 07.00 1
i 1 08 02 20000 07.00 2
i 1 10 02 20000 07.00 3

i 1 12 02 20000 09.00 1
i 1 14 02 20000 09.00 2
i 1 16 02 20000 09.00 3

866

Chapter 15. Orchestra Opcodes and Operators

i 1 18 02 20000 11.00 1
i 1 20 02 20000 11.00 2
i 1 22 02 20000 11.00 3
e
/* vco.sco */

Credits

Author: Hans Mikelson

December, 1998 (New in Csound version 3.50)

vcomb

vcomb — Variably reverberates an input signal with a “colored” frequency response.

Description

Variably reverberates an input signal with a “colored” frequency response.

Syntax

ar vcomb asig, krvt, xlpt, imaxlpt [, iskip] [, insmps]

Initialization

imaxlpt -- maximum loop time for klpt

iskip (optional, default=0) -- initial disposition of delay-loop data space (cf. reson). The default value is 0.

insmps (optional, default=0) -- delay amount, as a number of samples.

Performance

krvt -- the reverberation time (defined as the time in seconds for a signal to decay to 1/1000, or 60dB down
from its original amplitude).

xlpt -- variable loop time in seconds, same as ilpt in comb. Loop time can be as large as imaxlpt .

This filter reiterates input with an echo density determined by loop time ilpt . The attenuation rate is
independent and is determined by krvt , the reverberation time (defined as the time in seconds for a signal to
decay to 1/1000, or 60dB down from its original amplitude). Output will appear only after ilpt seconds.

See Also

alpass, comb, reverb, valpass

867

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: William “Pete” Moss (vcomb and valpass)

University of Texas at Austin

Austin, Texas USA

January 2002

vdelay

vdelay — An interpolating variable time delay.

Description

This is an interpolating variable time delay, it is not very different from the existing implementation (deltapi),
it is only easier to use.

Syntax

ar vdelay asig, adel, imaxdel [, iskip]

Initialization

imaxdel -- Maximum value of delay in milliseconds. If adel gains a value greater than imaxdel it is folded
around imaxdel. This should not happen.

iskip -- Skip initialization if present and nonzero

Performance

With this unit generator it is possible to do Doppler effects or chorusing and flanging.

asig -- Input signal.

adel -- Current value of delay in milliseconds. Note that linear functions have no pitch change effects. Fast
changing values of adel will cause discontinuities in the waveform resulting noise.

Examples

f1 0 8192 10 1
ims = 100 ; Maximum delay time in msec
a1 oscil 10000, 1737, 1 ; Make a signal
a2 oscil ims/2, 1/p3, 1 ; Make an LFO
a2 = a2 + ims/2 ; Offset the LFO so that it is positive
a3 vdelay a1, a2, ims ; Use the LFO to control delay time

out a3

Two important points here. First, the delay time must be always positive. And second, even though the delay
time can be controlled in k-rate, it is not advised to do so, since sudden time changes will create clicks.

868

Chapter 15. Orchestra Opcodes and Operators

See Also

vdelay3

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

vdelay3

vdelay3 — An variable time delay with cubic interpolation.

Description

vdelay3 is experimental. It is the same as vdelay except that it uses cubic interpolation. (New in Version 3.50.)

Syntax

ar vdelay3 asig, adel, imaxdel [, iskip]

Initialization

imaxdel -- Maximum value of delay in milliseconds. If adel gains a value greater than imaxdel it is folded
around imaxdel. This should not happen.

iskip (optional) -- Skip initialization if present and non-zero.

Performance

With this unit generator it is possible to do Doppler effects or chorusing and flanging.

asig -- Input signal.

adel -- Current value of delay in milliseconds. Note that linear functions have no pitch change effects. Fast
changing values of adel will cause discontinuities in the waveform resulting noise.

Examples

f1 0 8192 10 1
ims = 100 ; Maximum delay time in msec
a1 oscil 10000, 1737, 1 ; Make a signal
a2 oscil ims/2, 1/p3, 1 ; Make an LFO
a2 = a2 + ims/2 ; Offset the LFO so that it is positive
a3 vdelay a1, a2, ims ; Use the LFO to control delay time

out a3

869

Chapter 15. Orchestra Opcodes and Operators

Two important points here. First, the delay time must be always positive. And second, even though the delay
time can be controlled in k-rate, it is not advised to do so, since sudden time changes will create clicks.

See Also

vdelay

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

vdelayx

vdelayx — A variable delay opcode with high quality interpolation.

Description

A variable delay opcode with high quality interpolation.

Syntax

aout vdelayx ain, adl, imd, iws [, ist]

Initialization

aout -- output audio signal

ain -- input audio signal

adl -- delay time in seconds

imd -- max. delay time (seconds)

iws -- interpolation window size (see below)

ist (optional) -- skip initialization if not zero

Performance

This opcode uses high quality (and slow) interpolation, that is much more accurate than the currently
available linear and cubic interpolation. The iws parameter sets the number of input samples used for
calculating one output sample (allowed values are any integer multiply of 4 in the range 4 - 1024); higher
values mean better quality and slower speed.

Notes:

• Delay time is measured in seconds (unlike in vdelay and vdelay3), and must be a-rate.

• The minimum allowed delay is iws/2 samples.

870

Chapter 15. Orchestra Opcodes and Operators

• Using the same variables as input and output is allowed in these opcodes.

• In vdelayxw*, changing the delay time has some effects on output volume:

a = 1 / (1 + dt)

where a is the output gain, and dt is the change of delay time per seconds.

• These opcodes are best used in the double-precision version of Csound.

See Also

vdelayxq, vdelayxs, vdelayxw, vdelayxwq, vdelayxws

vdelayxq

vdelayxq — A 4-channel variable delay opcode with high quality interpolation.

Description

A 4-channel variable delay opcode with high quality interpolation.

Syntax

aout1, aout2, aout3, aout4 vdelayxq ain1, ain2, ain3, ain4, adl, imd, iws [, ist]

Initialization

aout1, aout2, aout3, aout4 -- output audio signals.

ain1, ain2, ain3, ain4 -- input audio signals.

adl -- delay time in seconds

imd -- max. delay time (seconds)

iws -- interpolation window size (see below)

ist (optional) -- skip initialization if not zero

Performance

This opcode uses high quality (and slow) interpolation, that is much more accurate than the currently
available linear and cubic interpolation. The iws parameter sets the number of input samples used for
calculating one output sample (allowed values are any integer multiply of 4 in the range 4 - 1024); higher
values mean better quality and slower speed.

The multichannel opcodes (eg. vdelayxq) allow delaying 2 or 4 variables at once (stereo or quad signals); this
is much more efficient than using separate opcodes for each channel.

Notes:

871

Chapter 15. Orchestra Opcodes and Operators

• Delay time is measured in seconds (unlike in vdelay and vdelay3), and must be a-rate.

• The minimum allowed delay is iws/2 samples.

• Using the same variables as input and output is allowed in these opcodes.

• In vdelayxw*, changing the delay time has some effects on output volume:

a = 1 / (1 + dt)

where a is the output gain, and dt is the change of delay time per seconds.

• These opcodes are best used in the double-precision version of Csound.

See Also

vdelayx, vdelayxs, vdelayxw, vdelayxwq, vdelayxws

vdelayxs

vdelayxs — A stereo variable delay opcode with high quality interpolation.

Description

A stereo variable delay opcode with high quality interpolation.

Syntax

aout1, aout2 vdelayxs ain1, ain2, adl, imd, iws [, ist]

Initialization

aout1, aout2 -- output audio signals

ain1, ain2 -- input audio signals

adl -- delay time in seconds

imd -- max. delay time (seconds)

iws -- interpolation window size (see below)

ist -- skip initialization if not zero

Performance

This opcode uses high quality (and slow) interpolation, that is much more accurate than the currently
available linear and cubic interpolation. The iws parameter sets the number of input samples used for
calculating one output sample (allowed values are any integer multiply of 4 in the range 4 - 1024); higher
values mean better quality and slower speed.

The multichannel opcodes (eg. vdelayxq) allow delaying 2 or 4 variables at once (stereo or quad signals); this
is much more efficient than using separate opcodes for each channel.

872

Chapter 15. Orchestra Opcodes and Operators

Notes:

• Delay time is measured in seconds (unlike in vdelay and vdelay3), and must be a-rate.

• The minimum allowed delay is iws/2 samples.

• Using the same variables as input and output is allowed in these opcodes.

• In vdelayxw*, changing the delay time has some effects on output volume:

a = 1 / (1 + dt)

where a is the output gain, and dt is the change of delay time per seconds.

• These opcodes are best used in the double-precision version of Csound.

See Also

vdelayx, vdelayxq, vdelayxw, vdelayxwq, vdelayxws

vdelayxw

vdelayxw — Variable delay opcodes with high quality interpolation.

Description

Variable delay opcodes with high quality interpolation.

Syntax

aout vdelayxw ain, adl, imd, iws [, ist]

Initialization

aout -- output audio signal

ain -- input audio signal

adl -- delay time in seconds

imd -- max. delay time (seconds)

iws -- interpolation window size (see below)

ist -- skip initialization if not zero

Performance

These opcodes use high quality (and slow) interpolation, that is much more accurate than the currently
available linear and cubic interpolation. The iws parameter sets the number of input samples used for
calculating one output sample (allowed values are any integer multiply of 4 in the range 4 - 1024); higher
values mean better quality and slower speed.

873

Chapter 15. Orchestra Opcodes and Operators

The vdelayxw opcodes change the position of the write tap in the delay line (unlike all other delay ugens that
move the read tap), and are most useful for implementing Doppler effects where the position of the listener is
fixed, and the sound source is moving.

Notes:

• Delay time is measured in seconds (unlike in vdelay and vdelay3), and must be a-rate.

• The minimum allowed delay is iws/2 samples.

• Using the same variables as input and output is allowed in these opcodes.

• In vdelayxw*, changing the delay time has some effects on output volume:

a = 1 / (1 + dt)

where a is the output gain, and dt is the change of delay time per seconds.

• These opcodes are best used in the double-precision version of Csound.

See Also

vdelayx, vdelayxq, vdelayxs, vdelayxwq, vdelayxws

vdelayxwq

vdelayxwq — Variable delay opcodes with high quality interpolation.

Description

Variable delay opcodes with high quality interpolation.

Syntax

aout1, aout2, aout3, aout4 vdelayxwq ain1, ain2, ain3, ain4, adl, imd, iws [, ist]

Initialization

ain1, ain2, ain3, ain4 -- input audio signals

aout1, aout2, aout3, aout4 -- output audio signals

adl -- delay time in seconds

imd -- max. delay time (seconds)

iws -- interpolation window size (see below)

ist -- skip initialization if not zero

874

Chapter 15. Orchestra Opcodes and Operators

Performance

These opcodes use high quality (and slow) interpolation, that is much more accurate than the currently
available linear and cubic interpolation. The iws parameter sets the number of input samples used for
calculating one output sample (allowed values are any integer multiply of 4 in the range 4 - 1024); higher
values mean better quality and slower speed.

The vdelayxw opcodes change the position of the write tap in the delay line (unlike all other delay ugens that
move the read tap), and are most useful for implementing Doppler effects where the position of the listener is
fixed, and the sound source is moving.

The multichannel opcodes (eg. vdelayxq) allow delaying 2 or 4 variables at once (stereo or quad signals); this
is much more efficient than using separate opcodes for each channel.

Notes:

• Delay time is measured in seconds (unlike in vdelay and vdelay3), and must be a-rate.

• The minimum allowed delay is iws/2 samples.

• Using the same variables as input and output is allowed in these opcodes.

• In vdelayxw*, changing the delay time has some effects on output volume:

a = 1 / (1 + dt)

where a is the output gain, and dt is the change of delay time per seconds.

• These opcodes are best used in the double-precision version of Csound.

See Also

vdelayx, vdelayxq, vdelayxs, vdelayxw, vdelayxws

vdelayxws

vdelayxws — Variable delay opcodes with high quality interpolation.

Description

Variable delay opcodes with high quality interpolation.

Syntax

aout1, aout2 vdelayxws ain1, ain2, adl, imd, iws [, ist]

Initialization

ain1, ain2 -- input audio signals

aout1, aout2 -- output audio signals

adl -- delay time in seconds

875

Chapter 15. Orchestra Opcodes and Operators

imd -- max. delay time (seconds)

iws -- interpolation window size (see below)

ist -- skip initialization if not zero

Performance

These opcodes use high quality (and slow) interpolation, that is much more accurate than the currently
available linear and cubic interpolation. The iws parameter sets the number of input samples used for
calculating one output sample (allowed values are any integer multiply of 4 in the range 4 - 1024); higher
values mean better quality and slower speed.

The vdelayxw opcodes change the position of the write tap in the delay line (unlike all other delay ugens that
move the read tap), and are most useful for implementing Doppler effects where the position of the listener is
fixed, and the sound source is moving.

The multichannel opcodes (eg. vdelayx) allow delaying 2 or 4 variables at once (stereo or quad signals); this is
much more efficient than using separate opcodes for each channel.

Notes:

• Delay time is measured in seconds (unlike in vdelay and vdelay3), and must be a-rate.

• The minimum allowed delay is iws/2 samples.

• Using the same variables as input and output is allowed in these opcodes.

• In vdelayxw*, changing the delay time has some effects on output volume:

a = 1 / (1 + dt)

where a is the output gain, and dt is the change of delay time per seconds.

• These opcodes are best used in the double-precision version of Csound.

See Also

vdelayx, vdelayxq, vdelayxs, vdelayxw, vdelayxwq

veloc

veloc — Get the velocity from a MIDI event.

Description

Get the velocity from a MIDI event.

Syntax

ival veloc [ilow] [, ihigh]

876

Chapter 15. Orchestra Opcodes and Operators

Initialization

ilow, ihigh -- low and hi ranges for mapping

Performance

Get the MIDI byte value (0 - 127) denoting the velocity of the current event.

Examples

Here is an example of the veloc opcode. It uses the files veloc.orc and veloc.sco.

Example 15-1. Example of the veloc opcode.

/* veloc.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

i1 veloc

print i1
endin
/* veloc.orc */

/* veloc.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for 12 seconds.
i 1 0 12
e
/* veloc.sco */

See Also

aftouch, ampmidi, cpsmidi, cpsmidib, midictrl, notnum, octmidi, octmidib, pchbend, pchmidi, pchmidib

Credits

Author: Barry L. Vercoe - Mike Berry

MIT - Mills

May 1997

877

Chapter 15. Orchestra Opcodes and Operators

vibes

vibes — Physical model related to the striking of a metal block.

Description

Audio output is a tone related to the striking of a metal block as found in a vibraphone. The method is a
physical model developed from Perry Cook, but re-coded for Csound.

Syntax

ar vibes kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec

Initialization

ihrd -- the hardness of the stick used in the strike. A range of 0 to 1 is used. 0.5 is a suitable value.

ipos -- where the block is hit, in the range 0 to 1.

imp -- a table of the strike impulses. The file marmstk1.wav is a suitable function from measurements and
can be loaded with a GEN01 table. It is also available at
ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

ivfn -- shape of vibrato, usually a sine table, created by a function

idec -- time before end of note when damping is introduced

idoubles (optional) -- percentage of double strikes. Default is 40%.

itriples (optional) -- percentage of triple strikes. Default is 20%.

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

Examples

Here is an example of the vibes opcode. It uses the files vibes.orc, vibes.sco, and marmstk1.wav.

Example 15-1. Example of the vibes opcode.

/* vibes.orc */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; kamp = 20000
; kfreq = 440
; ihrd = 0.5

878

Chapter 15. Orchestra Opcodes and Operators

; ipos = 0.561
; imp = 1
; kvibf = 6.0
; kvamp = 0.05
; ivibfn = 2
; idec = 0.1

a1 vibes 20000, 440, 0.5, 0.561, 1, 6.0, 0.05, 2, 0.1

out a1
endin
/* vibes.orc */

/* vibes.sco */
; Table #1, the "marmstk1.wav" audio file.
f 1 0 256 1 "marmstk1.wav" 0 0 0
; Table #2, a sine wave for the vibrato.
f 2 0 128 10 1

; Play Instrument #1 for four seconds.
i 1 0 4
e
/* vibes.sco */

See Also

marimba

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

vibr

vibr — Easier-to-use user-controllable vibrato.

Description

Easier-to-use user-controllable vibrato.

Syntax

kout vibr kAverageAmp, kAverageFreq, ifn

879

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifn -- Number of vibrato table. It normally contains a sine or a triangle wave.

Performance

kAverageAmp -- Average amplitude value of vibrato

kAverageFreq -- Average frequency value of vibrato (in cps)

vibr is an easier-to-use version of vibrato. It has the same generation-engine of vibrato, but the parameters
corresponding to missing input arguments are hard-coded to default values.

Examples

Here is an example of the vibr opcode. It uses the files vibr.orc and vibr.sco.

Example 15-1. Example of the vibr opcode.

/* vibr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Create a vibrato waveform.
kaverageamp init 7500
kaveragefreq init 5
ifn = 1
kvamp vibr kaverageamp, kaveragefreq, ifn

; Generate a tone including the vibrato.
a1 oscili 10000+kvamp, 440, 2

out a1
endin
/* vibr.orc */

/* vibr.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave for the vibrato.
f 1 0 256 10 1
; Table #1, a sine wave for the oscillator.
f 2 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* vibr.sco */

880

Chapter 15. Orchestra Opcodes and Operators

See Also

jitter , jitter2, vibrato

Credits

Author: Gabriel Maldonado

New in Version 4.15

vibrato

vibrato — Generates a natural-sounding user-controllable vibrato.

Description

Generates a natural-sounding user-controllable vibrato.

Syntax

kout vibrato kAverageAmp, kAverageFreq, kRandAmountAmp, kRandAmountFreq, kAmpMinRate,
kAmpMaxRate, kcpsMinRate, kcpsMaxRate, ifn [, iphs]

Initialization

ifn -- Number of vibrato table. It normally contains a sine or a triangle wave.

iphs -- (optional) Initial phase of table, expressed as a fraction of a cycle (0 to 1). A negative value will cause
phase initialization to be skipped. The default value is 0.

Performance

kAverageAmp -- Average amplitude value of vibrato

kAverageFreq -- Average frequency value of vibrato (in cps)

kRandAmountAmp -- Amount of random amplitude deviation

kRandAmountFreq -- Amount of random frequency deviation

kAmpMinRate -- Minimum frequency of random amplitude deviation segments (in cps)

kAmpMaxRate -- Maximum frequency of random amplitude deviation segments (in cps)

kcpsMinRate -- Minimum frequency of random frequency deviation segments (in cps)

kcpsMaxRate -- Maximum frequency of random frequency deviation segments (in cps)

vibrato outputs a natural-sounding user-controllable vibrato. The concept is to randomly vary both frequency
and amplitude of the oscillator generating the vibrato, in order to simulate the irregularities of a real vibrato.

In order to have a total control of these random variations, several input arguments are present. Random
variations are obtained by two separated segmented lines, the first controlling amplitude deviations, the
second the frequency deviations. Average duration of each segment of each line can be shortened or enlarged
by the arguments kAmpMinRate, kAmpMaxRate, kcpsMinRate, kcpsMaxRate, and the deviation from the
average amplitude and frequency values can be independently adjusted by means of kRandAmountAmp and
kRandAmountFreq.

881

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the vibrato opcode. It uses the files vibrato.orc and vibrato.sco.

Example 15-1. Example of the vibrato opcode.

/* vibrato.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Create a vibrato waveform.
kaverageamp init 2500
kaveragefreq init 6
krandamountamp init 0.3
krandamountfreq init 0.5
kampminrate init 3
kampmaxrate init 5
kcpsminrate init 3
kcpsmaxrate init 5
ifn = 1
kvamp vibrato kaverageamp, kaveragefreq, krandamountamp, \

krandamountfreq, kampminrate, kampmaxrate, \
kcpsminrate, kcpsmaxrate, ifn

; Generate a tone including the vibrato.
a1 oscili 10000+kvamp, 440, 2

out a1
endin
/* vibrato.orc */

/* vibrato.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave for the vibrato.
f 1 0 256 10 1
; Table #1, a sine wave for the oscillator.
f 2 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
e
/* vibrato.sco */

See Also

jitter , jitter2, vibr

882

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Gabriel Maldonado

New in Version 4.15

vincr

vincr — Accumulates audio signals.

Description

vincr increments an audio variable of another signal, i.e. accumulates output.

Syntax

vincr asig, aincr

Performance

asig -- audio variable to be incremented

aincr -- incrementing signal

vincr (variable increment) and clear are intended to be used together. vincr stores the result of the sum of two
audio variables into the first variable itself (which is intended to be used as an accumulator in polyphony).
The accumulator variable can be used for output signal by means of fout opcode. After the disk writing
operation, the accumulator variable should be set to zero by means of clear opcode (or it will explode).

See Also

clear

Credits

Author: Gabriel Maldonado

Italy

1999

New in Csound version 3.56

vlowres

vlowres — A bank of filters in which the cutoff frequency can be separated under user control.

883

Chapter 15. Orchestra Opcodes and Operators

Description

A bank of filters in which the cutoff frequency can be separated under user control

Syntax

ar vlowres asig, kfco, kres, iord, ksep

Initialization

iord -- total number of filters (1 to 10)

Performance

asig -- input signal

kfco -- frequency cutoff (not in Hz)

ksep -- frequency cutoff separation for each filter

vlowres (variable resonant lowpass filter) allows a variable response curve in resonant filters. It can be
thought of as a bank of lowpass resonant filters, each with the same resonance, serially connected. The
frequency cutoff of each filter can vary with the kcfo and ksep parameters.

Examples

Here is an example of the vlowres opcode. It uses the files vlowres.orc, vlowres.sco, and beats.wav.

Example 15-1. Example of the vlowres opcode.

/* vlowres.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Use a nice sawtooth waveform.
asig vco 32000, 220, 1

; Vary the cutoff frequency from 30 to 300 Hz.
kfco line 30, p3, 300
kres = 25
iord = 2
ksep = 20

; Apply the filters.
avlr vlowres asig, kfco, kres, iord, ksep

; It gets loud, so clip the output amplitude to 30,000.
a1 clip avlr, 1, 30000
out a1

endin
/* vlowres.orc */

/* vlowres.sco */

884

Chapter 15. Orchestra Opcodes and Operators

/* Written by Kevin Conder */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* vlowres.sco */

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.49

voice

voice — An emulation of a human voice.

Description

An emulation of a human voice.

Syntax

ar voice kamp, kfreq, kphoneme, kform, kvibf, kvamp, ifn, ivfn

Initialization

ifn, ivfn -- two table numbers containing the carrier waveform and the vibrato waveform. The files
impuls20.aiff , ahh.aiff , eee.aiff , or ooo.aiff are suitable for the first of these, and a sine wave for the second.
These files are available from ftp://ftp.cs.bath.ac.uk/pub/dream/documentation/sounds/modelling/ .

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played. It can be varied in performance.

kphoneme -- an integer in the range 0 to 16, which select the formants for the sounds:

• “eee”, “ihh”, “ehh”, “aaa”,

• “ahh”, “aww”, “ohh”, “uhh”,

• “uuu”, “ooo”, “rrr”, “lll”,

• “mmm”, “nnn”, “nng”, “ngg”.

885

Chapter 15. Orchestra Opcodes and Operators

At present the phonemes

• “fff”, “sss”, “thh”, “shh”,

• “xxx”, “hee”, “hoo”, “hah”,

• “bbb”, “ddd”, “jjj”, “ggg”,

• “vvv”, “zzz”, “thz”, “zhh”

are not available (!)

kform -- Gain on the phoneme. values 0.0 to 1.2 recommended.

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

Examples

Here is an example of the voice opcode. It uses the files voice.orc, voice.sco, and impuls20.aiff .

Example 15-1. Example of the voice opcode.

/* voice.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 22050
kr = 2205
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 3
kfreq = 0.8
kphoneme = 6
kform = 0.488
kvibf = 0.04
kvamp = 1
ifn = 1
ivfn = 2

av voice kamp, kfreq, kphoneme, kform, kvibf, kvamp, ifn, ivfn

; It tends to get loud, so clip voice’s amplitude at 30,000.
a1 clip av, 2, 30000
out a1

endin
/* voice.orc */

/* voice.sco */
/* Written by Kevin Conder */
; Table #1, an audio file for the carrier waveform.
f 1 0 256 1 "impuls20.aiff" 0 0 0
; Table #2, a sine wave for the vibrato waveform.
f 2 0 256 10 1

; Play Instrument #1 for a half-second.
i 1 0 0.5
e
/* voice.sco */

886

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

vpvoc

vpvoc — Implements signal reconstruction using an fft-based phase vocoder and an extra envelope.

Description

Implements signal reconstruction using an fft-based phase vocoder and an extra envelope.

Syntax

ar vpvoc ktimpnt, kfmod, ifile [, ispecwp] [, ifn]

Initialization

ifile -- the pvoc number (n in pvoc.n) or the name in quotes of the analysis file made using pvanal. (See pvoc.)

ispecwp (optional, default=0) -- if non-zero, attempts to preserve the spectral envelope while its frequency
content is varied by kfmod. The default value is zero.

ifn (optional, default=0) -- optional function table containing control information for vpvoc. If ifn = 0, control
is derived internally from a previous tableseg or tablexseg unit. Default is 0. (New in Csound version 3.59)

Performance

ktimpnt -- The passage of time, in seconds, through the analysis file. ktimpnt must always be positive, but
can move forwards or backwards in time, be stationary or discontinuous, as a pointer into the analysis file.

kfmod -- a control-rate transposition factor: a value of 1 incurs no transposition, 1.5 transposes up a perfect
fifth, and .5 down an octave.

This implementation of pvoc was orignally written by Dan Ellis. It is based in part on the system of Mark
Dolson, but the pre-analysis concept is new. The spectral extraction and amplitude gating (new in Csound
version 3.56) were added by Richard Karpen based on functions in SoundHack by Tom Erbe.

vpvoc is identical to pvoc except that it takes the result of a previous tableseg or tablexseg and uses the
resulting function table (passed internally to the vpvoc), as an envelope over the magnitudes of the analysis
data channels. Optionally, a table specified by ifn may be used.

The result is spectral enveloping. The function size used in the tableseg should be framesize/2, where
framesize is the number of bins in the phase vocoder analysis file that is being used by the vpvoc. Each

887

Chapter 15. Orchestra Opcodes and Operators

location in the table will be used to scale a single analysis bin. By using different functions for ifn1, ifn2, etc..
in the tableseg , the spectral envelope becomes a dynamically changing one. See also tableseg and tablexseg .

Examples

The following example, using vpvoc, shows the use of functions such as

f 1 0 256 5 .001 128 1 128 .001
f 2 0 256 5 1 128 .001 128 1
f 3 0 256 7 1 256 1

to scale the amplitudes of the separate analysis bins.

ktime line 0, p3,3 ; time pointer, in seconds, into file
tablexseg 1, p3*.5, 2, p3*.5, 3

apv vpvoc ktime,1, "pvoc.file"

The result would be a time-varying “spectral envelope” applied to the phase vocoder analysis data. Since this
amplifies or attenuates the amount of signal at the frequencies that are paired with the amplitudes which are
scaled by these functions, it has the effect of applying very accurate filters to the signal. In this example the
first table would have the effect of a band-pass filter, gradually be band-rejected over half the note’s duration,
and then go towards no modification of the magnitudes over the second half.

See Also

pvoc

Credits

Author: Dan Ellis

Richard Karpen

Seattle, Wash

1997

waveset

waveset — A simple time stretch by repeating cycles.

Description

A simple time stretch by repeating cycles.

888

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar waveset ain, krep [, ilen]

Initialization

ilen (optional, default=0) -- the length (in samples) of the audio signal. If ilen is set to 0, it defaults to half the
given note length (p3).

Performance

ain -- the input audio signal.

krep -- the number of times the cycle is repeated.

The input is read and each complete cycle (two zero-crossings) is repeated krep times.

There is an internal buffer as the output is clearly slower that the input. Some care is taken if the buffer is too
short, but there may be strange effects.

Examples

Here is an example of the waveset opcode. It uses the files waveset.orc, waveset.sco, and beats.wav.

Example 15-1. Example of the waveset opcode.

/* waveset.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1 - play an audio file.
instr 1

asig soundin "beats.wav"
out asig

endin

; Instrument #2 - stretch the audio file with waveset.
instr 2

asig soundin "beats.wav"
a1 waveset asig, 2

out a1
endin
/* waveset.orc */

/* waveset.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for four seconds.
i 2 3 4
e
/* waveset.sco */

889

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch

February 2001

New in version 4.11

weibull

weibull — Weibull distribution random number generator (positive values only).

Description

Weibull distribution random number generator (positive values only). This is an x-class noise generator

Syntax

ar weibull ksigma, ktau

ir weibull ksigma, ktau

kr weibull ksigma, ktau

Performance

ksigma -- scales the spread of the distribution.

ktau -- if greater than one, numbers near ksigma are favored. If smaller than one, small values are favored. If t
equals 1, the distribution is exponential. Outputs only positive numbers.

For more detailed explanation of these distributions, see:

1. C. Dodge - T.A. Jerse 1985. Computer music. Schirmer books. pp.265 - 286

2. D. Lorrain. A panoply of stochastic cannons. In C. Roads, ed. 1989. Music machine . Cambridge,
Massachusetts: MIT press, pp. 351 - 379.

Examples

Here is an example of the weibull opcode. It uses the files weibull.orc and weibull.sco.

Example 15-1. Example of the weibull opcode.

/* weibull.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

890

Chapter 15. Orchestra Opcodes and Operators

; Instrument #1.
instr 1

; Generate a random number in a Weibull distribution.
; ksigma = 1
; ktau = 1

i1 weibull 1, 1

print i1
endin
/* weibull.orc */

/* weibull.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
e
/* weibull.sco */

Its output should include lines like this:

instr 1: i1 = 1.834

See Also

betarand, bexprnd, cauchy, exprand, gauss, linrand, pcauchy, poisson, trirand, unirand

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

wgbow

wgbow— Creates a tone similar to a bowed string.

Description

Audio output is a tone similar to a bowed string, using a physical model developed from Perry Cook, but
re-coded for Csound.

Syntax

ar wgbow kamp, kfreq, kpres, krat, kvibf, kvamp, ifn [, iminfreq]

891

Chapter 15. Orchestra Opcodes and Operators

Initialization

ifn -- table of shape of vibrato, usually a sine table, created by a function

iminfreq (optional) -- lowest frequency at which the instrument will play. If it is omitted it is taken to be the
same as the initial kfreq. If iminfreq is negative, initialization will be skipped.

Performance

A note is played on a string-like instrument, with the arguments as below.

kamp -- amplitude of note.

kfreq -- frequency of note played.

kpres -- a parameter controlling the pressure of the bow on the string. Values should be about 3. The useful
range is approximately 1 to 5.

krat -- the position of the bow along the string. Usual playing is about 0.127236. The suggested range is 0.025
to 0.23.

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

Examples

Here is an example of the wgbow opcode. It uses the files wgbow.orc and wgbow.sco.

Example 15-1. Example of the wgbow opcode.

/* wgbow.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 31129.60
kfreq = 440
kpres = 3.0
krat = 0.127236
kvibf = 6.12723
ifn = 1

; Create an amplitude envelope for the vibrato.
kv linseg 0, 0.5, 0, 1, 1, p3-0.5, 1
kvamp = kv * 0.01

a1 wgbow kamp, kfreq, kpres, krat, kvibf, kvamp, ifn
out a1

endin
/* wgbow.orc */

/* wgbow.sco */
; Table #1, a sine wave.
f 1 0 128 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e

892

Chapter 15. Orchestra Opcodes and Operators

/* wgbow.sco */

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

wgbowedbar

wgbowedbar — A physical model of a bowed bar.

Description

A physical model of a bowed bar, belonging to the Perry Cook family of waveguide instruments.

Syntax

ar wgbowedbar kamp, kfreq, kpos, kbowpres, kgain [, iconst] [, itvel] [, ibowpos] [, ilow]

Initialization

iconst (optional, default=0) -- an integration constant. Default is zero.

itvel (optional, default=0) -- either 0 or 1. When ktvel = 0, the bow velocity follows an ADSR style trajectory.
When ktvel = 1, the value of the bow velocity decays in an exponentially.

ibowpos (optional, default=0) -- the position on the bow, which affects the bow velocity trajectory.

ilow (optional, default=0) -- lowest frequency required

Performance

kamp -- amplitude of signal

kfreq -- frequency of signal

kpos -- position of the bow on the bar, in the range 0 to 1

kbowpres -- pressure of the bow (as in wgbowed)

kgain -- gain of filter. A value of about 0.809 is suggested.

893

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the wgbowedbar opcode. It uses the files wgbowedbar.orc and wgbowedbar.sco.

Example 15-1. Example of the wgbowedbar opcode.

/* wgbowedbar.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
; pos = [0, 1]
; bowpress = [1, 10]
; gain = [0.8, 1]
; intr = [0,1]
; trackvel = [0, 1]
; bowpos = [0, 1]

kb line 0.5, p3, 0.1
kp line 0.6, p3, 0.7
kc line 1, p3, 1

a1 wgbowedbar p4, cpspch(p5), kb, kp, 0.995, p6, 0

out a1
endin

/* wgbowedbar.orc */

/* wgbowedbar.sco */
i1 0 3 32000 7.00 0
e

/* wgbowedbar.sco */

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 4.07

wgbrass

wgbrass — Creates a tone related to a brass instrument.

894

Chapter 15. Orchestra Opcodes and Operators

Description

Audio output is a tone related to a brass instrument, using a physical model developed from Perry Cook, but
re-coded for Csound.

Syntax

ar wgbrass kamp, kfreq, ktens, iatt, kvibf, kvamp, ifn [, iminfreq]

Initialization

iatt -- time taken to reach full pressure

ifn -- table of shape of vibrato, usually a sine table, created by a function

iminfreq -- lowest frequency at which the instrument will play. If it is omitted it is taken to be the same as the
initial kfreq. If iminfreq is negative, initialization will be skipped.

Performance

A note is played on a brass-like instrument, with the arguments as below.

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

ktens -- lip tension of the player. Suggested value is about 0.4

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

NOTE
This is rather poor, and at present uncontrolled. Needs revision, and possibly more parameters.

Examples

Here is an example of the wgbrass opcode. It uses the files wgbrass.orc and wgbrass.sco.

Example 15-1. Example of the wgbrass opcode.

/* wgbrass.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 31129.60
kfreq = 440
ktens = 0.4
iatt = 0.1
kvibf = 6.137
ifn = 1

; Create an amplitude envelope for the vibrato.

895

Chapter 15. Orchestra Opcodes and Operators

kvamp line 0, p3, 0.5

a1 wgbrass kamp, kfreq, ktens, iatt, kvibf, kvamp, ifn
out a1

endin
/* wgbrass.orc */

/* wgbrass.sco */
; Table #1, a sine wave.
f 1 0 128 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* wgbrass.sco */

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

wgclar

wgclar — Creates a tone similar to a clarinet.

Description

Audio output is a tone similar to a clarinet, using a physical model developed from Perry Cook, but re-coded
for Csound.

Syntax

ar wgclar kamp, kfreq, kstiff, iatt, idetk, kngain, kvibf, kvamp, ifn [, iminfreq]

Initialization

iatt -- time in seconds to reach full blowing pressure. 0.1 seems to correspond to reasonable playing. A longer
time gives a definite initial wind sound.

idetk -- time in seconds taken to stop blowing. 0.1 is a smooth ending

ifn -- table of shape of vibrato, usually a sine table, created by a function

iminfreq (optional) -- lowest frequency at which the instrument will play. If it is omitted it is taken to be the
same as the initial kfreq. If iminfreq is negative, initialization will be skipped.

896

Chapter 15. Orchestra Opcodes and Operators

Performance

A note is played on a clarinet-like instrument, with the arguments as below.

kamp -- Amplitude of note.

kfreq -- Frequency of note played.

kstiff -- a stiffness parameter for the reed. Values should be negative, and about -0.3. The useful range is
approximately -0.44 to -0.18.

kngain -- amplitude of the noise component, about 0 to 0.5

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

Examples

Here is an example of the wgclar opcode. It uses the files wgclar.orc and wgclar.sco.

Example 15-1. Example of the wgclar opcode.

/* wgclar.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp init 31129.60
kfreq = 440
kstiff = -0.3
iatt = 0.1
idetk = 0.1
kngain = 0.2
kvibf = 5.735
kvamp = 0.1
ifn = 1

a1 wgclar kamp, kfreq, kstiff, iatt, idetk, kngain, kvibf, kvamp, ifn

out a1
endin
/* wgclar.orc */

/* wgclar.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
e
/* wgclar.sco */

897

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

wgflute

wgflute — Creates a tone similar to a flute.

Description

Audio output is a tone similar to a flute, using a physical model developed from Perry Cook, but re-coded for
Csound.

Syntax

ar wgflute kamp, kfreq, kjet, iatt, idetk, kngain, kvibf, kvamp, ifn [, iminfreq] [, ijetrf] [, iendrf]

Initialization

iatt -- time in seconds to reach full blowing pressure. 0.1 seems to correspond to reasonable playing.

idetk -- time in seconds taken to stop blowing. 0.1 is a smooth ending

ifn -- table of shape of vibrato, usually a sine table, created by a function

iminfreq (optional) -- lowest frequency at which the instrument will play. If it is omitted it is taken to be the
same as the initial kfreq. If iminfreq is negative, initialization will be skipped.

ijetrf (optional, default=0.5) -- amount of reflection in the breath jet that powers the flute. Default value is 0.5.

iendrf (optional, default=0.5) -- reflection coefficient of the breath jet. Default value is 0.5. Both ijetrf and
iendrf are used in the calculation of the pressure differential.

Performance

kamp -- Amplitude of note.

kfreq -- Frequency of note played. While it can be varied in performance, I have not tried it.

kjet -- a parameter controlling the air jet. Values should be positive, and about 0.3. The useful range is
approximately 0.08 to 0.56.

kngain -- amplitude of the noise component, about 0 to 0.5

kvibf -- frequency of vibrato in Hertz. Suggested range is 0 to 12

kvamp -- amplitude of the vibrato

898

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the wgflute opcode. It uses the files wgflute.orc and wgflute.sco.

Example 15-1. Example of the wgflute opcode.

/* wgflute.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

kamp = 31129.60
kfreq = 440
kjet = 0.32
iatt = 0.1
idetk = 0.1
kngain = 0.15
kvibf = 5.925
kvamp = 0.05
ifn = 1

a1 wgflute kamp, kfreq, kjet, iatt, idetk, kngain, kvibf, kvamp, ifn
out a1

endin
/* wgflute.orc */

/* wgflute.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* wgflute.sco */

Credits

Author: John ffitch (after Perry Cook)

University of Bath, Codemist Ltd.

Bath, UK

New in Csound version 3.47

wgpluck

wgpluck — A high fidelity simulation of a plucked string.

899

Chapter 15. Orchestra Opcodes and Operators

Description

A high fidelity simulation of a plucked string, using interpolating delay-lines.

Syntax

ar wgpluck icps, iamp, kpick, iplk, idamp, ifilt, axcite

Initialization

icps -- frequency of plucked string

iamp -- amplitude of string pluck

iplk -- point along the string, where it is plucked, in the range of 0 to 1. 0 = no pluck

idamp -- damping of the note. This controls the overall decay of the string. The greater the value of idamp1,
the faster the decay. Negative values will cause an increase in output over time.

ifilt -- control the attenuation of the filter at the bridge. Higher values cause the higher harmonics to decay
faster.

Performance

kpick -- proportion of the way along the point to sample the output.

axcite -- a signal which excites the string.

A string of frequency icps is plucked with amplitude iamp at point iplk. The decay of the virtual string is
controlled by idamp and ifilt which simulate the bridge. The oscillation is sampled at the point kpick, and
excited by the signal axcite.

Examples

The following example produces a moderately long note with rapidly decaying upper partials. It uses the files
wgpluck.orc and wgpluck.sco.

Example 15-1. An example of the wgpluck opcode.

/* wgpluck.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

icps = 220
iamp = 20000
kpick = 0.5
iplk = 0
idamp = 10
ifilt = 1000

axcite oscil 1, 1, 1
apluck wgpluck icps, iamp, kpick, iplk, idamp, ifilt, axcite

out apluck
endin

900

Chapter 15. Orchestra Opcodes and Operators

/* wgpluck.orc */

/* wgpluck.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* wgpluck.sco */

The following example produces a shorter, brighter note. It uses the files wgpluck_brighter.orc and
wgpluck_brighter.sco.

Example 15-2. An example of the wgpluck opcode with a shorter, brighter note.

/* wgpluck_brighter.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

icps = 220
iamp = 20000
kpick = 0.5
iplk = 0
idamp = 30
ifilt = 10

axcite oscil 1, 1, 1
apluck wgpluck icps, iamp, kpick, iplk, idamp, ifilt, axcite

out apluck
endin
/* wgpluck_brighter.orc */

/* wgpluck_brighter.sco */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
e
/* wgpluck_brighter.sco */

wgpluck2

wgpluck2 — Physical model of the plucked string.

901

Chapter 15. Orchestra Opcodes and Operators

Description

wgpluck2 is an implementation of the physical model of the plucked string, with control over the pluck point,
the pickup point and the filter. Based on the Karplus-Strong algorithm.

Syntax

ar wgpluck2 iplk, kamp, icps, kpick, krefl

Initialization

iplk -- The point of pluck is iplk, which is a fraction of the way up the string (0 to 1). A pluck point of zero
means no initial pluck.

icps -- The string plays at icps pitch.

Performance

kamp -- Amplitude of note.

kpick -- Proportion of the way along the string to sample the output.

krefl -- the coefficient of reflection, indicating the lossiness and the rate of decay. It must be strictly between 0
and 1 (it will complain about both 0 and 1).

Examples

Here is an example of the wgpluck2 opcode. It uses the files wgpluck2.orc and wgpluck2.sco.

Example 15-1. Example of the wgpluck2 opcode.

/* wgpluck2.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

iplk = 0.75
kamp = 30000
icps = 220
kpick = 0.75
krefl = 0.5

apluck wgpluck2 iplk, kamp, icps, kpick, krefl

out apluck
endin
/* wgpluck2.orc */

/* wgpluck2.sco */
; Play Instrument #1 for two seconds.
i 1 0 2
e
/* wgpluck2.sco */

902

Chapter 15. Orchestra Opcodes and Operators

See Also

repluck

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

1997

wguide1

wguide1 — A simple waveguide model consisting of one delay-line and one first-order lowpass filter.

Description

A simple waveguide model consisting of one delay-line and one first-order lowpass filter.

Syntax

ar wguide1 asig, xfreq, kcutoff, kfeedback

Performance

asig -- the input of excitation noise

xfreq -- the frequency (i.e. the inverse of delay time) Changed to x-rate in Csound version 3.59.

kcutoff -- the filter cutoff frequency in Hz.

kfeedback -- the feedback factor

wguide1 is the most elemental waveguide model, consisting of one delay-line and one first-order lowpass
filter.

Implementing waveguide algorithms as opcodes, instead of orc instruments, allows the user to set kr
different than sr , allowing better performance particulary when using real-time.

903

Chapter 15. Orchestra Opcodes and Operators

wguide1.

See Also

wguide2

Credits

Author: Gabriel Maldonado

Italy

October, 1998 (New in Csound version 3.49)

wguide2

wguide2 — A model of beaten plate consisting of two parallel delay-lines and two first-order lowpass filters.

Description

A model of beaten plate consisting of two parallel delay-lines and two first-order lowpass filters.

Syntax

ar wguide2 asig, xfreq1, xfreq2, kcutoff1, kcutoff2, kfeedback1, kfeedback2

Performance

asig -- the input of excitation noise

xfreq1, xfreq2 -- the frequency (i.e. the inverse of delay time) Changed to x-rate in Csound version 3.59.

kcutoff1, kcutoff2 -- the filter cutoff frequency in Hz.

kfeedback1, kfeedback2 -- the feedback factor

wguide2 is a model of beaten plate consisting of two parallel delay-lines and two first-order lowpass filters.
The two feedback lines are mixed and sent to the delay again each cycle.

904

Chapter 15. Orchestra Opcodes and Operators

Implementing waveguide algorithms as opcodes, instead of orc instruments, allows the user to set kr
different than sr , allowing better performance particulary when using real-time.

wguide2.

See Also

wguide1

Credits

Author: Gabriel Maldonado

Italy

October, 1998 (New in Csound version 3.49)

wrap

wrap — Wraps-around the signal that exceeds the low and high thresholds.

905

Chapter 15. Orchestra Opcodes and Operators

Description

Wraps-around the signal that exceeds the low and high thresholds.

Syntax

ar wrap asig, klow, khigh

ir wrap isig, ilow, ihigh

kr wrap ksig, klow, khigh

Initialization

isig -- input signal

ilow -- low threshold

ihigh -- high threshold

Performance

xsig -- input signal

klow -- low threshold

khigh -- high threshold

wrap wraps-around the signal that exceeds the low and high thresholds.

This opcode is useful in several situations, such as table indexing or for clipping and modeling a-rate, i-rate or
k-rate signals. wrap is also useful for wrap-around of table data when the maximum index is not a power of
two (see table and tablei). Another use of wrap is in cyclical event repeating, with arbitrary cycle length.

See Also

limit , mirror

Credits

Authors: Gabriel Maldonado

Italy

New in Csound version 3.49

wterrain

wterrain — A simple wave-terrain synthesis opcode.

Description

A simple wave-terrain synthesis opcode.

906

Chapter 15. Orchestra Opcodes and Operators

Syntax

aout wterrain kamp, kpch, k_xcenter, k_ycenter, k_xradius, k_yradius, itabx, itaby

Initialization

itabx, itaby -- The two tables that define the terrain.

Performance

The output is the result of drawing an ellipse with axes k_xradius and k_yradius centered at (k_xcenter,
k_ycenter), and traversing it at frequency kpch.

Examples

Here is an example of the wterrain opcode. It uses the files wterrain.orc and wterrain.sco.

Example 15-1. Example of the wterrain opcode.

/* wterrain.orc */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

instr 1
kdclk linseg 0, 0.01, 1, p3-0.02, 1, 0.01, 0
kcx line 0.1, p3, 1.9
krx linseg 0.1, p3/2, 0.5, p3/2, 0.1
kpch line cpspch(p4), p3, p5 * cpspch(p4)
a1 wterrain 10000, kpch, kcx, kcx, -krx, krx, p6, p7
a1 dcblock a1

out a1*kdclk
endin
/* wterrain.orc */

/* wterrain.sco */
f1 0 8192 10 1 0 0.33 0 0.2 0 0.14 0 0.11
f2 0 4096 10 1

i1 0 4 7.00 1 1 1
i1 4 4 6.07 1 1 2
i1 8 8 6.00 1 2 2
e
/* wterrain.sco */

Credits

Author: Matthew G

New in version 4.19

907

Chapter 15. Orchestra Opcodes and Operators

xadsr

xadsr — Calculates the classical ADSR envelope.

Description

Calculates the classical ADSR envelope

Syntax

ar xadsr iatt, idec, islev, irel [, idel]

kr xadsr iatt, idec, islev, irel [, idel]

Initialization

iatt -- duration of attack phase

idec -- duration of decay

islev -- level for sustain phase

irel -- duration of release phase

idel -- period of zero before the envelope starts

Performance

The envelope is the range 0 to 1 and may need to be scaled further. The envelope may be described as:

Picture of an ADSR envelope.

The length of the sustain is calculated from the length of the note. This means adsr is not suitable for use with
MIDI events. The opcode xadsr is identical to adsr except it uses exponential, rather than linear, line
segments.

xadsr is new in Csound version 3.51.

908

Chapter 15. Orchestra Opcodes and Operators

See Also

adsr , madsr , mxadsr

xscanmap

xscanmap — Allows the position and velocity of a node in a scanned process to be read.

Description

Allows the position and velocity of a node in a scanned process to be read.

Syntax

kpos, kvel xscanmap iscan, kamp, kvamp [, iwhich]

Initialization

iscan -- which scan process to read

iwhich (optional) -- which node to sense. The default is 0.

Performance

kamp -- amount to amplify the kpos value.

kvamp -- amount to amplify the kvel value.

The internal state of a node is read. This includes its position and velocity. They are amplified by the kamp
and kvamp values.

Credits

Author: John ffitch

New in version 4.20

xscans

xscans — Fast scanned synthesis waveform and the wavetable generator.

Description

Experimental version of scans. Allows much larger matrices and is faster and smaller but removes some
(unused?) flexibility. If liked, it will replace the older opcode as it is syntax compatible but extended.

909

Chapter 15. Orchestra Opcodes and Operators

Syntax

ar xscans kamp, kfreq, ifntraj, id [, iorder]

Initialization

ifntraj -- table containing the scanning trajectory. This is a series of numbers that contains addresses of
masses. The order of these addresses is used as the scan path. It should not contain values greater than the
number of masses, or negative numbers. See the introduction to the scanned synthesis section.

id -- If positive, the ID of the opcode. This will be used to point the scanning opcode to the proper waveform
maker. If this value is negative, the absolute of this value is the wavetable on which to write the waveshape.
That wavetable can be used later from an other opcode to generate sound. The initial contents of this table
will be destroyed.

iorder (optional, default=0) -- order of interpolation used internally. It can take any value in the range 1 to 4,
and defaults to 4, which is quartic interpolation. The setting of 2 is quadratic and 1 is linear. The higher
numbers are slower, but not necessarily better.

Performance

kamp -- output amplitude. Note that the resulting amplitude is also dependent on instantaneous value in the
wavetable. This number is effectively the scaling factor of the wavetable.

kfreq -- frequency of the scan rate

Matrix Format

The new matrix format is a list of connections, one per line linking point x to point y. There is no weight given
to the link; it is assumed to be unity. The list is proceeded by the line <MATRIX> and ends with a
</MATRIX> line

For example, a circular string of 8 would be coded as

<MATRIX>
0 1
1 0
1 2
2 1
2 3
3 2
3 4
4 3
4 5
5 4
5 6
6 5
6 7
7 6
0 7
</MATRIX>

910

Chapter 15. Orchestra Opcodes and Operators

Examples

For an example, see the documentation on scans.

See Also

scans, xscanu

xscanu

xscanu — Compute the waveform and the wavetable for use in scanned synthesis.

Description

Experimental version of scanu. Allows much larger matrices and is faster and smaller but removes some
(unused?) flexibility. If liked, it will replace the older opcode as it is syntax compatible but extended.

Syntax

xscanu init, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, kmass, kstif, kcentr, kdamp, ileft, iright, kpos,
kstrngth, ain, idisp, id

Initialization

init -- the initial position of the masses. If this is a negative number, then the absolute of init signifies the
table to use as a hammer shape. If init > 0, the length of it should be the same as the intended mass number,
otherwise it can be anything.

irate -- update rate.

ifnvel -- the ftable that contains the initial velocity for each mass. It should have the same size as the intended
mass number.

ifnmass -- ftable that contains the mass of each mass. It should have the same size as the intended mass
number.

ifnstif --

• either an ftable that contains the spring stiffness of each connection. It should have the same size as the
square of the intended mass number. The data ordering is a row after row dump of the connection matrix
of the system.

• or a string giving the name of a file in the MATRIX format

ifncentr -- ftable that contains the centering force of each mass. It should have the same size as the intended
mass number.

ifndamp -- the ftable that contains the damping factor of each mass. It should have the same size as the
intended mass number.

ileft -- If init < 0, the position of the left hammer (ileft = 0 is hit at leftmost, ileft = 1 is hit at rightmost).

iright -- If init < 0, the position of the right hammer (iright = 0 is hit at leftmost, iright = 1 is hit at rightmost).

idisp -- If 0, no display of the masses is provided.

911

Chapter 15. Orchestra Opcodes and Operators

id -- If positive, the ID of the opcode. This will be used to point the scanning opcode to the proper waveform
maker. If this value is negative, the absolute of this value is the wavetable on which to write the waveshape.
That wavetable can be used later from an other opcode to generate sound. The initial contents of this table
will be destroyed.

Performance

kmass -- scales the masses

kstif -- scales the spring stiffness

kcentr -- scales the centering force

kdamp -- scales the damping

kpos -- position of an active hammer along the string (kpos = 0 is leftmost, kpos = 1 is rightmost). The shape
of the hammer is determined by init and the power it pushes with is kstrngth.

kstrngth -- power that the active hammer uses

ain -- audio input that adds to the velocity of the masses. Amplitude should not be too great.

Matrix Format

The new matrix format is a list of connections, one per line linking point x to point y. There is no weight given
to the link; it is assumed to be unity. The list is proceeded by the line <MATRIX> and ends with a
</MATRIX> line

For example, a circular string of 8 would be coded as

<MATRIX>
0 1
1 0
1 2
2 1
2 3
3 2
3 4
4 3
4 5
5 4
5 6
6 5
6 7
7 6
0 7
</MATRIX>

Examples

For an example, see the documentation on scans.

912

Chapter 15. Orchestra Opcodes and Operators

See Also

scanu, xscans

xtratim

xtratim — Extend the duration of real-time generated events.

Description

Extend the duration of real-time generated events and handle their extra life (see also linenr).

Syntax

xtratim iextradur

Initialization

iextradur -- additional duration of current instrument instance

Performance

xtratim extends current MIDI-activated note duration of iextradur seconds after the corresponding noteoff
message has deactivated current note itself. This opcode has no output arguments.

This opcode is useful for implementing complex release-oriented envelopes.

Examples

instr 1 ;allows complex ADSR envelope with MIDI events
inum notnum
icps cpsmidi
iamp ampmid i 4000

;
;------- complex envelope block ------

xtratim 1 ;extra-time, i.e. release dur
krel init 0
krel release ;outputs release-stage flag (0 or 1 values)
if (krel .5) kgoto rel ;if in release-stage goto release section

;
;************ attack and sustain section ***********

kmp1 linseg 0, .03, 1, .05, 1, .07, 0, .08, .5, 4, 1, 50, 1
kmp = kmp1*iamp

kgoto done
;
;--------- release section --------

rel:
kmp2 linseg 1, .3, .2, .7, 0
kmp = kmp1*kmp2*iamp
done:

;------
a1 oscili kmp, icps, 1

913

Chapter 15. Orchestra Opcodes and Operators

out a1
endin

See Also

linenr , release

Credits

Author: Gabriel Maldonado

Italy

New in Csound version 3.47

xyin

xyin — Sense the cursor position in an output window

Description

Sense the cursor position in an output window. When xyin is called the position of the mouse within the
output window is used to reply to the request. This simple mechanism does mean that only one xyin can be
used accurately at once. The position of the mouse is reported in the output window.

Syntax

kx, ky xyin iprd, ixmin, ixmax, iymin, iymax [, ixinit] [, iyinit]

Initialization

iprd -- period of cursor sensing (in seconds). Typically .1 seconds.

xmin, xmax, ymin, ymax -- edge values for the x-y coordinates of a cursor in the input window.

ixinit, iyinit (optional) -- initial x-y coordinates reported; the default values are 0,0. If these values are not
within the given min-max range, they will be coerced into that range.

Performance

xyin samples the cursor x-y position in an input window every iprd seconds. Output values are repeated (not
interpolated) at the k-rate, and remain fixed until a new change is registered in the window. There may be any
number of input windows. This unit is useful for real-time control, but continuous motion should be avoided
if iprd is unusually small.

914

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the xyin opcode. It uses the files xyin.orc and xyin.sco.

Example 15-1. Example of the xyin opcode.

/* xyin.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Instrument #1.
instr 1

; Print and capture values every 0.1 seconds.
iprd = 0.1
; The x values are from 1 to 30.
ixmin = 1
ixmax = 30
; The y values are from 1 to 30.
iymin = 1
iymax = 30
; The initial values for X and Y are both 15.
ixinit = 15
iyinit = 15

; Get the values kx and ky using the xyin opcode.
kx, ky xyin iprd, ixmin, ixmax, iymin, iymax, ixinit, iyinit

; Print out the values of kx and ky.
printks "kx=%f, ky=%f\\n", iprd, kx, ky

; Play an oscillator, use the x values for amplitude and
; the y values for frequency.
kamp = kx * 1000
kcps = ky * 220
a1 oscil kamp, kcps, 1

out a1
endin
/* xyin.orc */

/* xyin.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 30 seconds.
i 1 0 30
e
/* xyin.sco */

As the values of kx and ky change, they will be printed out like this:

kx=8.612036, ky=22.677933
kx=10.765685, ky=15.644135

915

Chapter 15. Orchestra Opcodes and Operators

zacl

zacl — Clears one or more variables in the za space.

Description

Clears one or more variables in the za space.

Syntax

zacl kfirst, klast

Performance

kfirst -- first zk or za location in the range to clear.

klast -- last zk or za location in the range to clear.

zacl clears one or more variables in the za space. This is useful for those variables which are used as
accumulators for mixing a-rate signals at each cycle, but which must be cleared before the next set of
calculations.

Examples

Here is an example of the zacl opcode. It uses the files zacl.orc and zacl.sco.

Example 15-1. Example of the zacl opcode.

/* zacl.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple waveform.
instr 1

; Generate a simple sine waveform.
asin oscil 20000, 440, 1

; Send the sine waveform to za variable #1.
zaw asin, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Read za variable #1.
a1 zar 1

; Generate the audio output.

916

Chapter 15. Orchestra Opcodes and Operators

out a1

; Clear the za variables, get them ready for
; another pass.
zacl 0, 1

endin
/* zacl.orc */

/* zacl.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* zacl.sco */

See Also

zamod, zar , zaw, zawm, ziw, ziwm

Credits

Author: Robin Whittle

Australia

May 1997

zakinit

zakinit — Establishes zak space.

Description

Establishes zak space. Must be called only once.

Syntax

zakinit isizea, isizek

917

Chapter 15. Orchestra Opcodes and Operators

Initialization

isizea -- the number of audio rate locations for a-rate patching. Each location is actually an array which is
ksmps long.

isizek -- the number of locations to reserve for floats in the zk space. These can be written and read at i- and
k-rates.

Performance

At least one location each is always allocated for both za and zk spaces. There can be thousands or tens of
thousands za and zk ranges, but most pieces probably only need a few dozen for patching signals. These
patching locations are referred to by number in the other zak opcodes.

To run zakinit only once, put it outside any instrument definition, in the orchestra file header, after sr , kr ,
ksmps, and nchnls.

Examples

Here is an example of the zakinit opcode. It uses the files zakinit.orc and zakinit.sco.

Example 15-1. Example of the zakinit opcode.

/* zakinit.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 3 a-rate variables and 5 k-rate variables.
zakinit 3, 5

; Instrument #1 -- a simple waveform.
instr 1

; Generate a simple sine waveform.
asin oscil 20000, 440, 1

; Send the sine waveform to za variable #1.
zaw asin, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Read za variable #1.
a1 zar 1

; Generate audio output.
out a1

; Clear the za variables, get them ready for
; another pass.
zacl 0, 3

endin
/* zakinit.orc */

/* zakinit.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.

918

Chapter 15. Orchestra Opcodes and Operators

f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* zakinit.sco */

Credits

Author: Robin Whittle

Australia

May 1997

zamod

zamod — Modulates one a-rate signal by a second one.

Description

Modulates one a-rate signal by a second one.

Syntax

ar zamod asig, kzamod

Performance

asig -- the input signal

kzamod -- controls which za variable is used for modulation. A positive value means additive modulation, a
negative value means multiplicative modulation. A value of 0 means no change to asig .

zamod modulates one a-rate signal by a second one, which comes from a za variable. The location of the
modulating variable is controlled by the i-rate or k-rate variable kzamod. This is the a-rate version of zkmod.

Examples

Here is an example of the zamod opcode. It uses the files zamod.orc and zamod.sco.

Example 15-1. Example of the zamod opcode.

/* zamod.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10

919

Chapter 15. Orchestra Opcodes and Operators

nchnls = 1

; Initialize the ZAK space.
; Create 2 a-rate variables and 2 k-rate variables.
zakinit 2, 2

; Instrument #1 -- a simple waveform.
instr 1

; Vary an a-rate signal linearly from 20,000 to 0.
asig line 20000, p3, 0

; Send the signal to za variable #1.
zaw asig, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Generate a simple sine wave.
asin oscil 1, 440, 1

; Modify the sine wave, multiply its amplitude by
; za variable #1.
a1 zamod asin, -1

; Generate the audio output.
out a1

; Clear the za variables, prepare them for
; another pass.
zacl 0, 2

endin
/* zamod.orc */

/* zamod.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
; Play Instrument #2 for 2 seconds.
i 2 0 2
e
/* zamod.sco */

See Also

zacl, ziw, ziwm

Credits

Author: Robin Whittle

Australia

May 1997

920

Chapter 15. Orchestra Opcodes and Operators

zar

zir — Reads from a location in za space at a-rate.

Description

Reads from a location in za space at a-rate.

Syntax

ar zar kndx

Performance

kndx -- points to the za location to be read.

zar reads the array of floats at kndx in za space, which are ksmps number of a-rate floats to be processed in a
k cycle.

Examples

Here is an example of the zar opcode. It uses the files zar.orc and zar.sco.

Example 15-1. Example of the zar opcode.

/* zar.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple waveform.
instr 1

; Generate a simple sine waveform.
asin oscil 20000, 440, 1

; Send the sine waveform to za variable #1.
zaw asin, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Read za variable #1.
a1 zar 1

; Generate audio output.
out a1

; Clear the za variables, get them ready for
; another pass.
zacl 0, 1

endin

921

Chapter 15. Orchestra Opcodes and Operators

/* zar.orc */

/* zar.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* zar.sco */

See Also

zarg , zir , zkr

Credits

Author: Robin Whittle

Australia

May 1997

zarg

zarg — Reads from a location in za space at a-rate, adds some gain.

Description

Reads from a location in za space at a-rate, adds some gain.

Syntax

ar zarg kndx, kgain

Initialization

kndx -- points to the za location to be read.

kgain -- multiplier for the a-rate signal.

Performance

zarg reads the array of floats at kndx in za space, which are ksmps number of a-rate floats to be processed in
a k cycle. zarg also multiplies the a-rate signal by a k-rate value kgain.

922

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the zarg opcode. It uses the files zarg.orc and zarg.sco.

Example 15-1. Example of the zarg opcode.

/* zarg.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple waveform.
instr 1

; Generate a simple sine waveform, with an amplitude
; between 0 and 1.
asin oscil 1, 440, 1

; Send the sine waveform to za variable #1.
zaw asin, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Read za variable #1, multiply its amplitude by 20,000.
a1 zarg 1, 20000

; Generate audio output.
out a1

; Clear the za variables, get them ready for
; another pass.
zacl 0, 1

endin
/* zarg.orc */

/* zarg.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* zarg.sco */

See Also

zar , zir , zkr

923

Chapter 15. Orchestra Opcodes and Operators

Credits

Author: Robin Whittle

Australia

May 1997

zaw

zaw — Writes to a za variable at a-rate without mixing.

Description

Writes to a za variable at a-rate without mixing.

Syntax

zaw asig, kndx

Performance

asig -- value to be written to the za location.

kndx -- points to the zk or za location to which to write.

zaw writes asig into the za variable specified by kndx.

These opcodes are fast, and always check that the index is within the range of zk or za space. If not, an error is
reported, 0 is returned, and no writing takes place.

Examples

Here is an example of the zaw opcode. It uses the files zaw.orc and zaw.sco.

Example 15-1. Example of the zaw opcode.

/* zaw.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple waveform.
instr 1

; Generate a simple sine waveform.
asin oscil 20000, 440, 1

; Send the sine waveform to za variable #1.
zaw asin, 1

924

Chapter 15. Orchestra Opcodes and Operators

endin

; Instrument #2 -- generates audio output.
instr 2

; Read za variable #1.
a1 zar 1

; Generate the audio output.
out a1

; Clear the za variables, get them ready for
; another pass.
zacl 0, 1

endin
/* zaw.orc */

/* zaw.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* zaw.sco */

See Also

zawm, ziw, ziwm, zkw, zkwm

Credits

Author: Robin Whittle

Australia

May 1997

zawm

zawm— Writes to a za variable at a-rate with mixing.

Description

Writes to a za variable at a-rate with mixing.

925

Chapter 15. Orchestra Opcodes and Operators

Syntax

zawm asig, kndx [, imix]

Initialization

imix (optional, default=1) -- indicates if mixing should occur.

Performance

asig -- value to be written to the za location.

kndx -- points to the zk or za location to which to write.

These opcodes are fast, and always check that the index is within the range of zk or za space. If not, an error is
reported, 0 is returned, and no writing takes place.

zawm is a mixing opcode, it adds the signal to the current value of the variable. If no imix is specified, mixing
always occurs. imix = 0 will cause overwriting like ziw, zkw, and zaw. Any other value will cause mixing.

Caution: When using the mixing opcodes ziwm, zkwm, and zawm, care must be taken that the variables
mixed to, are zeroed at the end (or start) of each k- or a-cycle. Continuing to add signals to them, can cause
their values can drift to astronomical figures.

One approach would be to establish certain ranges of zk or za variables to be used for mixing, then use zkcl or
zacl to clear those ranges.

Examples

Here is an example of the zawm opcode. It uses the files zawm.orc and zawm.sco.

Example 15-1. Example of the zawm opcode.

/* zawm.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a basic instrument.
instr 1

; Generate a simple sine waveform.
asin oscil 15000, 440, 1

; Mix the sine waveform with za variable #1.
zawm asin, 1

endin

; Instrument #2 -- another basic instrument.
instr 2

; Generate another waveform with a different frequency.
asin oscil 15000, 880, 1

; Mix this sine waveform with za variable #1.
zawm asin, 1

926

Chapter 15. Orchestra Opcodes and Operators

endin

; Instrument #3 -- generates audio output.
instr 3

; Read za variable #1, containing both waveforms.
a1 zar 1

; Generate the audio output.
out a1

; Clear the za variables, get them ready for
; another pass.
zacl 0, 1

endin
/* zawm.orc */

/* zawm.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
; Play Instrument #3 for one second.
i 3 0 1
e
/* zawm.sco */

See Also

zaw, ziw, ziwm, zkw, zkwm

Credits

Author: Robin Whittle

Australia

May 1997

zfilter2

zfilter2 — Performs filtering using a transposed form-II digital filter lattice with radial pole-shearing and
angular pole-warping.

927

Chapter 15. Orchestra Opcodes and Operators

Description

General purpose custom filter with time-varying pole control. The filter coefficients implement the following
difference equation:

(1)*y(n) = b0*x[n] + b1*x[n-1] +...+ bM*x[n-M] - a1*y[n-1] -...- aN*y[n-N]

the system function for which is represented by:

B(Z) b0 + b1*Z-1 + ... + bM*Z-M

H(Z) = ---- = --------------------------
A(Z) 1 + a1*Z-1 + ... + aN*Z-N

Syntax

ar zfilter2 asig, kdamp, kfreq, iM, iN, ib0, ib1, ..., ibM, ia1,ia2, ..., iaN

Initialization

At initialization the number of zeros and poles of the filter are specified along with the corresponding zero
and pole coefficients. The coefficients must be obtained by an external filter-design application such as
Matlab and specified directly or loaded into a table via GEN01. With zfilter2, the roots of the characteristic
polynomials are solved at initialization so that the pole-control operations can be implemented efficiently.

Performance

The filter2 opcodes perform filtering using a transposed form-II digital filter lattice with no time-varying
control. zfilter2 uses the additional operations of radial pole-shearing and angular pole-warping in the Z
plane.

Pole shearing increases the magnitude of poles along radial lines in the Z-plane. This has the affect of altering
filter ring times. The k-rate variable kdamp is the damping parameter. Positive values (0.01 to 0.99) increase
the ring-time of the filter (hi-Q), negative values (-0.01 to -0.99) decrease the ring-time of the filter, (lo-Q).

Pole warping changes the frequency of poles by moving them along angular paths in the Z plane. This
operation leaves the shape of the magnitude response unchanged but alters the frequencies by a constant
factor (preserving 0 and p). The k-rate variable kfreq determines the frequency warp factor. Positive values
(0.01 to 0.99) increase frequencies toward p and negative values (-0.01 to -0.99) decrease frequencies toward 0.

Since filter2 implements generalized recursive filters, it can be used to specify a large range of general DSP
algorithms. For example, a digital waveguide can be implemented for musical instrument modeling using a
pair of delayr and delayw opcodes in conjunction with the filter2 opcode.

Examples

A controllable second-order IIR filter operating on an a-rate signal:

a1 zfilter2 asig, kdamp, kfreq, 1, 2, 1, ia1, ia2 ; controllable a-rate ; IIR filter

928

Chapter 15. Orchestra Opcodes and Operators

See Also

filter2

Credits

Author: Michael A. Casey

M.I.T.

Cambridge, Mass.

1997

zir

zir — Reads from a location in zk space at i-rate.

Description

Reads from a location in zk space at i-rate.

Syntax

ir zir indx

Initialization

indx -- points to the zk location to be read.

Performance

zir reads the signal at indx location in zk space.

Examples

Here is an example of the zir opcode. It uses the files zir.orc and zir.sco.

Example 15-1. Example of the zir opcode.

/* zir.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple instrument.

929

Chapter 15. Orchestra Opcodes and Operators

instr 1
; Set the zk variable #1 to 32.594.
ziw 32.594, 1

endin

; Instrument #2 -- prints out zk variable #1.
instr 2

; Read the zk variable #1 at i-rate.
i1 zir 1

; Print out the value of zk variable #1.
print i1

endin
/* zir.orc */

/* zir.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* zir.sco */

See Also

zar , zarg , zkr

Credits

Author: Robin Whittle

Australia

May 1997

ziw

ziw — Writes to a zk variable at i-rate without mixing.

Description

Writes to a zk variable at i-rate without mixing.

Syntax

ziw isig, indx

930

Chapter 15. Orchestra Opcodes and Operators

Initialization

isig -- initializes the value of the zk location.

indx -- points to the zk or za location to which to write.

Performance

ziw writes isig into the zk variable specified by indx.

These opcodes are fast, and always check that the index is within the range of zk or za space. If not, an error is
reported, 0 is returned, and no writing takes place.

Examples

Here is an example of the ziw opcode. It uses the files ziw.orc and ziw.sco.

Example 15-1. Example of the ziw opcode.

/* ziw.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple instrument.
instr 1

; Set zk variable #1 to 64.182.
ziw 64.182, 1

endin

; Instrument #2 -- prints out zk variable #1.
instr 2

; Read zk variable #1 at i-rate.
i1 zir 1

; Print out the value of zk variable #1.
print i1

endin
/* ziw.orc */

/* ziw.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* ziw.sco */

931

Chapter 15. Orchestra Opcodes and Operators

See Also

zaw, zawm, ziwm, zkw, zkwm

Credits

Author: Robin Whittle

Australia

May 1997

ziwm

ziwm — Writes to a zk variable to an i-rate variable with mixing.

Description

Writes to a zk variable to an i-rate variable with mixing.

Syntax

ziwm isig, indx [, imix]

Initialization

isig -- initializes the value of the zk location.

indx -- points to the zk location location to which to write.

imix (optional, default=1) -- indicates if mixing should occur.

Performance

ziwm is a mixing opcode, it adds the signal to the current value of the variable. If no imix is specified, mixing
always occurs. imix = 0 will cause overwriting like ziw, zkw, and zaw. Any other value will cause mixing.

Caution: When using the mixing opcodes ziwm, zkwm, and zawm, care must be taken that the variables
mixed to, are zeroed at the end (or start) of each k- or a-cycle. Continuing to add signals to them, can cause
their values can drift to astronomical figures.

One approach would be to establish certain ranges of zk or za variables to be used for mixing, then use zkcl or
zacl to clear those ranges.

Examples

Here is an example of the ziwm opcode. It uses the files ziwm.orc and ziwm.sco.

Example 15-1. Example of the ziwm opcode.

/* ziwm.orc */
/* Written by Kevin Conder */
; Initialize the global variables.

932

Chapter 15. Orchestra Opcodes and Operators

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple instrument.
instr 1

; Add 20.5 to zk variable #1.
ziwm 20.5, 1

endin

; Instrument #2 -- another simple instrument.
instr 2

; Add 15.25 to zk variable #1.
ziwm 15.25, 1

endin

; Instrument #3 -- prints out zk variable #1.
instr 3

; Read zk variable #1 at i-rate.
i1 zir 1

; Print out the value of zk variable #1.
; It should be 35.75 (20.5 + 15.25)
print i1

endin
/* ziwm.orc */

/* ziwm.sco */
/* Written by Kevin Conder */
; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
; Play Instrument #3 for one second.
i 3 0 1
e
/* ziwm.sco */

See Also

zaw, zawm, ziw, zkw, zkwm

Credits

Author: Robin Whittle

Australia

May 1997

933

Chapter 15. Orchestra Opcodes and Operators

zkcl

zkcl — Clears one or more variables in the zk space.

Description

Clears one or more variables in the zk space.

Syntax

zkcl kfirst, klast

Performance

ksig -- the input signal

kfirst -- first zk or za location in the range to clear.

klast -- last zk or za location in the range to clear.

zkcl clears one or more variables in the zk space. This is useful for those variables which are used as
accumulators for mixing k-rate signals at each cycle, but which must be cleared before the next set of
calculations.

Examples

Here is an example of the zkcl opcode. It uses the files zkcl.orc and zkcl.sco.

Example 15-1. Example of the zkcl opcode.

/* zkcl.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple waveform.
instr 1

; Linearly vary a k-rate signal from 220 to 1760.
kline line 220, p3, 1760

; Add the linear signal to zk variable #1.
zkw kline, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Read zk variable #1.
kfreq zkr 1

; Use the value of zk variable #1 to vary
; the frequency of a sine waveform.
a1 oscil 20000, kfreq, 1

934

Chapter 15. Orchestra Opcodes and Operators

; Generate the audio output.
out a1

; Clear the zk variables, get them ready for
; another pass.
zkcl 0, 1

endin
/* zkcl.orc */

/* zkcl.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for three seconds.
i 1 0 3
; Play Instrument #2 for three seconds.
i 2 0 3
e
/* zkcl.sco */

See Also

zacl, zkwm, zkw, zkmod, zkr

Credits

Author: Robin Whittle

Australia

May 1997

zkmod

zkmod — Facilitates the modulation of one signal by another.

Description

Facilitates the modulation of one signal by another.

Syntax

kr zkmod ksig, kzkmod

935

Chapter 15. Orchestra Opcodes and Operators

Performance

ksig -- the input signal

kzkmod -- controls which zk variable is used for modulation. A positive value means additive modulation, a
negative value means multiplicative modulation. A value of 0 means no change to ksig . kzkmod can be i-rate
or k-rate

zkmod facilitates the modulation of one signal by another, where the modulating signal comes from a zk
variable. Either additive or mulitiplicative modulation can be specified.

Examples

Here is an example of the zkmod opcode. It uses the files zkmod.orc and zkmod.sco.

Example 15-1. Example of the zkmod opcode.

/* zkmod.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 2

; Initialize the ZAK space.
; Create 2 a-rate variables and 2 k-rate variables.
zakinit 2, 2

; Instrument #1 -- a signal with jitter.
instr 1

; Generate a k-rate signal goes from 30 to 2,000.
kline line 30, p3, 2000

; Add the signal into zk variable #1.
zkw kline, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Create a k-rate signal modulated the jitter opcode.
kamp init 20
kcpsmin init 40
kcpsmax init 60
kjtr jitter kamp, kcpsmin, kcpsmax

; Get the frequency values from zk variable #1.
kfreq zkr 1
; Add the the frequency values in zk variable #1 to
; the jitter signal.
kjfreq zkmod kjtr, 1

; Use a simple sine waveform for the left speaker.
aleft oscil 20000, kfreq, 1
; Use a sine waveform with jitter for the right speaker.
aright oscil 20000, kjfreq, 1

; Generate the audio output.
outs aleft, aright

; Clear the zk variables, prepare them for
; another pass.
zkcl 0, 2

936

Chapter 15. Orchestra Opcodes and Operators

endin
/* zkmod.orc */

/* zkmod.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 2 seconds.
i 1 0 2
; Play Instrument #2 for 2 seconds.
i 2 0 2
e
/* zkmod.sco */

See Also

zamod, zkcl, zkr , zkwm, zkw

Credits

Author: Robin Whittle

Australia

May 1997

zkr

zkr — Reads from a location in zk space at k-rate.

Description

Reads from a location in zk space at k-rate.

Syntax

kr zkr kndx

Initialization

kndx -- points to the zk location to be read.

Performance

zkr reads the array of floats at kndx in zk space.

937

Chapter 15. Orchestra Opcodes and Operators

Examples

Here is an example of the zkr opcode. It uses the files zkr.orc and zkr.sco.

Example 15-1. Example of the zkr opcode.

/* zkr.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple waveform.
instr 1

; Linearly vary a k-rate signal from 440 to 880.
kline line 440, p3, 880

; Add the linear signal to zk variable #1.
zkw kline, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Read zk variable #1.
kfreq zkr 1

; Use the value of zk variable #1 to vary
; the frequency of a sine waveform.
a1 oscil 20000, kfreq, 1

; Generate the audio output.
out a1

; Clear the zk variables, get them ready for
; another pass.
zkcl 0, 1

endin
/* zkr.orc */

/* zkr.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for one second.
i 1 0 1
; Play Instrument #2 for one second.
i 2 0 1
e
/* zkr.sco */

938

Chapter 15. Orchestra Opcodes and Operators

See Also

zar , zarg , zir , zkcl, zkmod, zkwm, zkw

Credits

Author: Robin Whittle

Australia

May 1997

zkw

zkw — Writes to a zk variable at k-rate without mixing.

Description

Writes to a zk variable at k-rate without mixing.

Syntax

zkw ksig, kndx

Performance

ksig -- value to be written to the zk location.

kndx -- points to the zk or za location to which to write.

zkw writes ksig into the zk variable specified by kndx.

Examples

Here is an example of the zkw opcode. It uses the files zkw.orc and zkw.sco.

Example 15-1. Example of the zkw opcode.

/* zkw.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a simple waveform.
instr 1

; Linearly vary a k-rate signal from 100 to 1,000.
kline line 100, p3, 1000

939

Chapter 15. Orchestra Opcodes and Operators

; Add the linear signal to zk variable #1.
zkw kline, 1

endin

; Instrument #2 -- generates audio output.
instr 2

; Read zk variable #1.
kfreq zkr 1

; Use the value of zk variable #1 to vary
; the frequency of a sine waveform.
a1 oscil 20000, kfreq, 1

; Generate the audio output.
out a1

; Clear the zk variables, get them ready for
; another pass.
zkcl 0, 1

endin
/* zkw.orc */

/* zkw.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for two seconds.
i 1 0 2
; Play Instrument #2 for two seconds.
i 2 0 2
e
/* zkw.sco */

See Also

zaw, zawm, ziw, ziwm, zkr , zkwm

Credits

Author: Robin Whittle

Australia

May 1997

zkwm

zkwm— Writes to a zk variable at k-rate with mixing.

940

Chapter 15. Orchestra Opcodes and Operators

Description

Writes to a zk variable at k-rate with mixing.

Syntax

zkwm ksig, kndx [, imix]

Initialization

imix (optional) -- points to the zk location location to which to write.

Performance

ksig -- value to be written to the zk location.

kndx -- points to the zk or za location to which to write.

zkwm is a mixing opcode, it adds the signal to the current value of the variable. If no imix is specified, mixing
always occurs. imix = 0 will cause overwriting like ziw, zkw, and zaw. Any other value will cause mixing.

Caution: When using the mixing opcodes ziwm, zkwm, and zawm, care must be taken that the variables
mixed to, are zeroed at the end (or start) of each k- or a-cycle. Continuing to add signals to them, can cause
their values can drift to astronomical figures.

One approach would be to establish certain ranges of zk or za variables to be used for mixing, then use zkcl or
zacl to clear those ranges.

Examples

Here is an example of the zkwm opcode. It uses the files zkwm.orc and zkwm.sco.

Example 15-1. Example of the zkwm opcode.

/* zkwm.orc */
/* Written by Kevin Conder */
; Initialize the global variables.
sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

; Initialize the ZAK space.
; Create 1 a-rate variable and 1 k-rate variable.
zakinit 1, 1

; Instrument #1 -- a basic instrument.
instr 1

; Generate a k-rate signal.
; The signal goes from 30 to 20,000 then back to 30.
kramp linseg 30, p3/2, 20000, p3/2, 30

; Mix the signal into the zk variable #1.
zkwm kramp, 1

endin

; Instrument #2 -- another basic instrument.
instr 2

; Generate another k-rate signal.

941

Chapter 15. Orchestra Opcodes and Operators

; This is a low frequency oscillator.
klfo lfo 3500, 2

; Mix this signal into the zk variable #1.
zkwm klfo, 1

endin

; Instrument #3 -- generates audio output.
instr 3

; Read zk variable #1, containing a mix of both signals.
kamp zkr 1

; Create a sine waveform. Its amplitude will vary
; according to the values in zk variable #1.
a1 oscil kamp, 880, 1

; Generate the audio output.
out a1

; Clear the zk variable, get it ready for
; another pass.
zkcl 0, 1

endin
/* zkwm.orc */

/* zkwm.sco */
/* Written by Kevin Conder */
; Table #1, a sine wave.
f 1 0 16384 10 1

; Play Instrument #1 for 5 seconds.
i 1 0 5
; Play Instrument #2 for 5 seconds.
i 2 0 5
; Play Instrument #3 for 5 seconds.
i 3 0 5
e
/* zkwm.sco */

See Also

zaw, zawm, ziw, ziwm, zkcl, zkw, zkr

Credits

Author: Robin Whittle

Australia

May 1997

942

Chapter 16. Score Statements and GEN Routines

Score Statements

a Statement (or Advance Statement)

a — Advance score time by a specified amount.

Description

This causes score time to be advanced by a specified amount without producing sound samples.

Syntax

a p1 p2 p3

Performance

p1 Carries no meaning. Usually zero.
p2 Action time, in beats, at which advance is to begin.
p3 Number of beats to advance without producing sound.
p4 |
p5 | These carry no meaning.
p6 |
.
.

Special Considerations

This statement allows the beat count within a score section to be advanced without generating intervening
sound samples. This can be of use when a score section is incomplete (the beginning or middle is missing)
and the user does not wish to generate and listen to a lot of silence.

p2, action time, and p3, number of beats, are treated as in i statements, with respect to sorting and
modification by t statements.

An a statement will be temporarily inserted in the score by the Score Extract feature when the extracted
segment begins later than the start of a Section. The purpose of this is to preserve the beat count and time
count of the original score for the benefit of the peak amplitude messages which are reported on the user
console.

Whenever an a statement is encountered by a performing orchestra, its presence and effect will be reported
on the user’s console.

943

Chapter 16. Score Statements and GEN Routines

b Statement

b Statement — This statement resets the clock.

Description

This statement resets the clock.

Syntax

b p1

Performance

p1 -- Specifies how the clock is to be set.

Special Considerations

p1 is the number of beats by which p2 values of subsequent i statements are modified. If p1 is positive, the
clock is reset forward, and subsequent notes appear later, the number of beats specified by p1 being added to
the note’s p2. If p1 is negative, the clock is reset backward, and subsequent notes appear earlier, the number
of beats specified by p1 being subtracted from the note’s p2. There is no cumulative affect. The clock is reset
with each b statement . If p1 = 0, the clock is returned to its original position, and subsequent notes appear at
their specified p2.

Examples

i1 0 2
i1 10 888

b 5 ; set the clock "forward"
i2 1 1 440 ; start time = 6
i2 2 1 480 ; start time = 7

b -1 ; set the clock back
i3 3 2 3.1415 ; start time = 2
i3 5.5 1 1.1111 ; start time = 4.5

b 0 ; reset clock to normal
i4 10 200 7 ; start time = 10

Credits

Explanation suggested and example provided by Paul Winkler. (Csound Version 4.07)

944

Chapter 16. Score Statements and GEN Routines

e Statement

e statement — This statement may be used to mark the end of the last section of the score.

Description

This statement may be used to mark the end of the last section of the score.

Syntax

e anything

Performance

All pfields are ignored.

Special Considerations

The e statement is contextually identical to an s statement . Additionally, the e statement terminates all signal
generation (including indefinite performance) and closes all input and output files.

If an e statement occurs before the end of a score, all subsequent score lines will be ignored.

The e statement is optional in a score file yet to be sorted. If a score file has no e statement , then Sort
processing will supply one.

f Statement (or Function Table Statement)

f Statement (or Function Table Statement) — Causes a GEN subroutine to place values in a
stored function table.

Description

This causes a GEN subroutine to place values in a stored function table for use by instruments.

Syntax

f p1 p2 p3 p4 ...

Performance

p1 -- Table number by which the stored function will be known. A negative number requests that the table be
destroyed.

p2 -- Action time of function generation (or destruction) in beats.

p3 -- Size of function table (i.e. number of points) Must be a power of 2, or a power-of-2 plus 1 (see below).
Maximum table size is 16777216 (2**24) points.

p4 -- Number of the GEN routine to be called (see GEN ROUTINES). A negative value will cause rescaling to
be omitted.

945

Chapter 16. Score Statements and GEN Routines

p5

p6 ... -- Parameters whose meaning is determined by the particular GEN routine.

Special Considerations

Function tables are arrays of floating-point values. Arrays can be of any length in powers of 2; space
allocation always provides for 2n points plus an additional guard point . The guard point value, used during
interpolated lookup, can be automatically set to reflect the table’s purpose: If size is an exact power of 2, the
guard point will be a copy of the first point; this is appropriate for interpolated wrap-around lookup as in
oscili, etc., and should even be used for non-interpolating oscil for safe consistency. If size is set to 2 n + 1, the
guard point value automatically extends the contour of table values; this is appropriate for single-scan
functions such in envplx, oscil1, oscil1i, etc.

Table space is allocated in primary memory, along with instrument data space. The maximum table number
used to be 200. This has been changed to be limited by memory only. (Currently there is an internal soft limit
of 300, this is automatically extended as required.)

An existing function table can be removed by an f statement containing a negative p1 and an appropriate
action time. A function table can also be removed by the generation of another table with the same p1.
Functions are not automatically erased at the end of a score section.

p2 action time is treated in the same way as in i statements with respect to sorting and modification by t
statements. If an f statement and an i statement have the same p2, the sorter gives the f statement precedence
so that the function table will be available during note initialization.

An f 0 statement (zero p1, positive p2) may be used to create an action time with no associated action. Such
time markers are useful for padding out a score section (see s statement).

Credits

Updated August 2002 thanks to a note from Rasmus Ekman. There is no longer a hard limit of 200 function
tables.

i Statement (Instrument or Note Statement)

i — Makes an instrument active at a specific time and for a certain duration.

Description

This statement calls for an instrument to be made active at a specific time and for a certain duration. The
parameter field values are passed to that instrument prior to its initialization, and remain valid throughout its
Performance.

Syntax

i p1 p2 p3 p4 ...

Initialization

p1 -- Instrument number, usually a non-negative integer. An optional fractional part can provide an
additional tag for specifying ties between particular notes of consecutive clusters. A negative p1 (including
tag) can be used to turn off a particular “held” note.

946

Chapter 16. Score Statements and GEN Routines

p2 -- Starting time in arbitrary units called beats.

p3 -- Duration time in beats (usually positive). A negative value will initiate a held note (see also ihold). A zero
value will invoke an initialization pass without performance (see also instr).

p4 ... -- Parameters whose significance is determined by the instrument.

Performance

Beats are evaluated as seconds, unless there is a t statement in this score section or a -t flag in the
command-line.

Starting or action times are relative to the beginning of a section (see s statement), which is assigned time 0.

Note statements within a section may be placed in any order. Before being sent to an orchestra, unordered
score statements must first be processed by Sorter, which will reorder them by ascending p2 value. Notes with
the same p2 value will be ordered by ascending p1; if the same p1, then by ascending p3.

Notes may be stacked, i.e., a single instrument can perform any number of notes simultaneously. (The
necessary copies of the instrument’s data space will be allocated dynamically by the orchestra loader.) Each
note will normally turn off when its p3 duration has expired, or on receipt of a MIDI noteoff signal. An
instrument can modify its own duration either by changing its p3 value during note initialization, or by
prolonging itself through the action of a linenr unit.

An instrument may be turned on and left to perform indefinitely either by giving it a negative p3 or by
including an ihold in its i-time code. If a held note is active, an i statement with matching p1 will not cause a
new allocation but will take over the data space of the held note. The new pfields (including p3) will now be in
effect, and an i-time pass will be executed in which the units can either be newly initialized or allowed to
continue as required for a tied note (see tigoto). A held note may be succeeded either by another held note or
by a note of finite duration. A held note will continue to perform across section endings (see s statement). It is
halted only by turnoff or by an i statement with negative matching p1 or by an e statement .

It is possible to have multiple instances (usually, but not necessarily, notes of different pitches) of the same
instrument, held simultaneously, via negative p3 values. The instrument can then be fed new parameters
from the score. This is useful for avoiding long hard-coded linsegs, and can be accomplished by adding a
decimal part to the instrument number.

For example, to hold three copies of instrument 10 in a simple chord:

i10.1 0 -1 7.00
i10.2 0 -1 7.04
i10.3 0 -1 7.07

Subsequent i statements can refer to the same sounding note instances, and if the instrument definition is
done properly, the new p-fields can be used to alter the character of the notes in progress. For example, to
bend the previous chord up an octave and release it:

i10.1 1 1 8.00
i10.2 1 1 8.04
i10.3 1 1 8.07

The instrument definition has to take this into account, however, especially if clicks are to be avoided (see the
example below).

Note that the decimal instrument number notation cannot be used in conjunction with real-time MIDI. In
this case, the instrument would be monophonic while a note was held.

947

Chapter 16. Score Statements and GEN Routines

Notes being tied to previous instances of the same instrument, should skip most initialization by means of
tigoto, except for the values entered in score. For example, all table reading opcodes in the instrument, should
usually be skipped, as they store their phase internally. If this is suddenly changed, there will be audible clicks
in the output.

Note that many opcodes (such as delay and reverb) are prepared for optional initialization. To use this
feature, the tival opcode is suitable. Therefore, they need not be hidden by a tigoto jump.

Beginning with Csound version 3.53, strings are recognized in p-fields for opcodes that accept them
(convolve, adsyn, diskin, etc.). There may be only one string per score line.

Special Considerations

The maximum instrument number used to be 200. This has been changed to be limited by memory only
(currently there is an internal soft limit of 200; this is automatically extended as required).

Examples

Here is an instrument which can find out whether it is tied to a previous note (tival returns 1), and whether it
is held (negative p3). Attack and release are handled accordingly:

instr 10

icps init cpspch (p4) ;Get target pitch from score event
iportime init abs (p3)/7 ; Portamento time dep on note length
iamp0 init p5 ; Set default amps
iamp1 init p5
iamp2 init p5

itie tival ; Check if this note is tied,
if itie == 1 igoto nofadein ; if not fade in
iamp0 init 0

nofadein:
if p3 < 0 igoto nofadeout ; Check if this note is held, if not fade out
iamp2 init 0

nofadeout:
; Now do amp from the set values:
kamp linseg iamp0, .03, iamp1, abs(p3)-.03, iamp2

; Skip rest of initialization on tied note:
tigoto tieskip

kcps init icps ; Init pitch for untied note
kcps port icps, iportime, icps ; Drift towards target pitch

kpw oscil .4, rnd(1), 1, rnd(.7) ; A simple triangle-saw oscil
ar vco kamp, kcps, 3, kpw+.5, 1, 1/icps

; (Used in testing - one may set ipch to cpspch(p4+2)
; and view output spectrum)
; ar oscil kamp, kcps, 1

out ar

tieskip: ; Skip some initialization on tied note

endin

948

Chapter 16. Score Statements and GEN Routines

A simple score using three instances of the above instrument:

f1 0 8192 10 1 ; Sine

i10.1 0 -1 7.00 10000
i10.2 0 -1 7.04
i10.3 0 -1 7.07
i10.1 1 -1 8.00
i10.2 1 -1 8.04
i10.3 1 -1 8.07
i10.1 2 1 7.11
i10.2 2 1 8.04
i10.3 2 1 8.07
e

Credits

Additional text (Csound Version 4.07) explaining tied notes, edited by Rasmus Ekman from a note by David
Kirsh, posted to the Csound mailing list. Example instrument by Rasmus Ekman.

Updated August 2002 thanks to a note from Rasmus Ekman. There is no longer a hard limit of 200
instruments.

m Statement (Mark Statement)

m— Sets a named mark in the score.

Description

Sets a named mark in the score, which can be referenced by an n statement .

Syntax

m p1

Initialization

p1 -- Name of mark.

Performance

This can be helpful in setting a up verse and chorus structure in the score. Names may contain letters and
numerals.

949

Chapter 16. Score Statements and GEN Routines

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

n Statement

n — Repeats a section.

Description

Repeats a section from the referenced m statement .

Syntax

n p1

Initialization

p1 -- Name of mark to repeat.

Performance

This can be helpful in setting a up verse and chorus structure in the score. Names may contain letters and
numerals.

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April 1998 (New in Csound version 3.48)

r Statement (Repeat Statement)

r — Starts a repeated section.

Description

Starts a repeated section, which lasts until the next s, r or e statement .

950

Chapter 16. Score Statements and GEN Routines

Syntax

r p1 p2

Initialization

p1 -- Number of times to repeat the section.

p2 -- Macro(name) to advance with each repetition (optional).

Performance

In order that the sections may be more flexible than simple editing, the macro named p2 is given the value of
1 for the first time through the section, 2 for the second, and 3 for the third. This can be used to change p-field
parameters, or ignored.

Warning
Because of serious problems of interaction with macro expansion, sections must start and end in the same file,
and not in a macro.

Examples

In the following example, the section is repeated 3 times. The macro NN is used and advanced with each
repetiton.

r 3 NN ;start of repeated section - use macro NN
some code
.
.
.

s ;end repeat - go back to previous r if repetitions < 3

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

April, 1998 (New in Csound version 3.48)

s Statement

s — Marks the end of a section.

951

Chapter 16. Score Statements and GEN Routines

Description

The s statement marks the end of a section.

Syntax

s anything

Initialization

All p-fields are ignored.

Performance

Sorting of the i statement , f statement and a statement by action time is done section by section.

Time warping for the t statement is done section by section.

All action times within a section are relative to its beginning. A section statement establishes a new relative
time of 0, but has no other reinitializing effects (e.g. stored function tables are preserved across section
boundaries).

A section is considered complete when all action times and finite durations have been satisfied (i.e., the
"length" of a section is determined by the last occurring action or turn-off). A section can be extended by the
use of an f0 statement .

A section ending automatically invokes a Purge of inactive instrument and data spaces.

Note:

• Since score statements are processed section by section, the amount of memory required depends on the
maximum number of score statements in a section. Memory allocation is dynamic, and the user will be informed as
extra memory blocks are requested during score processing.

• For the end of the final section of a score, the s statement is optional; the e statement may be used instead.

t Statement (Tempo Statement)

t — Sets the tempo.

Description

This statement sets the tempo and specifies the accelerations and decelerations for the current section. This
is done by converting beats into seconds.

Syntax

t p1 p2 p3 p4 ... (unlimited)

952

Chapter 16. Score Statements and GEN Routines

Initialization

p1 -- Must be zero.

p2 -- Initial tempo on beats per minute.

p3, p5, p7,... -- Times in beats per minute (in non-decreasing order).

p4, p6, p8,... -- Tempi for the referenced beat times.

Performance

Time and Tempo-for-that-time are given as ordered couples that define points on a "tempo vs. time" graph.
(The time-axis here is in beats so is not necessarily linear.) The beat-rate of a Section can be thought of as a
movement from point to point on that graph: motion between two points of equal height signifies constant
tempo, while motion between two points of unequal height will cause an accelarando or ritardando
accordingly. The graph can contain discontinuities: two points given equal times but different tempi will
cause an immediate tempo change.

Motion between different tempos over non-zero time is inverse linear. That is, an accelerando between two
tempos M1 and M2 proceeds by linear interpolation of the single-beat durations from 60/M1 to 60/M2.

The first tempo given must be for beat 0.

A tempo, once assigned, will remain in effect from that time-point unless influenced by a succeeding tempo,
i.e. the last specified tempo will be held to the end of the section.

A t statement applies only to the score section in which it appears. Only one t statement is meaningful in a
section; it can be placed anywhere within that section. If a score section contains no t statement , then beats
are interpreted as seconds (i.e. with an implicit t 0 60 statement).

N.B. If the CSound command includes a -t flag , the interpreted tempo of all score t statements will be
overridden by the command-line tempo.

v Statement

v — Provides for locally variable time warping of score events.

Description

The v statement provides for locally variable time warping of score events.

Syntax

v p1

Initialization

p1 -- Time warp factor (must be positive).

Performance

The v statement takes effect with the following i statement , and remains in effect until the next v statement , s
statement , or e statement .

953

Chapter 16. Score Statements and GEN Routines

Examples

The value of p1 is used as a multiplier for the start times (p2) of subsequent i statements.

i 1 0 1 ;note1
v 2
i 1 1 1 ;note2

In this example, the second note occurs two beats after the first note, and is twice as long.

Although the v statement is similar to the t statement , the v statement is local in operation. That is, v affects
only the following notes, and its effect may be cancelled or changed by another v statement .

Carried values are unaffected by the v statement (see Carry).

i 1 0 1 ;note1
v 2
i 1 1 . ;note2
i 1 2 . ;note3
v 1
i 1 3 . ;note4
i 1 4 . ;note5
e

In this example, note2 and note4 occur simultaneously, while note3 actually occurs before note2, that is, at its
original place. Durations are unaffected.

i 1 0 1
v 2
i . + .
i . . .

In this example, the v statement has no effect.

x Statement

x — Skip the rest of the current section.

Description

This statement may be used to skip the rest of the current section.

Syntax

x anything

954

Chapter 16. Score Statements and GEN Routines

Initialization

All pfields are ignored.

GEN Routines

GEN01

GEN01— Transfers data from a soundfile into a function table.

Description

This subroutine transfers data from a soundfile into a function table.

Syntax

f# time size 1 filcod skiptime format channel

Performance

size -- number of points in the table. Ordinarily a power of 2 or a power-of-2 plus 1 (see f statement); the
maximum tablesize is 16777216 (224) points. If the source soundfile is of type AIFF, allocation of table memory
can be deferred by setting this parameter to 0; the size allocated is then the number of points in the file
(probably not a power-of-2), and the table is not usable by normal oscillators, but it is usable by a loscil unit.
An AIFF source can also be mono or stereo.

filcod -- integer or character-string denoting the source soundfile name. An integer denotes the file
soundin.filcod ; a character-string (in double quotes, spaces permitted) gives the filename itself, optionally a
full pathname. If not a full path, the file is sought first in the current directory, then in that given by the
environment variable SSDIR (if defined) then by SFDIR. See also soundin.

skiptime -- begin reading at skiptime seconds into the file.

channel -- channel number to read in. 0 denotes read all channels.

format -- specifies the audio data-file format:

1 - 8-bit signed character 4 - 16-bit short integers
2 - 8-bit A-law bytes 5 - 32-bit long integers
3 - 8-bit U-law bytes 6 - 32-bit floats

If format = 0 the sample format is taken from the soundfile header, or by default from the CSound -o
command-line flag.

Note:

• Reading stops at end-of-file or when the table is full. Table locations not filled will contain zeros.

• If p4 is positive, the table will be post-normalized (rescaled to a maximum absolute value of 1 after generation). A
negative p4 will cause rescaling to be skipped.

955

Chapter 16. Score Statements and GEN Routines

Examples

f 1 0 8192 1 23 0 4
f 2 0 0 -1 "trumpet A#5" 0 4

The tables are filled from 2 files, "soundin.23" and "trumpet A#5", expected in SSDIR or SFDIR. The first table
is pre-allocated; the second is allocated dynamically, and its rescaling is inhibited.

GEN02

GEN02— Transfers data from immediate pfields into a function table.

Description

This subroutine transfers data from immediate pfields into a function table.

Syntax

f # time size 2 v1 v2 v3 ...

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The
maximum tablesize is 16777216 (224) points.

v1, v2, v3, ... -- values to be copied directly into the table space. The number of values is limited by the
compile-time variable PMAX, which controls the maximum pfields (currently 150). The values copied may
include the table guard point; any table locations not filled will contain zeros.

Note: If p4 is positive, the table will be post-normalized (rescaled to a maximum absolute value of 1 after generation).
A negative p4 will cause rescaling to be skipped.

Examples

f 1 0 16 -2 0 1 2 3 4 5 6 7 8 9 10 11 0

This calls upon GEN02 to place 12 values plus an explicit wrap-around guard value into a table of size
next-highest power of 2. Rescaling is inhibited.

956

Chapter 16. Score Statements and GEN Routines

GEN03

GEN03— Generates a stored function table by evaluating a polynomial.

Description

This subroutine generates a stored function table by evaluating a polynomial in x over a fixed interval and
with specified coefficients.

Syntax

f # time size 3 xval1 xval2 c0 c1 c2 ... cn

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1.

xval1, xval2 -- left and right values of the x interval over which the polynomial is defined (xval1< xval2).
These will produce the 1st stored value and the (power-of-2 plus l)th stored value respectively in the
generated function table.

c0, c1, c2, ... cn -- coefficients of the nth-order polynomial

c0 + c1x + c2x2 + . . . + cnxn

Coefficients may be positive or negative real numbers; a zero denotes a missing term in the polynomial. The
coefficient list begins in p7, providing a current upper limit of 144 terms.

Note:

• The defined segment [fn(xval1), fn(xval2)] is evenly distributed. Thus a 512-point table over the interval [-1,1] will
have its origin at location 257 (at the start of the 2nd half). Provided the extended guard point is requested, both
fn(-1) and fn(1) will exist in the table.

• GEN03 is useful in conjunction with table or tablei for audio waveshaping (sound modification by non-linear
distortion). Coefficients to produce a particular formant from a sinusoidal lookup index of known amplitude can be
determined at preprocessing time using algorithms such as Chebyshev formulae. See also GEN13.

Examples

f 1 0 1025 3 -1 1 5 4 3 2 2 1

This calls GEN03 to fill a table with a 4th order polynomial function over the x-interval -1 to 1. The origin will
be at the offset position 512. The function is post-normalized.

957

Chapter 16. Score Statements and GEN Routines

GEN04

GEN04— Generates a normalizing function.

Description

This subroutine generates a normalizing function by examining the contents of an existing table.

Syntax

f # time size 4 source# sourcemode

Initialization

size -- number of points in the table. Should be power-of-2 plus 1. Must not exceed (except by 1) the size of
the source table being examined; limited to just half that size if the sourcemode is of type offset (see below).

source # -- table number of stored function to be examined.

sourcemode -- a coded value, specifying how the source table is to be scanned to obtain the normalizing
function. Zero indicates that the source is to be scanned from left to right. Non-zero indicates that the source
has a bipolar structure; scanning will begin at the mid-point and progress outwards, looking at pairs of points
equidistant from the center.

Note:

• The normalizing function derives from the progressive absolute maxima of the source table being scanned. The
new table is created left-to-right, with stored values equal to 1/(absolute maximum so far scanned). Stored values
will thus begin with 1/(first value scanned), then get progressively smaller as new maxima are encountered. For a
source table which is normalized (values <= 1), the derived values will range from 1/(first value scanned) down to 1.
If the first value scanned is zero, that inverse will be set to 1.

• The normalizing function from GEN04 is not itself normalized.

• GEN04 is useful for scaling a table-derived signal so that it has a consistent peak amplitude. A particular application
occurs in waveshaping when the carrier (or indexing) signal is less than full amplitude.

Examples

f 2 0 512 4 1 1

This creates a normalizing function for use in connection with the GEN03 table 1 example. Midpoint bipolar
offset is specified.

GEN05

GEN05— Constructs functions from segments of exponential curves.

958

Chapter 16. Score Statements and GEN Routines

Description

Constructs functions from segments of exponential curves.

Syntax

f # time size 5 a n1 b n2 c ...

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

a, b, c, etc. -- ordinate values, in odd-numbered pfields p5, p7, p9, . . . These must be nonzero and must be
alike in sign.

n1, n2, etc. -- length of segment (no. of storage locations), in even-numbered pfields. Cannot be negative, but
a zero is meaningful for specifying discontinuous waveforms (e.g. in the example below). The sum n1 + n2 +
.... will normally equal size for fully specified functions. If the sum is smaller, the function locations not
included will be set to zero; if the sum is greater, only the first size locations will be stored.

Note:

• If p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1 after generation). A
negative p4 will cause rescaling to be skipped.

• Discrete-point linear interpolation implies an increase or decrease along a segment by equal differences between
adjacent locations; exponential interpolation implies that the progression is by equal ratio. In both forms the
interpolation from a to b is such as to assume that the value b will be attained in the n + 1th location. For
discontinuous functions, and for the segment encompassing the end location, this value will not actually be reached,
although it may eventually appear as a result of final scaling.

Examples

f 1 0 256 7 0 128 1 0 -1 128 0

This describes a single-cycle sawtooth whose discontinuity is mid-way in the stored function.

See Also

GEN07

GEN06

GEN06— Generates a function comprised of segments of cubic polynomials.

959

Chapter 16. Score Statements and GEN Routines

Description

This subroutine will generate a function comprised of segments of cubic polynomials, spanning specified
points just three at a time.

Syntax

f # time size 6 a n1 b n2 c n3 d ...

Initialization

size -- number of points in the table. Must be a power off or power-of-2 plus 1 (see f statement).

a, c, e, ... -- local maxima or minima of successive segments, depending on the relation of these points to
adjacent inflexions. May be either positive or negative.

b, d, f, ... -- ordinate values of points of inflexion at the ends of successive curved segments. May be positive or
negative.

n1, n2, n3 ... -- number of stored values between specified points. Cannot be negative, but a zero is
meaningful for specifying discontinuities. The sum n1 + n2 + ... will normally equal size for fully specified
functions. (for details, see GEN05).

Note: GEN06 constructs a stored function from segments of cubic polynomial functions. Segments link ordinate values
in groups of 3: point of inflexion, maximum/minimum, point of inflexion. The first complete segment encompasses b, c,
d and has length n2 + n3, the next encompasses d , e, f and has length n4 + n5, etc. The first segment (a, b with
length n1) is partial with only one inflexion; the last segment may be partial too. Although the inflexion points b, d , f ...
each figure in two segments (to the left and right), the slope of the two segments remains independent at that common
point (i.e. the 1st derivative will likely be discontinuous). When a, c, e... are alternately maximum and minimum, the
inflexion joins will be relatively smooth; for successive maxima or successive minima the inflexions will be comb-like.

Examples

f 1 0 65 6 0 16 .5 16 1 16 0 16 -1

This creates a curve running 0 to 1 to -1, with a minimum, maximum and minimum at these values
respectively. Inflexions are at .5 and 0, and are relatively smooth.

GEN07

GEN07— Constructs functions from segments of straight lines.

Description

Constructs functions from segments of straight lines.

960

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size 7 a n1 b n2 c ...

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

a, b, c, etc. -- ordinate values, in odd-numbered pfields p5, p7, p9, . . .

n1, n2, etc. -- length of segment (no. of storage locations), in even-numbered pfields. Cannot be negative, but
a zero is meaningful for specifying discontinuous waveforms (e.g. in the example below). The sum n1 + n2 +
.... will normally equal size for fully specified functions. If the sum is smaller, the function locations not
included will be set to zero; if the sum is greater, only the first size locations will be stored.

Note:

• If p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1 after generation). A
negative p4 will cause rescaling to be skipped.

• Discrete-point linear interpolation implies an increase or decrease along a segment by equal differences between
adjacent locations; exponential interpolation implies that the progression is by equal ratio. In both forms the
interpolation from a to b is such as to assume that the value b will be attained in the n + 1th location. For
discontinuous functions, and for the segment encompassing the end location, this value will not actually be reached,
although it may eventually appear as a result of final scaling.

Examples

f 1 0 256 7 0 128 1 0 -1 128 0

This describes a single-cycle sawtooth whose discontinuity is mid-way in the stored function.

See Also

GEN05

GEN08

GEN08— Generate a piecewise cubic spline curve.

Description

This subroutine will generate a piecewise cubic spline curve, the smoothest possible through all specified
points.

961

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size 8 a n1 b n2 c n3 d ...

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

a, b, c ... -- ordinate values of the function.

n1, n2, n3 ... -- length of each segment measured in stored values. May not be zero, but may be fractional. A
particular segment may or may not actually store any values; stored values will be generated at integral points
from the beginning of the function. The sum n1 + n2 + ... will normally equal size for fully specified functions.

Note:

• GEN08 constructs a stored table from segments of cubic polynomial functions. Each segment runs between two
specified points but depends as well on their neighbors on each side. Neighboring segments will agree in both value
and slope at their common point. (The common slope is that of a parabola through that point and its two neighbors).
The slope at the two ends of the function is constrained to be zero (flat).

• Hint: to make a discontinuity in slope or value in the function as stored, arrange a series of points in the interval
between two stored values; likewise for a non-zero boundary slope.

Examples

f 1 0 65 8 0 16 0 16 1 16 0 16 0

This example creates a curve with a smooth hump in the middle, going briefly negative outside the hump
then flat at its ends.

f 2 0 65 8 0 16 0 .1 0 15.9 1 15.9 0 .1 0 16 0

This example is similar, but does not go negative.

GEN09

GEN09— Generate composite waveforms made up of weighted sums of simple sinusoids.

Description

These subroutines generate composite waveforms made up of weighted sums of simple sinusoids. The
specification of each contributing partial requires 3 p-fields using GEN09.

962

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size 9 pna stra phsa pnb strb phsb ...

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

pna, pnb, etc. -- partial no. (relative to a fundamental that would occupy size locations per cycle) of sinusoid
a, sinusoid b, etc. Must be positive, but need not be a whole number, i.e., non-harmonic partials are
permitted. Partials may be in any order.

stra, strb, etc. -- strength of partials pna, pnb, etc. These are relative strengths, since the composite waveform
may be rescaled later. Negative values are permitted and imply a 180 degree phase shift.

phsa, phsb, etc. -- initial phase of partials pna, pnb, etc., expressed in degrees.

Note:

• These subroutines generate stored functions as sums of sinusoids of different frequencies. The two major
restrictions on GEN10 that the partials be harmonic and in phase do not apply to GEN09 or GEN19.

In each case the composite wave, once drawn, is then rescaled to unity if p4 was positive. A negative p4 will cause
rescaling to be skipped.

Examples

f 1 0 1024 9 1 3 0 3 1 0 9 .3333 180
f 2 0 1024 19 .5 1 270 1

f1 combines partials l, 3 and 9 in the relative strengths in which they are found in a square wave, except that
partial 9 is upside down. f 2 creates a rising sigmoid [0 - 2]. Both will be rescaled.

See Also

GEN10, GEN19

GEN10

GEN10— Generate composite waveforms made up of weighted sums of simple sinusoids.

Description

These subroutines generate composite waveforms made up of weighted sums of simple sinusoids. The
specification of each contributing partial requires 1 pfield using GEN10.

963

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size 10 str1 str2 str3 str4 ...

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

str1, str2, str3, etc. -- relative strengths of the fixed harmonic partial numbers 1,2,3, etc., beginning in p5.
Partials not required should be given a strength of zero.

Note:

• These subroutines generate stored functions as sums of sinusoids of different frequencies. The two major
restrictions on GEN10 that the partials be harmonic and in phase do not apply to GEN09 or GEN19.

In each case the composite wave, once drawn, is then rescaled to unity if p4 was positive. A negative p4 will cause
rescaling to be skipped.

Examples

f 1 0 1024 9 1 3 0 3 1 0 9 .3333 180
f 2 0 1024 19 .5 1 270 1

f1 combines partials l, 3 and 9 in the relative strengths in which they are found in a square wave, except that
partial 9 is upside down. f 2 creates a rising sigmoid [0 - 2]. Both will be rescaled.

See Also

GEN09, GEN19

GEN11

GEN11— Generates an additive set of cosine partials.

Description

This subroutine generates an additive set of cosine partials, in the manner of Csound generators buzz and
gbuzz.

Syntax

f # time size 11 nh [lh [r]]

964

Chapter 16. Score Statements and GEN Routines

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

nh -- number of harmonics requested. Must be positive.

lh(optional) -- lowest harmonic partial present. Can be positive, zero or negative. The set of partials can begin
at any partial number and proceeds upwards; if lh is negative, all partials below zero will reflect in zero to
produce positive partials without phase change (since cosine is an even function), and will add constructively
to any positive partials in the set. The default value is 1

r(optional) -- multiplier in an amplitude coefficient series. This is a power series: if the lhth partial has a
strength coefficient of A the (lh + n)th partial will have a coefficient of A * rn, i.e. strength values trace an
exponential curve. r may be positive, zero or negative, and is not restricted to integers. The default value is 1.

Note:

• This subroutine is a non-time-varying version of the CSound buzz and gbuzz generators, and is similarly useful as a
complex sound source in subtractive synthesis. With lh and r present it parallels gbuzz; with both absent or equal to
1 it reduces to the simpler buzz (i.e. nh equal-strength harmonic partials beginning with the fundamental).

• Sampling the stored waveform with an oscillator is more efficient than using dynamic buzz units. However, the
spectral content is invariant, and care is necessary lest the higher partials exceed the Nyquist during sampling to
produce foldover.

Examples

f 1 0 2049 11 4
f 2 0 2049 11 4 1 1
f 3 0 2049 -11 7 3 .5

The first two tables will contain identical band-limited pulse waves of four equal-strength harmonic partials
beginning with the fundamental. The third table will sum seven consecutive harmonics, beginning with the
third, and at progressively weaker strengths (1, .5, .25, .125 . . .). It will not be post-normalized.

GEN12

GEN12— Generates the log of a modified Bessel function of the second kind.

Description

This generates the log of a modified Bessel function of the second kind, order 0, suitable for use in
amplitude-modulated FM.

Syntax

f # time size -12 xint

965

Chapter 16. Score Statements and GEN Routines

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The
normal value is power-of-2 plus 1.

xint -- specifies the x interval [0 to +xint] over which the function is defined.

Note:

• This subroutine draws the natural log of a modified Bessel function of the second kind, order 0 (commonly written
as I subscript 0), over the x-interval requested. The call should have rescaling inhibited.

• The function is useful as an amplitude scaling factor in cycle-synchronous amplitude-modulated FM. (See Palamin
& Palamin, J. Audio Eng. Soc., 36/9, Sept. 1988, pp.671-684.) The algorithm is interesting because it permits the
normally symmetric FM spectrum to be made asymmetric around a frequency other than the carrier, and is thereby
useful for formant positioning. By using a table lookup index of I(r - 1/r), where I is the FM modulation index and r is
an exponential parameter affecting partial strengths, the Palamin algorithm becomes relatively efficient, requiring
only oscil’s, table lookups, and a single exp call.

Performance

They go beep.

Examples

f 1 0 2049 -12 20

This draws an unscaled ln(I0(x)) from 0 to 20.

GEN13

GEN13— Stores a polynomial whose coefficients derive from the Chebyshev polynomials of the first kind.

Description

Uses Chebyshev coefficients to generate stored polynomial functions which, under waveshaping, can be used
to split a sinusoid into harmonic partials having a pre-definable spectrum.

Syntax

f # time size 13 xint xamp h0 h1 h2 ... hn

966

Chapter 16. Score Statements and GEN Routines

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The
normal value is power-of-2 plus 1.

xint -- provides the left and right values [-xint, +xint] of the x interval over which the polynomial is to be
drawn. These subroutines both call GEN03 to draw their functions; the p5 value here is therefor expanded to
a negative-positive p5, p6 pair before GEN03 is actually called. The normal value is 1.

xamp -- amplitude scaling factor of the sinusoid input that is expected to produce the following spectrum.

h0, h1, h2, hn -- relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will result when a sinusoid of
amplitude

xamp * int(size/2)/xint

is waveshaped using this function table. These values thus describe a frequency spectrum associated with a
particular factor xamp of the input signal.

GEN13 is the function generator normally employed in standard waveshaping. It stores a polynomial whose
coefficients derive from the Chebyshev polynomials of the first kind, so that a driving sinusoid of strength
xamp will exhibit the specified spectrum at output. Note that the evolution of this spectrum is generally not
linear with varying xamp. However, it is bandlimited (the only partials to appear will be those specified at
generation time); and the partials will tend to occur and to develop in ascending order (the lower partials
dominating at low xamp, and the spectral richness increasing for higher values of xamp). A negative hn value
implies a 180 degree phase shift of that partial; the requested full-amplitude spectrum will not be affected by
this shift, although the evolution of several of its component partials may be. The pattern +,+,-,-,+,+,... for
h0,h1,h2... will minimize the normalization problem for low xamp values (see above), but does not
necessarily provide the smoothest pattern of evolution.

Examples

f 1 0 1025 13 1 1 0 5 0 3 0 1

This creates a function which, under waveshaping, will split a sinusoid into 3 odd-harmonic partials of
relative strength 5:3:1.

See Also

GEN14

GEN14

GEN14— Stores a polynomial whose coefficients derive from Chebyshevs of the second kind.

Description

Uses Chebyshev coefficients to generate stored polynomial functions which, under waveshaping, can be used
to split a sinusoid into harmonic partials having a pre-definable spectrum.

967

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size 14 xint xamp h0 h1 h2 ... hn

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The
normal value is power-of-2 plus 1.

xint -- provides the left and right values [-xint, +xint] of the x interval over which the polynomial is to be
drawn. These subroutines both call GEN03 to draw their functions; the p5 value here is therefor expanded to
a negative-positive p5, p6 pair before GEN03 is actually called. The normal value is 1.

xamp -- amplitude scaling factor of the sinusoid input that is expected to produce the following spectrum.

h0, h1, h2, hn -- relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will result when a sinusoid of
amplitude

xamp * int(size/2)/xint

is waveshaped using this function table. These values thus describe a frequency spectrum associated with a
particular factor xamp of the input signal.

Note:

• GEN13 is the function generator normally employed in standard waveshaping. It stores a polynomial whose
coefficients derive from the Chebyshev polynomials of the first kind, so that a driving sinusoid of strength xamp will
exhibit the specified spectrum at output. Note that the evolution of this spectrum is generally not linear with varying
xamp. However, it is bandlimited (the only partials to appear will be those specified at generation time); and the
partials will tend to occur and to develop in ascending order (the lower partials dominating at low xamp, and the
spectral richness increasing for higher values of xamp). A negative hn value implies a 180 degree phase shift of that
partial; the requested full-amplitude spectrum will not be affected by this shift, although the evolution of several of its
component partials may be. The pattern +,+,-,-,+,+,... for h0,h1,h2... will minimize the normalization problem for low
xamp values (see above), but does not necessarily provide the smoothest pattern of evolution.

• GEN14 stores a polynomial whose coefficients derive from Chebyshevs of the second kind.

Examples

f 1 0 1025 13 1 1 0 5 0 3 0 1

This creates a function which, under waveshaping, will split a sinusoid into 3 odd-harmonic partials of
relative strength 5:3:1.

See Also

GEN13

968

Chapter 16. Score Statements and GEN Routines

GEN15

GEN15— Creates two tables of stored polynomial functions.

Description

This subroutine creates two tables of stored polynomial functions, suitable for use in phase quadrature
operations.

Syntax

f # time size 15 xint xamp h0 phs0 h1 phs1 h2 phs2 ...

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The
normal value is power-of-2 plus 1.

xint -- provides the left and right values [-xint , +xint] of the x interval over which the polynomial is to be
drawn. This subroutine will eventually call GEN03 to draw both functions; this p5 value is therefor expanded
to a negative-positive p5, p6 pair before GEN03 is actually called. The normal value is 1.

xamp -- amplitude scaling factor of the sinusoid input that is expected to produce the following spectrum.

h0, h1, h2, ... hn -- relative strength of partials 0 (DC), 1 (fundamental), 2 ... that will result when a sinusoid of
amplitude

xamp * int(size/2)/xint

is waveshaped using this function table. These values thus describe a frequency spectrum associated with a
particular factor xamp of the input signal.

phs0, phs1, ... -- phase in degrees of desired harmonics h0, h1, ... when the two functions of GEN15 are used
with phase quadrature.

Note: GEN15 creates two tables of equal size, labeled f # and f # + 1. Table # will contain a Chebyshev function of the
first kind, drawn using GEN03 with partial strengths h0cos(phs0), h1cos(phs1), ... Table #+1 will contain a Chebyshev
function of the 2nd kind by calling GEN14 with partials h1sin(phs1), h2sin(phs2),... (note the harmonic displacement).
The two tables can be used in conjunction in a waveshaping network that exploits phase quadrature.

GEN16

GEN16— Creates a table from a starting value to an ending value.

Description

Creates a table from beg value to end value of dur steps.

969

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size 16 beg dur type end

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The
normal value is power-of-2 plus 1.

beg -- starting value

dur -- number of segments

type -- if 0, a straight line is produced. If non-zero, then GEN16 creates the following curve, for dur steps:

beg + (end - beg) * (1 - exp(i*type/(dur-1))) / (1 - exp(type))

end -- value after dur segments

Note: If type > 0, there is a slowly rising, fast decaying (convex) curve, while if type < 0, the curve is fast rising, slowly
decaying (concave). See also transeg.

Credits

Author: John ffitch

University of Bath, Codemist. Ltd.

Bath, UK

October, 2000

New in Csound version 4.09

GEN17

GEN17— Creates a step function from given x-y pairs.

Description

This subroutine creates a step function from given x-y pairs.

Syntax

f # time size 17 x1 a x2 b x3 c ...

970

Chapter 16. Score Statements and GEN Routines

Initialization

size -- number of points in the table. Must be a power of 2 or a power-of-2 plus 1 (see f statement). The
normal value is power-of-2 plus 1.

x1, x2, x3, etc. -- x-ordinate values, in ascending order, 0 first.

a, b, c, etc. -- y-values at those x-ordinates, held until the next x-ordinate.

Note: This subroutine creates a step function of x-y pairs whose y-values are held to the right. The right-most y-value
is then held to the end of the table. The function is useful for mapping one set of data values onto another, such as
MIDI note numbers onto sampled sound ftable numbers (see loscil).

Examples

f 1 0 128 -17 0 1 12 2 24 3 36 4 48 5 60 6 72 7 84 8

This describes a step function with 8 successively increasing levels, each 12 locations wide except the last
which extends its value to the end of the table. Rescaling is inhibited. Indexing into this table with a MIDI
note-number would retrieve a different value every octave up to the eighth, above which the value returned
would remain the same.

GEN18

GEN18— Writes composite waveforms made up of pre-existing waveforms.

Description

Writes composite waveforms made up of pre-existing waveforms. Each contributing waveform requires 4
pfields and can overlap with other waveforms.

Syntax

f # time size 22 fna ampa starta finisha fna ampa starta finisha ...

Initialization

size -- number of points in the table. Must be a power-of-2 plus 1 (see f statement).

fna, fnb, etc. -- pre-existing table number to be written into the table.

ampa, ampb, etc. -- strength of wavefoms. These are relative strengths, since the composite waveform may be
rescaled later. Negative values are permitted and imply a 180 degree phase shift.

starta, startb, etc. -- where to start writing the fn into the table.

finisha, finishb, etc. -- where to stop writing the fn into the table.

971

Chapter 16. Score Statements and GEN Routines

Examples

f 1 0 4096 10 1
f 2 0 1025 22 1 1 0 512 1 1 513 1025

f2 consists of two copies of f1 written in to locations 0-512 and 513-1025.

Deprecated Names

GEN18 was called GEN22 in version 4.18. The name was changed due to a conflict with DirectCsound.

Credits

Author: William “Pete” Moss

University of Texas at Austin

Austin, Texas USA

January 2002

New in version 4.18, changed in version 4.19

GEN19

GEN19— Generate composite waveforms made up of weighted sums of simple sinusoids.

Description

These subroutines generate composite waveforms made up of weighted sums of simple sinusoids. The
specification of each contributing partial requires 4 p-fields using GEN19.

Syntax

f # time size 19 pna stra phsa dcoa pnb strb phsb dcob ...

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

pna, pnb, etc. -- partial no. (relative to a fundamental that would occupy size locations per cycle) of sinusoid
a, sinusoid b, etc. Must be positive, but need not be a whole number, i.e., non-harmonic partials are
permitted. Partials may be in any order.

stra, strb, etc. -- strength of partials pna, pnb, etc. These are relative strengths, since the composite waveform
may be rescaled later. Negative values are permitted and imply a 180 degree phase shift.

phsa, phsb, etc. -- initial phase of partials pna, pnb, etc., expressed in degrees.

dcoa, dcob, etc. -- DC offset of partials pna, pnb, etc. This is applied after strength scaling, i.e. a value of 2 will
lift a 2-strength sinusoid from range [-2,2] to range [0,4] (before later rescaling).

Note:

972

Chapter 16. Score Statements and GEN Routines

• These subroutines generate stored functions as sums of sinusoids of different frequencies. The two major
restrictions on GEN10 that the partials be harmonic and in phase do not apply to GEN09 or GEN19.

In each case the composite wave, once drawn, is then rescaled to unity if p4 was positive. A negative p4 will cause
rescaling to be skipped.

Examples

f 1 0 1024 9 1 3 0 3 1 0 9 .3333 180
f 2 0 1024 19 .5 1 270 1

f1 combines partials l, 3 and 9 in the relative strengths in which they are found in a square wave, except that
partial 9 is upside down. f 2 creates a rising sigmoid [0 - 2]. Both will be rescaled.

See Also

GEN09, GEN10

GEN20

GEN20— Generates functions of different windows.

Description

This subroutine generates functions of different windows. These windows are usually used for spectrum
analysis or for grain envelopes.

Syntax

f # time size 20 window max [opt]

Initialization

size -- number of points in the table. Must be a power of 2 (+ 1).

window -- Type of window to generate:

• 1 = Hamming

• 2 = Hanning

• 3 = Bartlett (triangle)

• 4 = Blackman (3-term)

• 5 = Blackman - Harris (4-term)

973

Chapter 16. Score Statements and GEN Routines

• 6 = Gaussian

• 7 = Kaiser

• 8 = Rectangle

• 9 = Sync

max -- For negative p4 this will be the absolute value at window peak point. If p4 is positive or p4 is negative
and p6 is missing the table will be post-rescaled to a maximum value of 1.

opt -- Optional argument required by the Kaiser window.

Examples

f 1 0 1024 20 5

This creates a function which contains a 4 - term Blackman - Harris window with maximum value of 1.

f 1 0 1024 -20 2 456

This creates a function that contains a Hanning window with a maximum value of 456.

f 1 0 1024 -20 1

This creates a function that contains a Hamming window with a maximum value of 1.

f 1 0 1024 20 7 1 2

This creates a function that contains a Kaiser window with a maximum value of 1. The extra argument
specifies how "open" the window is, for example a value of 0 results in a rectangular window and a value of 10
in a Hamming like window.

For diagrams, see Window Functions

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

New in Csound version 3.2

974

Chapter 16. Score Statements and GEN Routines

GEN21

GEN21— Generates tables of different random distributions.

Description

This generates tables of different random distributions. (See also betarand, bexprnd, cauchy, exprand, gauss,
linrand, pcauchy, poisson, trirand, unirand, and weibull)

Syntax

f # time size 21 type level [arg1 [arg2]]

Initialization

time and size are the usual GEN function arguments. level defines the amplitude. Note that GEN21 is not
self-normalizing as are most other GEN functions. type defines the distribution to be used as follow:

• 1 = Uniform (positive numbers only)

• 2 = Linear (positive numbers only)

• 3 = Triangular (positive and negative numbers)

• 4 = Exponential (positive numbers only)

• 5 = Biexponential (positive and negative numbers)

• 6 = Gaussian (positive and negative numbers)

• 7 = Cauchy (positive and negative numbers)

• 8 = Positive Cauchy (positive numbers only)

• 9 = Beta (positive numbers only)

• 10 = Weibull (positive numbers only)

• 11 = Poisson (positive numbers only)

Of all these cases only 9 (Beta) and 10 (Weibull) need extra arguments. Beta needs two arguments and Weibull
one.

Examples

f 1 0 1024 21 1 ; Uniform (white noise)
f 1 0 1024 21 6 ; Gaussian
f 1 0 1024 21 9 1 1 2 ; Beta (note that level precedes arguments)
f 1 0 1024 21 10 1 2 ; Weibull

All of the above additions were designed by the author between May and December 1994, under the
supervision of Dr. Richard Boulanger.

975

Chapter 16. Score Statements and GEN Routines

Credits

Author: Paris Smaragdis

MIT, Cambridge

1995

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

New in Csound version 3.2

GEN23

GEN23— Reads numeric values from a text file.

Description

This subroutine reads numeric values from an external ASCII file.

Syntax

f # time size -23 "filename.txt"

Initialization

"filename.txt" -- numeric values contained in "filename.txt" (which indicates the complete pathname of the
character file to be read), can be separated by spaces, tabs, newline characters or commas. Also, words that
contains non-numeric characters can be used as comments since they are ignored.

size -- number of points in the table. Must be a power of 2 , power of 2 + 1, or zero. If size = 0, table size is
determined by the number of numeric values in filename.txt . (New in Csound version 3.57)

Note: All characters following ’;’ (comment) are ignored until next line (numbers too).

Credits

Author: Gabriel Maldonado

Italy

February, 1998

New in Csound version 3.47

976

Chapter 16. Score Statements and GEN Routines

GEN24

GEN24— Reads numeric values from another allocated function-table and rescales them.

Description

This subroutine reads numeric values from another allocated function-table and rescales them according to
the max and min values given by the user.

Syntax

f # time size -24 ftable min max

Initialization

#, time, size -- the usual GEN parameters. See f statement.

ftable -- ftable must be an already allocated table with the same size as this function.

min, max -- the rescaling range.

Note: This GEN is useful, for example, to eliminate the starting offset in exponential segments allowing a real starting
from zero.

Credits

Author: Gabriel Maldonado

New in Csound version 4.16

GEN25

GEN25— Construct functions from segments of exponential curves in breakpoint fashion.

Description

These subroutines are used to construct functions from segments of exponential curves in breakpoint
fashion.

Syntax

f # time size 25 x1 y1 x2 y2 x3 ...

977

Chapter 16. Score Statements and GEN Routines

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

x1, x2, x3, etc. -- locations in table at which to attain the following y value. Must be in increasing order. If the
last value is less than size, then the rest will be set to zero. Should not be negative but can be zero.

y1, y2, y3,, etc. -- Breakpoint values attained at the location specified by the preceding x value. These must be
non-zero and must be alike in sign.

Note: If p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1 after generation). A
negative p4 will cause rescaling to be skipped.

Examples

f 1 0 257 27 0 0 100 1 200 -1 256 0

This describes a function which begins at 0, rises to 1 at the 100th table location, falls to -1, by the 200th
location, and returns to 0 by the end of the table. The interpolation is linear.

See Also

f statement , GEN27

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

New in Csound version 3.49

GEN27

GEN27— Construct functions from segments of straight lines in breakpoint fashion.

Description

Construct functions from segments of straight lines in breakpoint fashion.

Syntax

f # time size 27 x1 y1 x2 y2 x3 ...

978

Chapter 16. Score Statements and GEN Routines

Initialization

size -- number of points in the table. Must be a power of 2 or power-of-2 plus 1 (see f statement).

x1, x2, x3, etc. -- locations in table at which to attain the following y value. Must be in increasing order. If the
last value is less than size, then the rest will be set to zero. Should not be negative but can be zero.

y1, y2, y3,, etc. -- Breakpoint values attained at the location specified by the preceding x value.

Note: If p4 is positive, functions are post-normalized (rescaled to a maximum absolute value of 1 after generation). A
negative p4 will cause rescaling to be skipped.

Examples

f 1 0 257 27 0 0 100 1 200 -1 256 0

This describes a function which begins at 0, rises to 1 at the 100th table location, falls to -1, by the 200th
location, and returns to 0 by the end of the table. The interpolation is linear.

See Also

f statement , GEN25

Credits

Author: John ffitch

University of Bath/Codemist Ltd.

Bath, UK

New in Csound version 3.49

GEN28

GEN28— Reads a text file which contains a time-tagged trajectory.

Description

This function generator reads a text file which contains sets of three values representing the xy coordinates
and a time-tag for when the signal should be placed at that location, allowing the user to define a time-tagged
trajectory. The file format is in the form:

time1 X1 Y1
time2 X2 Y2
time3 X3 Y3

The configuration of the xy coordinates in space places the signal in the following way:

979

Chapter 16. Score Statements and GEN Routines

• a1 is -1, 1

• a2 is 1, 1

• a3 is -1, -1

• a4 is 1, -1

This assumes a loudspeaker set up as a1 is left front, a2 is right front, a3 is left back, a4 is right back. Values
greater than 1 will result in sounds being attenuated as if in the distance. GEN28 creates values to 10
milliseconds of resolution.

Syntax

f # time size 28 ifilcod

Initialization

size -- number of points in the table. Must be 0. GEN28 takes 0 as the size and automatically allocates
memory.

ifilcod -- character-string denoting the source soundfile name. A character-string (in double quotes, spaces
permitted) gives the filename itself, optionally a full pathname. If not a full path, the named file is sought in
the current directory.

Examples

f1 0 0 28 "move"

The file "move" should look like:

0 -1 1
1 1 1
2 4 4
2.1 -4 -4
3 10 -10
5 -40 0

Since GEN28 creates values to 10 milliseconds of resolution, there will be 500 values created by interpolating
X1 to X2 to X3 and so on, and Y1 to Y2 to Y3 and so on, over the appropriate number of values that are stored
in the function table. The sound will begin in the left front, over 1 second it will move to the right front, over
another second it move further into the distance but still in the left front, then in just 1/10th of a second it
moves to the left rear, a bit distant. Finally over the last .9 seconds the sound will move to the right rear,
moderately distant, and it comes to rest between the two left channels (due west!), quite distant.

Credits

Author: Richard Karpen

Seattle, Wash

1998 (New in Csound version 3.48)

980

Chapter 16. Score Statements and GEN Routines

GEN30

GEN30— Generates harmonic partials by analyzing an existing table.

Description

Extracts a range of harmonic partials from an existing waveform.

Syntax

f # time size 30 src minh maxh [ref_sr] [interp]

Performance

src -- source ftable

minh -- lowest harmonic number

maxh -- highest harmonic number

ref_sr (optional) -- maxh is scaled by (sr / ref_sr). The default value of ref_sr is sr. If ref_sr is zero or negative, it
is now ignored.

interp (optional) -- if non-zero, allows changing the amplitude of the lowest and highest harmonic partial
depending on the fractional part of minh and maxh. For example, if maxh is 11.3 then the 12th harmonic
partial is added with 0.3 amplitude. This parameter is zero by default.

GEN30 does not support tables with an extended guard point (ie. table size = power of two + 1). Although
such tables will work both for input and output, when reading source table(s), the guard point is ignored, and
when writing the output table, guard point is simply copied from the first sample (table index = 0).

The reason of this limitation is that GEN30 uses FFT, which requires power of two table size. GEN32 allows
using linear interpolation for resampling and phase shifting, which makes it possible to use any table size
(however, for partials calculated with FFT, the power of two limitation still exists).

Credits

Author: Istvan Varga

New in version 4.16

GEN31

GEN31— Mixes any waveform specified in an existing table.

Description

This routine is similar to GEN09, but allows mixing any waveform specified in an existing table.

981

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size 31 src pna stra phsa pnb strb phsb ...

Performance

src -- source table number

pna, pnb, ... -- partial number, must be a positive integer

stra, strb, ... -- amplitude scale

phsa, phsb, ... -- start phase (0 to 1)

GEN31 does not support tables with an extended guard point (ie. table size = power of two + 1). Although
such tables will work both for input and output, when reading source table(s), the guard point is ignored, and
when writing the output table, guard point is simply copied from the first sample (table index = 0).

The reason of this limitation is that GEN31 uses FFT, which requires power of two table size. GEN32 allows
using linear interpolation for resampling and phase shifting, which makes it possible to use any table size
(however, for partials calculated with FFT, the power of two limitation still exists).

Credits

Author: Istvan Varga

New in version 4.15

GEN32

GEN32— Mixes any waveform, resampled with either FFT or linear interpolation.

Description

This routine is similar to GEN31, but allows specifying source ftable for each partial. Tables can be resampled
either with FFT, or linear interpolation.

Syntax

f # time size 32 srca pna stra phsa srcb pnb strb phsb ...

Performance

srca, srcb -- source table number. A negative value can be used to read the table with linear interpolation (by
default, the source waveform is transposed and phase shifted using FFT); this is less accurate, but faster, and
allows non-integer and negative partial numbers.

pna, pnb, ... -- partial number, must be a positive integer if source table number is positive (i.e. resample with
FFT).

stra, strb, ... -- amplitude scale

phsa, phsb, ... -- start phase (0 to 1)

982

Chapter 16. Score Statements and GEN Routines

Examples

itmp ftgen 1, 0, 16384, 7, 1, 16384, -1 ; sawtooth
itmp ftgen 2, 0, 8192, 10, 1 ; sine
; mix tables
itmp ftgen 5, 0, 4096, -32, -2, 1.5, 1.0, 0.25, 1, 2, 0.5, 0, \

1, 3, -0.25, 0.5
; window
itmp ftgen 6, 0, 16384, 20, 3, 1
; generate band-limited waveforms
inote = 0
loop0:
icps = 440 * exp(log(2) * (inote - 69) / 12) ; one table for
inumh = sr / (2 * icps) ; each MIDI note number
ift = int(inote + 256.5)
itmp ftgen ift, 0, 4096, -30, 5, 1, inumh
inote = inote + 1

if (inote < 127.5) igoto loop0

instr 1

kcps expon 20, p3, 16000
kft = int(256.5 + 69 + 12 * log(kcps / 440) / log(2))
kft = (kft > 383 ? 383 : kft)

a1 phasor kcps
a1 tableikt a1, kft, 1, 0, 1

out a1 * 10000

endin
instr 2

kcps expon 20, p3, 16000
kft = int(256.5 + 69 + 12 * log(kcps / 440) / log(2))
kft = (kft > 383 ? 383 : kft)

kgdur limit 10 / kcps, 0.1, 1
a1 grain2 kcps, 0.02, kgdur, 30, kft, 6, -0.5

out a1 * 2000

endin

score:

t 0 60
i 1 0 10
i 2 12 10
e

983

Chapter 16. Score Statements and GEN Routines

Credits

Programmer: Istvan Varga

New in version 4.17

Author: Rasmus Ekman

GEN33

GEN33— Generate composite waveforms by mixing simple sinusoids.

Description

These routines generate composite waveforms by mixing simple sinusoids, similarly to GEN09, but the
parameters of the partials are specified in an already existing table, which makes it possible to calculate any
number of partials in the orchestra.

The difference between GEN33 and GEN34 is that GEN33 uses inverse FFT to generate output, while GEN34 is
based on the algorithm used in oscils opcode. GEN33 allows integer partials only, and does not support
power of two plus 1 table size, but may be significantly faster with a large number of partials. On the other
hand, with GEN34, it is possible to use non-integer partial numbers and extended guard point, and this
routine may be faster if there is only a small number of partials (note that GEN34 is also several times faster
than GEN09, although the latter may be more accurate).

Syntax

f # time size 33 src nh scl [fmode]

Initialization

size -- number of points in the table. Must be power of two and at least 4.

src -- source table number. This table contains the parameters of each partial in the following format:

stra, pna, phsa, strb, pnb, phsb, ...

the parameters are:

• stra, strb, etc.: relative strength of partials. The actual amplitude depends on the value of scl, or
normalization (if enabled).

• pna, pnb, etc.: partial number, or frequency, depending on fmode (see below); zero and negative values are
allowed, however, if the absolute value of the partial number exceeds (size / 2), the partial will not be
rendered. With GEN33, partial number is rounded to the nearest integer.

• phsa, phsb, etc.: initial phase, in the range 0 to 1.

Table length (not including the guard point) should be at least 3 * nh. If the table is too short, the number of
partials (nh) is reduced to (table length) / 3, rounded towards zero.

nh -- number of partials. Zero or negative values are allowed, and result in an empty table (silence). The
actual number may be reduced if the source table (src) is too short, or some partials have too high frequency.

scl -- amplitude scale.

984

Chapter 16. Score Statements and GEN Routines

fmode (optional, default = 0) -- a non-zero value can be used to set frequency in Hz instead of partial
numbers in the source table. The sample rate is assumed to be fmode if it is positive, or -(sr * fmode) if any
negative value is specified.

Examples

; partials 1, 4, 7, 10, 13, 16, etc. with base frequency of 400 Hz

ibsfrq = 400
; estimate number of partials
inumh = int(1.5 + sr * 0.5 / (3 * ibsfrq))
; source table length
isrcln = int(0.5 + exp(log(2) * int(1.01 + log(inumh * 3) / log(2))))
; create empty source table
itmp ftgen 1, 0, isrcln, -2, 0
ifpos = 0
ifrq = ibsfrq
inumh = 0
l1:

tableiw ibsfrq / ifrq, ifpos, 1 ; amplitude
tableiw ifrq, ifpos + 1, 1 ; frequency
tableiw 0, ifpos + 2, 1 ; phase

ifpos = ifpos + 3
ifrq = ifrq + ibsfrq * 3
inumh = inumh + 1

if (ifrq < (sr * 0.5)) igoto l1

; store output in ftable 2 (size = 262144)

itmp ftgen 2, 0, 262144, -34, 1, inumh, 1, -1

See Also

GEN09, GEN34

Credits

Programmer: Istvan Varga

New in version 4.19

March 2002

GEN34

GEN34— Generate composite waveforms by mixing simple sinusoids.

985

Chapter 16. Score Statements and GEN Routines

Description

These routines generate composite waveforms by mixing simple sinusoids, similarly to GEN09, but the
parameters of the partials are specified in an already existing table, which makes it possible to calculate any
number of partials in the orchestra.

The difference between GEN33 and GEN34 is that GEN33 uses inverse FFT to generate output, while GEN34 is
based on the algorithm used in oscils opcode. GEN33 allows integer partials only, and does not support
power of two plus 1 table size, but may be significantly faster with a large number of partials. On the other
hand, with GEN34, it is possible to use non-integer partial numbers and extended guard point, and this
routine may be faster if there is only a small number of partials (note that GEN34 is also several times faster
than GEN09, although the latter may be more accurate).

Syntax

f # time size 34 src nh scl [fmode]

Initialization

size -- number of points in the table. Must be power of two or a power of two plus 1.

src -- source table number. This table contains the parameters of each partial in the following format:

stra, pna, phsa, strb, pnb, phsb, ...

the parameters are:

• stra, strb, etc.: relative strength of partials. The actual amplitude depends on the value of scl, or
normalization (if enabled).

• pna, pnb, etc.: partial number, or frequency, depending on fmode (see below); zero and negative values are
allowed, however, if the absolute value of the partial number exceeds (size / 2), the partial will not be
rendered.

• phsa, phsb, etc.: initial phase, in the range 0 to 1.

Table length (not including the guard point) should be at least 3 * nh. If the table is too short, the number of
partials (nh) is reduced to (table length) / 3, rounded towards zero.

nh -- number of partials. Zero or negative values are allowed, and result in an empty table (silence). The
actual number may be reduced if the source table (src) is too short, or some partials have too high frequency.

scl -- amplitude scale.

fmode (optional, default = 0) -- a non-zero value can be used to set frequency in Hz instead of partial
numbers in the source table. The sample rate is assumed to be fmode if it is positive, or -(sr * fmode) if any
negative value is specified.

Examples

; partials 1, 4, 7, 10, 13, 16, etc. with base frequency of 400 Hz

ibsfrq = 400
; estimate number of partials
inumh = int(1.5 + sr * 0.5 / (3 * ibsfrq))
; source table length
isrcln = int(0.5 + exp(log(2) * int(1.01 + log(inumh * 3) / log(2))))

986

Chapter 16. Score Statements and GEN Routines

; create empty source table
itmp ftgen 1, 0, isrcln, -2, 0
ifpos = 0
ifrq = ibsfrq
inumh = 0
l1:

tableiw ibsfrq / ifrq, ifpos, 1 ; amplitude
tableiw ifrq, ifpos + 1, 1 ; frequency
tableiw 0, ifpos + 2, 1 ; phase

ifpos = ifpos + 3
ifrq = ifrq + ibsfrq * 3
inumh = inumh + 1

if (ifrq < (sr * 0.5)) igoto l1

; store output in ftable 2 (size = 262144)

itmp ftgen 2, 0, 262144, -34, 1, inumh, 1, -1

See Also

GEN09, GEN33

Credits

Programmer: Istvan Varga

New in version 4.19

March 2002

GEN40

GEN40— Generates a random distribution using a distribution histogram.

Description

Generates a continuous random distribution function starting from the shape of a user-defined distribution
histogram.

Syntax

f # time size -40 shapetab

Performance

The shape of histogram must be stored in a previously defined table, in fact shapetab argument must be filled
with the number of such table.

Histogram shape can be generated with any other GEN routines. Since no interpolation is used when GEN40
processes the translation, it is suggested that the size of the table containing the histogram shape to be

987

Chapter 16. Score Statements and GEN Routines

reasonably big, in order to obtain more precision (however after the processing the shaping-table can be
destroyed in order to re-gain memory).

This subroutine is designed to be used together with cuserrnd opcode (see cuserrnd for more information).

Credits

Author: Gabriel Maldonado

GEN41

GEN41— Generates a random list of numerical pairs.

Description

Generates a discrete random distribution function by giving a list of numerical pairs.

Syntax

f # time size -41 value1 prob1 value2 prob2 value3 prob3 ... valueN probN

Performance

The first number of each pair is a value, and the second is the probability of that value to be chosen by a
random algorithm. Even if any number can be assigned to the probability element of each pair, it is suggested
to give it a percent value, in order to make it clearer for the user.

This subroutine is designed to be used together with duserrnd and urd opcodes (see duserrnd for more
information).

Credits

Author: Gabriel Maldonado

GEN42

GEN42— Generates a random distribution of discrete ranges of values.

Description

Generates a random distribution function of discrete ranges of values by giving a list of groups of three
numbers.

988

Chapter 16. Score Statements and GEN Routines

Syntax

f # time size -42 min1 max1 prob1 min2 max2 prob2 min3 max3 prob3 ... minN maxN probN

Performance

The first number of each group is a the minimum value of the first range, the second is the maximum value
and the third is the probability of that an element belonging to that range of values can be chosen by a
random algorithm. Even if any number can be assigned to the probability element of each group, it is
suggested to give it a percent value, in order to make it clearer to the user.

This subroutine is designed to be used together with duserrnd and urd opcodes (see duserrnd for more
information). Since both duserrnd and urd do not use any interpolation, it is suggested to give a size
reasonably big.

Credits

Author: Gabriel Maldonado

989

Chapter 16. Score Statements and GEN Routines

990

Chapter 17. The Utility Programs

Dan Ellis

The Csound Utilities are soundfile preprocessing programs that return information on a soundfile or create
some analyzed version of it for use by certain Csound generators. Though different in goals, they share a
common soundfile access mechanism and are describable as a set. The Soundfile Utility programs can be
invoked in two equivalent forms:

csound [-U utilname] [flags] [filenames]

utilname [flags] [filenames]

In the first, the utility is invoked as part of the Csound executable, while in the second it is called as a
standalone program. The second is smaller by about 200K, but the two forms are identical in function. The
first is convenient in not requiring the maintenance and use of several independent programs - one program
does all. When using this form, a -U flag detected in the command line will cause all subsequent flags and
names to be interpreted as per the named utility; i.e. Csound generation will not occur, and the program will
terminate at the end of utility processing.

Directories.
Filenames are of two kinds, source soundfiles and resultant analysis files. Each has a hierarchical naming
convention, influenced by the directory from which the Utility is invoked. Source soundfiles with a full
pathname (begins with dot (.), slash (/), or for ThinkC includes a colon (:)), will be sought only in the directory
named. Soundfiles without a path will be sought first in the current directory, then in the directory named by
the SSDIR environment variable (if defined), then in the directory named by SFDIR. An unsuccessful search
will return a "cannot open" error.

Resultant analysis files are written into the current directory, or to the named directory if a path is included. It
is tidy to keep analysis files separate from sound files, usually in a separate directory known to the SADIR
variable. Analysis is conveniently run from within the SADIR directory. When an analysis file is later invoked
by a Csound generator it is sought first in the current directory, then in the directory defined by SADIR.

Soundfile Formats.
Csound can read and write audio files in a variety of formats. Write formats are described by Csound
command flags. On reading, the format is determined from the soundfile header, and the data automatically
converted to floating-point during internal processing. When Csound is installed on a host with local
soundfile conventions (SUN, NeXT, Macintosh) it may conditionally include local packaging code which
creates soundfiles not portable to other hosts. However, Csound on any host can always generate and read
AIFF files, which is thus a portable format. Sampled sound libraries are typically AIFF, and the variable SSDIR
usually points to a directory of such sounds. If defined, the SSDIR directory is in the search path during
soundfile access. Note that some AIFF sampled sounds have an audio looping feature for sustained
performance; the analysis programs will traverse any loop segment once only.

For soundfiles without headers, an SR value may be supplied by the -R flag (or its default). If both the SR
header and the command-line flag are present, the flag value will override the header.

When sound is accessed by the audio Analysis programs , only a single channel is read. For stereo or quad
files, the default is channel one; alternate channels may be obtained on request.

991

Chapter 17. The Utility Programs

Credits
Dan Ellis

MIT Media Lab

Cambrige, Massachussetts

Analysis File Generation

hetro

hetro — Decomposes an input soundfile into component sinusoids.

Description

Hetrodyne filter analysis for the Csound adsyn generator.

Syntax

csound -U hetro [flags] infilename outfilename

hetro [flags] infilename outfilename

Initialization

hetro takes an input soundfile, decomposes it into component sinusoids, and outputs a description of the
components in the form of breakpoint amplitude and frequency tracks. Analysis is conditioned by the control
flags below. A space is optional between flag and value.

-s srate -- sampling rate of the audio input file. This will over-ride the srate of the soundfile header, which
otherwise applies. If neither is present, the default is 10000. Note that for adsyn synthesis the srate of the
source file and the generating orchestra need not be the same.

-c channel -- channel number sought. The default is 1.

-b begin -- beginning time (in seconds) of the audio segment to be analyzed. The default is 0.0

-d duration -- duration (in seconds) of the audio segment to be analyzed. The default of 0.0 means to the end
of the file. Maximum length is 32.766 seconds.

-f begfreq -- estimated starting frequency of the fundamental, necessary to initialize the filter analysis. The
default is 100 (cps).

-h partials -- number of harmonic partials sought in the audio file. Default is 10, maximum is a function of
memory available.

-M maxamp -- maximum amplitude summed across all concurrent tracks. The default is 32767.

-m minamp -- amplitude threshold below which a single pair of amplitude/frequency tracks is considered
dormant and will not contribute to output summation. Typical values: 128 (48 db down from full scale), 64
(54 db down), 32 (60 db down), 0 (no thresholding). The default threshold is 64 (54 db down).

-n brkpts -- initial number of analysis breakpoints in each amplitude and frequency track, prior to
thresholding (-m) and linear breakpoint consolidation. The initial points are spread evenly over the duration.
The default is 256.

-l cutfreq -- substitute a 3rd order Butterworth low-pass filter with cutoff frequency cutfreq (in Hz), in place of
the default averaging comb filter. The default is 0 (don’t use).

992

Chapter 17. The Utility Programs

Performance

As of Csound 4.08, hetro can write SDIF ouput files if the output file name ends with ".sdif". See the sdif2ad
utility for more information about the Csound’s SDIF support.

Examples

hetro -s44100 -b.5 -d2.5 -h16 -M24000 audiofile.test adsynfile7

This will analyze 2.5 seconds of channel 1 of a file "audiofile.test", recorded at 44.1 kHz, beginning .5 seconds
from the start, and place the result in a file "adsynfile7". We request just the first 16 harmonics of the sound,
with 256 initial breakpoint values per amplitude or frequency track, and a peak summation amplitude of
24000. The fundamental is estimated to begin at 100 Hz. Amplitude thresholding is at 54 db down.

The Butterworth LPF is not enabled.

File Format

The output file contains time-sequenced amplitude and frequency values for each partial of an additive
complex audio source. The information is in the form of breakpoints (time, value, time, value,) using 16-bit
integers in the range 0 - 32767. Time is given in milliseconds, and frequency in Hertz (cps). The breakpoint
data is exclusively non-negative, and the values -1 and -2 uniquely signify the start of new amplitude and
frequency tracks. A track is terminated by the value 32767. Before being written out, each track is
data-reduced by amplitude thresholding and linear breakpoint consolidation.

A component partial is defined by two breakpoint sets: an amplitude set, and a frequency set. Within a
composite file these sets may appear in any order (amplitude, frequency, amplitude; or amplitude,
amplitude..., then frequency, frequency,...). During adsyn resynthesis the sets are automatically paired
(amplitude, frequency) from the order in which they were found. There should be an equal number of each.

A legal adsyn control file could have following format:

-1 time1 value1 ... timeK valueK 32767 ; amplitude breakpoints for partial 1
-2 time1 value1 ... timeL valueL 32767 ; frequency breakpoints for partial 1
-1 time1 value1 ... timeM valueM 32767 ; amplitude breakpoints for partial 2
-2 time1 value1 ... timeN valueN 32767 ; frequency breakpoints for partial 2
-2 time1 value1
-2 time1 value1 ; pairable tracks for partials 3 and 4
-1 time1 value1
-1 time2 value1

Credits

October 2002. Thanks to Rasmus Ekman, added a note about the SDIF format.

lpanal

lpanal — Performs both linear predictive analysis on a soundfile.

993

Chapter 17. The Utility Programs

Description

Linear predictive analysis for the Csound lp generators

Syntax

csound -U lpanal [flags] infilename outfilename

lpanal [flags] infilename outfilename

Initialization

lpanal performs both lpc and pitch-tracking analysis on a soundfile to produce a time-ordered sequence of
frames of control information suitable for Csound resynthesis. Analysis is conditioned by the control flags
below. A space is optional between the flag and its value.

-a -- [alternate storage] asks lpanal to write a file with filter poles values rather than the usual filter coefficient
files. When lpread / lpreson are used with pole files, automatic stabilization is performed and the filter should
not get wild. (This is the default in the Windows GUI) - Changed by Marc Resibois.

-s srate -- sampling rate of the audio input file. This will over-ride the srate of the soundfile header, which
otherwise applies. If neither is present, the default is 10000.

-c channel -- channel number sought. The default is 1.

-b begin -- beginning time (in seconds) of the audio segment to be analyzed. The default is 0.0

-d duration -- duration (in seconds) of the audio segment to be analyzed. The default of 0.0 means to the end
of the file.

-p npoles -- number of poles for analysis. The default is 34, the maximum 50.

-h hopsize -- hop size (in samples) between frames of analysis. This determines the number of frames per
second (srate / hopsize) in the output control file. The analysis framesize is hopsize * 2 samples. The default is
200, the maximum 500.

-C string -- text for the comments field of the lpfile header. The default is the null string.

-P mincps -- lowest frequency (in Hz) of pitch tracking. -P0 means no pitch tracking.

-Q maxcps -- highest frequency (in Hz) of pitch tracking. The narrower the pitch range, the more accurate the
pitch estimate. The defaults are -P70, -Q200.

-v verbosity -- level of terminal information during analysis.

• 0 = none

• 1 = verbose

• 2 = debug

The default is 0.

Examples

lpanal -a -p26 -d2.5 -P100 -Q400 audiofile.test lpfil22

will analyze the first 2.5 seconds of file "audiofile.test", producing srate/200 frames per second, each
containing 26-pole filter coefficients and a pitch estimate between 100 and 400 Hertz. Stabilized (-a) output
will be placed in "lpfil22" in the current directory.

994

Chapter 17. The Utility Programs

File Format

Output is a file comprised of an identifiable header plus a set of frames of floating point analysis data. Each
frame contains four values of pitch and gain information, followed by npoles filter coefficients. The file is
readable by Csound’s lpread.

lpanal is an extensive modification of Paul Lanksy’s lpc analysis programs.

pvanal

pvanal — Converts a soundfile into a series of short-time Fourier transform frames.

Description

Fourier analysis for the Csound pvoc generator

Syntax

csound -U pvanal [flags] infilename outfilename

pvanal [flags] infilename outfilename

Pvanal extension to create a PVOC-EX file.

The standard Csound utility program pvanal has been extended to enable a PVOC-EX format file to be
created, using the existing interface. To create a PVOC-EX file, the file name must be given the required
extension, “.pvx”, e.g “test.pvx”. The requirement for the FFT size to be a power of two is here relaxed, and
any positive value is accepted; odd numbers are rounded up internally. However, power-of-two sizes are still
to be preferred for all normal applications.

The channel select flags are ignored, and all source channels will be analysed and written to the output file,
up to a compiler-set limit of eight channels. The analysis window size (iwinsize) is set internally to double the
FFT size.

Initialization

pvanal converts a soundfile into a series of short-time Fourier transform (STFT) frames at regular timepoints
(a frequency-domain representation). The output file can be used by pvoc to generate audio fragments based
on the original sample, with timescales and pitches arbitrarily and dynamically modified. Analysis is
conditioned by the flags below. A space is optional between the flag and its argument.

-s srate -- sampling rate of the audio input file. This will over-ride the srate of the soundfile header, which
otherwise applies. If neither is present, the default is 10000.

-c channel -- channel number sought. The default is 1.

-b begin -- beginning time (in seconds) of the audio segment to be analyzed. The default is 0.0

-d duration -- duration (in seconds) of the audio segment to be analyzed. The default of 0.0 means to the end
of the file.

-n frmsiz -- STFT frame size, the number of samples in each Fourier analysis frame. Must be a power of two,
in the range 16 to 16384. For clean results, a frame must be larger than the longest pitch period of the sample.
However, very long frames result in temporal "smearing" or reverberation. The bandwidth of each STFT bin is

995

Chapter 17. The Utility Programs

determined by sampling rate / frame size. The default framesize is the smallest power of two that corresponds
to more than 20 milliseconds of the source (e.g. 256 points at 10 kHz sampling, giving a 25.6 ms frame).

-w windfact -- Window overlap factor. This controls the number of Fourier transform frames per second.
Csound’s pvoc will interpolate between frames, but too few frames will generate audible distortion; too many
frames will result in a huge analysis file. A good compromise for windfact is 4, meaning that each input point
occurs in 4 output windows, or conversely that the offset between successive STFT frames is framesize/4. The
default value is 4. Do not use this flag with -h.

-h hopsize -- STFT frame offset. Converse of above, specifying the increment in samples between successive
frames of analysis (see also lpanal). Do not use with -w.

Examples

pvanal asound pvfile

will analyze the soundfile "asound" using the default frmsiz and windfact to produce the file "pvfile" suitable
for use with pvoc.

Files

The output file has a special pvoc header containing details of the source audio file, the analysis frame rate
and overlap. Frames of analysis data are stored as float, with the magnitude and “frequency” (in Hz) for the
first N/2 + 1 Fourier bins of each frame in turn. “Frequency” encodes the phase increment in such a way that
for strong harmonics it gives a good indication of the true frequency. For low amplitude or rapidly moving
harmonics it is less meaningful.

Diagnostics

Prints total number of frames, and frames completed on every 20th.

Credits

Author: Dan Ellis

MIT Media Lab

Cambrige, Massachussetts

1990

cvanal

cvanal — Converts a soundfile into a single Fourier transform frame.

Description

Impulse Response Fourier Analysis for convolve operator

996

Chapter 17. The Utility Programs

Syntax

CSound -U cvanal [flags] infilename outfilename

Initialization

cvanal -- converts a soundfile into a single Fourier transform frame. The output file can be used by the
convolve operator to perform Fast Convolution between an input signal and the original impulse response.
Analysis is conditioned by the flags below. A space is optional between the flag and its argument.

-s rate -- sampling rate of the audio input file. This will over-ride the srate of the soundfile header, which
otherwise applies. If neither is present, the default is 10000.

-c channel -- channel number sought. If omitted, the default is to process all channels. If a value is given, only
the selected channel will be processed.

-b begin -- beginning time (in seconds) of the audio segment to be analyzed. The default is 0.0

-d duration -- duration (in seconds) of the audio segment to be analyzed. The default of 0.0 means to the end
of the file.

Examples

cvanal asound cvfile

will analyze the soundfile "asound" to produce the file "cvfile" for the use with convolve.

To use data that is not already contained in a soundfile, a soundfile converter that accepts text files may be
used to create a standard audio file, e.g., the .DAT format for SOX. This is useful for implementing FIR filters.

Files

The output file has a special convolve header, containing details of the source audio file. The analysis data is
stored as “float”, in rectangular (real/imaginary) form.

Note: The analysis file is not system independent! Ensure that the original impulse recording/data is retained. If/when
required, the analysis file can be recreated.

Credits

Author: Greg Sullivan

Based on algorithm given in Elements Of Computer Music, by F. Richard Moore.

997

Chapter 17. The Utility Programs

File Queries

sndinfo

sndinfo — Displays information about a soundfile.

Description

Get basic information about one or more soundfiles.

Syntax

csound -U sndinfo soundfilenames ...

sndinfo soundfilenames ...

Initialization

sndinfo will attempt to find each named file, open it for reading, read in the soundfile header, then print a
report on the basic information it finds. The order of search across soundfile directories is as described above.
If the file is of type AIFF, some further details are listed first.

Examples

csound -U sndinfo test Bosendorfer/"BOSEN mf A0 st" foo foo2

where the environment variables SFDIR = /u/bv/sound, and SSDIR = /so/bv/Samples, might produce the
following:

util SNDINFO:
/u/bv/sound/test:

srate 22050, monaural, 16 bit shorts, 1.10 seconds
headersiz 1024, datasiz 48500 (24250 sample frames)

/so/bv/Samples/Bosendorfer/BOSEN mf A0 st: AIFF, 197586 stereo samples, base Frq 261.6 (MIDI 60), sustnLp: mode 1, 121642 to 197454, re-
lesLp: mode 0

AIFF soundfile, looping with modes 1, 0
srate 44100, stereo, 16 bit shorts, 4.48 seconds

headersiz 402, datasiz 790344 (197586 sample frames)

/u/bv/sound/foo:
no recognizable soundfile header

/u/bv/sound/foo2:
couldn’t find

998

Chapter 17. The Utility Programs

File Conversion

dnoise

dnoise — Reduces noise in a file.

Description

This is a noise reduction scheme using frequency-domain noise-gating.

Syntax

dnoise [flags] -i noise_ref_file -o output_soundfile input_soundfile

Initialization

Dnoise specific flags:

• (no flag) input soundfile to be denoised

• -i fname input reference noise soundfile

• -o fname output soundfile

• -N fnum # of bandpass filters (default: 1024)

• -w fovlp filter overlap factor: {0,1,(2),3} DON’T USE -w AND -M

• -M awlen analysis window length (default: N-1 unless -w is specified)

• -L swlen synthesis window length (default: M)

• -D dfac decimation factor (default: M/8)

• -b btim begin time in noise reference soundfile (default: 0)

• -B smpst starting sample in noise reference soundfile (default: 0)

• -e etim end time in noise reference soundfile (default: end of file)

• -E smpend final sample in noise reference soundfile (default: end of file)

• -t thr threshold above noise reference in dB (default: 30)

• -S gfact sharpness of noise-gate turnoff, range: 1 to 5 (default: 1)

• -n numfrm number of FFT frames to average over (default: 5)

• -m mingain minimum gain of noise-gate when off in dB (default: -40)

Soundfile format options:

• -A AIFF format output

• -W WAV format output

• -J IRCAM format output

• -h skip soundfile header (not valid for AIFF/WAV output)

• -8 8-bit unsigned char sound samples

• -c 8-bit signed_char sound samples

999

Chapter 17. The Utility Programs

• -a alaw sound samples

• -u ulaw sound samples

• -s short_int sound samples

• -l long_int sound samples

• -f float sound samples. Floats also supported for WAV files. (New in Csound 3.47.)

Additional options:

• -R verbose - print status info

• -H [N] print a heartbeat character at each soundfile write.

• -- fname output to log file fname

• -V verbose - print status info

Note: DNOISE also looks at the environment variable SFOUTYP to determine soundfile output format.

The -i flag is used for a reference noise file (normally created from a short section of the denoised file, where only
noise is audible). The input soundfile to be denoised can be given anywhere on the command line, without a flag.

Performance

This is a noise reduction scheme using frequency-domain noise-gating. This should work best in the case of
high signal-to-noise with hiss-type noise.

The algorithm is that suggested by Moorer & Berger in “Linear-Phase Bandsplitting: Theory and Applications”
presented at the 76th Convention 1984 October 8-11 New York of the Audio Engineering Society (preprint
#2132) except that it uses the Weighted Overlap-Add formulation for short-time Fourier analysis-synthesis in
place of the recursive formulation suggested by Moorer & Berger. The gain in each frequency bin is computed
independently according to

gain = g0 + (1-g0) * [avg / (avg + th*th*nref)] ˆ sh

where avg and nref are the mean squared signal and noise respectively for the bin in question. (This is
slightly different than in Moorer & Berger.)

The critical parameters th and g0 are specified in dB and internally converted to decimal values. The nref
values are computed at the start of the program on the basis of a noise_soundfile (specified in the command
line) which contains noise without signal.

The avg values are computed over a rectangular window of m FFT frames looking both ahead and behind the
current time. This corresponds to a temporal extent of m*D/R (which is typically (m*N/8)/R). The default
settings of N, M, and D should be appropriate for most uses. A higher sample rate than 16 Khz might indicate
a higher N.

Credits

Author: Mark Dolson

August 26, 1989

Author: John ffitch

1000

Chapter 17. The Utility Programs

December 30, 2000

Updated by Rasmus Ekman on March 11, 2002.

pvlook

pvlook — View formatted text output of STFT analysis files.

Description

View formatted text output of STFT analysis files created with pvanal.

Syntax

csound -U pvlook [flags] infilename

pvlook [flags] infilename

Initialization

pvlook reads a file, and frequency and amplitude trajectories for each of the analysis bins, in readable text
form. The file is assumed to be an STFT analysis file created by pvanal. By default, the entire file is processed.

-bb n -- begin at analysis bin number n, numbered from 1. Default is 1.

-eb n -- end at analysis bin number n. Defaults to the highest.

-bf n -- begin at analysis frame number n, numbered from 1. Defaults to 1.

-ef n -- end at analysis frame number n. Defaults to the highest.

-i -- prints values as integers. Defaults to floating point.

Examples

enakis 259% ../csound -U pvlook test.pv
Using csound.txt
Csound Version 3.57 (Aug 3 1999)
util PVLOOK:
; Bins in Analysis: 513
; First Bin Shown: 1
; Number of Bins Shown: 513
; Frames in Analysis: 1184
; First Frame Shown: 1
; Number of Data Frames Shown: 1184

Bin 1 Freqs.0.000 87.891 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1001

Chapter 17. The Utility Programs

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 -87.891 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 87.891 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1002

Chapter 17. The Utility Programs

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bin 1 Amps. 0.180 0.066 0.252 0.248 0.245 0.246 0.246 0.249
0.252 0.251 0.250 0.248 0.244 0.245 0.248 0.250 0.254 0.251
0.248 0.247 0.244 0.246 0.249 0.250 0.253 0.251 0.247 0.246
0.245 0.246 0.250 0.251 0.252 0.250 0.247 0.245 0.246 0.247
0.251 0.252 0.250 0.249 0.246 0.245 0.248 0.249 0.252 0.253
0.249 0.248 0.245 0.245 0.249 0.251 0.252 0.252 0.249 0.246
0.246 0.245 0.249 0.252 0.252 0.251 0.249 0.245 0.246 0.248
0.250 0.253 0.251 0.249 0.247 0.244 0.247 0.249 0.250 0.253
0.251 0.248 0.247 0.245 0.247 0.250 0.252 0.252 0.251 0.247
0.246 0.246 0.247 0.251 0.252 0.251 0.249 0.246 0.245 0.248
0.249 0.252 0.252 0.249 0.248 0.246 0.245 0.249 0.250 0.252
0.252 0.249 0.247 0.246 0.246 0.249 0.252 0.252 0.251 0.248
0.245 0.246 0.247 0.249 0.253 0.251 0.249 0.247 0.245 0.246
0.248 0.250 0.253 0.251 0.248 0.247 0.244 0.246 0.250 0.251
0.252 0.250 0.247 0.246 0.246 0.248 0.251 0.252 0.251 0.250
0.246 0.245 0.247 0.248 0.251 0.252 0.250 0.248 0.246 0.245
0.248 0.249 0.252 0.252 0.248 0.247 0.245 0.245 0.249 0.251
0.251 0.251 0.248 0.246 0.246 0.247 0.250 0.252 0.251 0.250

1003

Chapter 17. The Utility Programs

0.248 0.244 0.246 0.248 0.250 0.253 0.251 0.248 0.247 0.245
0.247 0.249 0.250 0.252 0.250 0.247 0.246 0.245 0.247 0.251
0.252 0.251 0.250 0.246 0.245 0.247 0.248 0.252 0.252 0.249
0.248 0.245 0.245 0.248 0.249 0.251 0.252 0.248 0.247 0.245
0.245 0.249 0.250 0.251 0.251 0.248 0.246 0.245 0.246 0.249
0.252 0.251 0.250 0.247 0.244 0.246 0.247 0.249 0.252 0.251
0.249 0.247 0.244 0.247 0.249 0.250 0.252 0.250 0.247 0.246
0.245 0.247 0.250 0.251 0.251 0.250 0.246 0.245 0.246 0.248
0.251 0.252 0.250 0.249 0.245 0.245 0.247 0.248 0.251 0.252
0.249 0.247 0.245 0.245 0.248 0.250 0.251 0.251 0.247 0.246
0.245 0.245 0.249 0.251 0.251 0.250 0.247 0.245 0.246 0.246
0.249 0.252 0.251 0.249 0.247 0.244 0.247 0.248 0.250 0.252
0.250 0.247 0.246 0.245 0.247 0.250 0.251 0.252 0.249 0.246
0.245 0.245 0.247 0.251 0.251 0.250 0.249 0.246 0.245 0.247
0.248 0.251 0.251 0.249 0.248 0.245 0.245 0.248 0.249 0.251
0.251 0.248 0.246 0.245 0.245 0.249 0.251 0.251 0.251 0.247
0.245 0.245 0.246 0.249 0.251 0.250 0.249 0.247 0.244 0.246
0.248 0.250 0.252 0.250 0.247 0.246 0.245 0.247 0.249 0.250
0.251 0.249 0.246 0.246 0.245 0.247 0.250 0.250 0.250 0.249
0.245 0.245 0.246 0.248 0.251 0.251 0.249 0.248 0.245 0.245
0.247 0.249 0.251 0.251 0.248 0.246 0.245 0.245 0.248 0.250
0.251 0.250 0.247 0.245 0.245 0.246 0.249 0.251 0.250 0.249
0.246 0.244 0.246 0.247 0.250 0.251 0.250 0.248 0.246 0.245
0.247 0.249 0.250 0.251 0.249 0.247 0.246 0.245 0.247 0.250
0.250 0.251 0.248 0.245 0.245 0.246 0.248 0.251 0.251 0.249
0.248 0.245 0.245 0.247 0.249 0.251 0.251 0.248 0.247 0.245
0.245 0.248 0.249 0.250 0.250 0.247 0.246 0.246 0.246 0.249
0.251 0.250 0.250 0.246 0.245 0.246 0.247 0.250 0.251 0.249
0.248 0.246 0.244 0.246 0.248 0.250 0.251 0.249 0.247 0.246
0.245 0.247 0.250 0.250 0.251 0.249 0.245 0.245 0.246 0.248
0.251 0.250 0.250 0.248 0.245 0.245 0.247 0.248 0.251 0.250
0.248 0.247 0.245 0.246 0.248 0.250 0.251 0.250 0.247 0.246
0.245 0.246 0.249 0.251 0.250 0.249 0.246 0.245 0.246 0.247
0.250 0.251 0.250 0.249 0.246 0.244 0.246 0.248 0.250 0.251
0.249 0.247 0.246 0.245 0.247 0.249 0.250 0.251 0.287 0.331
0.178 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.140 1.265 2.766 3.289 3.296 3.293 3.296 3.296 3.290 3.293
3.292 3.291 3.297 3.295 3.294 3.296 3.291 3.292 3.294 3.291
3.296 3.297 3.292 3.295 3.292 3.290 3.295 3.293 3.294 3.297
3.292 3.293 3.294 3.290 3.295 3.295 3.292 3.296 3.293 3.291
3.294 3.291 3.293 3.297 3.292 3.295 3.294 3.288 3.293 3.293
3.292 3.297 3.294 3.292 3.295 3.290 3.292 3.295 3.292 3.295
3.295 3.290 3.294 3.292 3.292 3.297 3.293 3.293 3.295 3.290
3.292 3.293 3.290 3.296 3.296 3.292 3.295 3.291 3.290 3.294
3.291 3.294 3.296 3.291 3.293 3.293 3.290 3.295 3.294 3.293
3.296 3.291 3.291 3.293 3.290 3.294 3.296 3.292 3.295 3.293
3.288 3.293 3.292 3.292 3.297 3.292 3.293 3.294 3.289 3.292
3.294 3.291 3.296 3.293 3.291 3.294 3.291 3.292 3.296 3.292
3.294 3.295 3.289 3.292 3.292 3.291 3.296 3.294 3.292 3.295
3.290 3.290 3.293 3.291 3.295 3.296 3.291 3.294 3.291 3.289
3.294 3.292 3.293 3.295 3.291 3.292 3.293 3.290 3.294 3.295
3.292 3.294 3.291 3.289 3.293 3.291 3.293 3.296 3.292 3.293

1004

Chapter 17. The Utility Programs

3.293 3.288 3.292 3.293 3.292 3.296 3.293 3.291 3.294 3.289
3.292 3.295 3.291 3.294 3.293 3.289 3.292 3.291 3.290 3.295
3.293 3.292 3.294 3.289 3.291 3.293 3.290 3.295 3.294 3.290
3.293 3.290 3.289 3.294 3.291 3.293 3.295 3.290 3.292 3.292
3.289 3.293 3.293 3.292 3.295 3.291 3.289 3.292 3.290 3.292
3.295 3.291 3.293 3.292 3.288 3.292 3.291 3.291 3.295 3.291
3.291 3.292 3.289 3.291 3.294 3.291 3.294 3.292 3.289 3.292
3.290 3.290 3.295 3.292 3.293 3.294 3.289 3.291 3.292 3.290
3.294 3.293 3.291 3.293 3.289 3.290 3.293 3.291 3.294 3.295
3.290 3.292 3.291 3.289 3.294 3.293 3.292 3.294 3.290 3.290
3.292 3.289 3.293 3.294 3.291 3.293 3.291 3.289 3.292 3.291
3.291 3.295 3.291 3.291 3.292 3.288 3.292 3.293 3.291 3.295
3.292 3.290 3.292 3.289 3.291 3.294 3.291 3.293 3.292 3.288
3.291 3.291 3.290 3.295 3.292 3.291 3.293 3.289 3.290 3.292
3.290 3.294 3.293 3.290 3.292 3.290 3.289 3.293 3.291 3.292
3.294 3.290 3.290 3.291 3.289 3.293 3.293 3.291 3.293 3.290
3.288 3.291 3.290 3.292 3.294 3.290 3.292 3.291 3.288 3.291
3.291 3.291 3.294 3.291 3.290 3.291 3.288 3.291 3.293 3.291
3.293 3.292 3.288 3.291 3.290 3.290 3.294 3.291 3.291 3.292
3.288 3.290 3.291 3.290 3.294 3.293 3.290 3.292 3.289 3.289
3.293 3.290 3.292 3.293 3.289 3.291 3.290 3.289 3.293 3.292
3.291 3.293 3.289 3.289 3.291 3.289 3.292 3.293 3.290 3.292
3.290 3.288 3.292 3.291 3.291 3.294 3.290 3.290 3.291 3.288
3.291 3.292 3.291 3.293 3.291 3.288 3.291 3.289 3.290 3.293
3.290 3.292 3.292 3.288 3.291 3.291 3.290 3.293 3.291 3.290
3.292 3.288 3.289 3.292 3.290 3.292 3.293 3.289 3.291 3.289
3.288 3.293 3.291 3.291 3.292 3.288 3.289 3.290 3.288 3.292
3.293 3.290 3.292 3.289 3.288 3.291 3.290 3.291 3.293 3.289
3.290 3.290 3.287 3.291 3.291 3.290 3.293 3.290 3.288 3.290
3.288 3.290 3.293 3.291 3.292 3.291 3.288 3.290 3.289 3.289
3.293 3.290 3.290 3.291 3.287 3.289 3.291 3.289 3.292 3.291
3.288 3.290 3.288 3.288 3.292 3.290 3.291 3.292 3.288 3.289
3.290 3.288 3.292 3.292 3.290 3.292 3.289 3.288 3.291 3.289
3.291 3.293 3.289 3.291 3.290 3.287 3.291 3.290 3.290 3.293
3.289 3.289 3.290 3.287 3.290 3.292 3.290 3.292 3.290 3.287
3.290 3.289 3.289 3.292 3.290 3.290 3.291 3.287 3.289 3.290
3.289 3.292 3.291 3.289 3.291 3.288

etc...

Credits

Author: Richard Karpen

Seattle, Wash

1993 (New in Csound version 3.57)

sdif2ad

sdif2ad — Converts SDIF files to files usable by adsynt.

1005

Chapter 17. The Utility Programs

Description

Convert files Sound Description Interchange Format (SDIF) to the format usable by Csound’s adsyn opcode.
As of Csound version 4.10, sdif2ad was available only as a standalone program for Windows console and DOS.

Syntax

Csound -U sdif2ad [flags] infilename outfilename

Initialization

Flags:

• -sN -- apply amplitude scale factor N

• -pN -- keep only the first N partials. Limited to 1024 partials. The source partial track indices are used
directly to select internal storage. As these can be arbitrary values, the maximum of 1024 partials may not
be realized in all cases.

• -r -- byte-reverse output file data. The byte-reverse option is there to facilitate transfer across platforms, as
Csound’s adsyn file format is not portable.

If the filename passed to hetro has the extension “.sdif”, data will be written in SDIF format as 1TRC frames of
additive synthesis data. The utility program sdif2ad can be used to convert any SDIF file containing a stream
of 1TRC data to the Csound adsyn format. sdif2ad allows the user to limit the number of partials retained,
and to apply an amplitude scaling factor. This is often necessary, as the SDIF specification does not, as of the
release of sdif2ad, require amplitudes to be within a particular range. sdif2ad reports information about the
file to the console, including the frequency range.

The main advantages of SDIF over the adsyn format, for Csound users, is that SDIF files are fully portable
across platforms (data is “big-endian”), and do not have the duration limit of 32.76 seconds imposed by the
16 bit adsyn format. This limit is necessarily imposed by sdif2ad. Eventually, SDIF reading will be
incorporated directly into adsyn, thus enabling files of any length (subject to system memory limits) to be
analysed and processed.

Users should remember that the SDIF formats are still under development. While the 1TRC format is now
fairly well established, it can still change.

For detailed information on the Sound Description Interchange Format, refer to the CNMAT website:
http://cnmat.CNMAT.Berkeley.EDU/SDIF

Some other SDIF resources (including a viewer) are available via the NC_DREAM website:
http://www.bath.ac.uk/~masjpf/NCD/dreamhome.html

Credits

Author: Richard Dobson

Somerset, England

August, 2000

New in Csound version 4.08

1006

Chapter 17. The Utility Programs

srconv

srconv — Converts the sample rate of an audio file.

Description

Converts the sample rate of an audio file at sample rate Rin to a sample rate of Rout. Optionally the ratio (Rin
/ Rout) may be linearly time-varying according to a set of (time, ratio) pairs in an auxiliary file.

Syntax

srconv [flags] infile

Initialization

Flags:

• -P num = pitch transposition ratio (srate / r) [don’t specify both P and r]

• -P num = pitch transposition ratio (srate / r) [don’t specify both P and r]

• -Q num =quality factor (1, 2, 3, or 4: default = 2)

• -i filnam = break file

• -r num = output sample rate (must be specified)

• -o fnam = sound output filename

• -A = create an AIFF format output soundfile

• -J = create an IRCAM format output soundfile

• -W = create a WAV format output soundfile

• -h = no header on output soundfile

• -c = 8-bit signed_char sound samples

• -a = alaw sound samples

• -8 = 8-bit unsigned_char sound samples

• -u = ulaw sound samples

• -s = short_int sound samples

• -l = long_int sound samples

• -f = float sound samples

• -r N = orchestra srate override

• -K = Do not generate PEAK chunks

• -R = continually rewrite header while writing soundfile (WAV/AIFF)

• -H# = print a heartbeat style 1, 2 or 3 at each soundfile write

• -N = notify (ring the bell) when score or miditrack is done

• -- fnam = log output to file

This program performs arbitrary sample-rate conversion with high fidelity. The method is to step through the
input at the desired sampling increment, and to compute the output points as appropriately weighted
averages of the surrounding input points. There are two cases to consider:

1007

Chapter 17. The Utility Programs

1. sample rates are in a small-integer ratio - weights are obtained from table.

2. sample rates are in a large-integer ratio - weights are linearly interpolated from table.

Calculate increment: if decimating, then window is impulse response of low-pass filter with cutoff frequency
at half of output sample rate; if interpolating, then window is impulse response of lowpass filter with cutoff
frequency at half of input sample rate.

Credits

Author: Mark Dolson

August 26, 1989

Author: John ffitch

December 30, 2000

1008

Chapter 18. Cscore

Cscore is a program for generating and manipulating numeric score files. It comprises a number of function
subprograms, called into operation by a user-written control program, and can be invoked either as a
standalone score preprocessor, or as part of the Csound run-time system:

Cscore [scorefilein] [scorefileout]

or

CSound [-C] [otherflags] [orchname] [scorename]

The available function programs augment the C language library functions; they can read either standard or
pre-sorted score files, can massage and expand the data in various ways, then make it available for
performance by a Csound orchestra.

The user-written control program is also in C, and is compiled and linked to the function programs (or the
entire Csound) by the user. It is not essential to know the C language well to write this program, since the
function calls have a simple syntax, and are powerful enough to do most of the complicated work. Additional
power can come from C later as the need arises.

Events, Lists, and Operations
An event in Cscore is equivalent to one statement of a standard numeric score or time-warped score (see any
score.srt), stored internally in time-warped format. It is either created in-line, or read in from an existing
score file (either format). Its main components are an opcode and an array of pfield values. It is stored
somewhere in memory, organized by a structure that starts as follows:

typedef struct {
CSHDR h; /* space-managing header */
long op; /* opcode-t, w, f, i, a, s or e */
long pcnt; /* number of pfields p1, p2, p3 ... */
long strlen; /* length of optional string argument */
char *strarg; /* address of optional string argument */
float p2orig; /* unwarped p2, p3 */
float p3orig;
float offtim; /* storage used during performance */
float p[1]; /* array of pfields p0, p1, p2 ... */

} EVENT;

Any function subprogram that creates, reads, or copies an event will return a pointer to the storage structure
holding the event data. The event pointer can be used to access any component of the structure, in the form
of e-op or e-p[n]. Each newly stored event will give rise to a new pointer, and a sequence of new events will
generate a sequence of distinct pointers that must themselves be stored. Groups of event pointers are stored
in an event list, which has its own structure:

typedef struct {
CSHDR h;
int nslots; /* max events in this event list */
int nevents; /* number of events present */
EVENT *e[1]; /* array of event pointers e0, e1, e2.. */

} EVLIST;

1009

Chapter 18. Cscore

Any function that creates or modifies a list will return a pointer to the new list. The list pointer can be used to
access any of its component event pointers, in the form of a-e[n]. Event pointers and list pointers are thus
primary tools for manipulating the data of a score file. Pointers and lists of pointers can be copied and
reordered without modifying the data values they refer to. This means that notes and phrases can be copied
and manipulated from a high level of control. Alternatively, the data within an event or group of events can be
modified without changing the event or list pointers. The Cscore function subprograms enable scores to be
created and manipulated in this way.

In the following summary of Cscore function calls, some simple naming conventions are used:

the symbols e, f are pointers to events (notes);
the symbols a, b are pointers to lists (arrays) of such events;
the letters ev at the end of a function name signify operation on an event;
the letter l at the start of a function name signifies operation on a list.
the symbol fp is a score input stream file pointer (FILE *);
calling syntax description
e = createv(n); create a blank event with n pfields

int n;
e = defev("..."); defines an event as per the character string ...
e = copyev(f); make a new copy of event f
e = getev(); read the next event in the score input file
putev(e); write event e to the score output file
putstr("..."); write the string-defined event to score output
a = lcreat(n); create an empty event list with n slots

int n;
a = lappev(a,e); append event e to list a
a = lappstrev(a,"..."); append a string-defined event to list a;
a = lcopy(b); copy the list b (but not the events)
a = lcopyev(b); copy the events of b, making a new list
a = lget(); read all events from score input, up to next s or e
a = lgetnext(nbeats); read next nbeats beats from score input

float nbeats;
a = lgetuntil(beatno); read all events from score input up to beat beatno

float beatno;
a = lsepf(b); separate the f statements from list b into list a
a = lseptwf(b); separate the t,w & f statements from list b into list a
a = lcat(a,b); concatenate (append) the list b onto the list a
lsort(a); sort the list a into chronological order by p[2]
a = lxins(b,"..."); extract notes of instruments ... (no new events)
a = lxtimev(b,from,to); extract notes of time-span, creating new events

float from, to;
lput(a); write the events of list a to the score output file
lplay(a); send events of list a to the Csound orchestra for

immediate performance (or print events if no orchestra)
relev(e); release the space of event e
lrel(a); release the space of list a (but not the events)
lrelev(a); release the events of list a, and the list space
fp = getcurfp(); get the currently active input scorefile pointer

(initially finds the command-line input scorefile pointer)
fp = filopen("filename"); open another input scorefile (maximum of 5)
setcurfp(fp); make fp the currently active scorefile pointer
filclose(fp); close the scorefile relating to FILE *fp

1010

Chapter 18. Cscore

Writing a Main Program
The general format for a control program is:

#include "cscore.h"
cscore()
{

/* VARIABLE DECLARATIONS */
/* PROGRAM BODY */

}

The include statement will define the event and list structures for the program. The following C program will
read from a standard numeric score, up to (but not including) the first s or e statement , then write that data
(unaltered) as output.

#include "cscore.h"
cscore()
{

EVLIST *a; /* a is allowed to point to an event list */
a = lget(); /* read events in, return the list pointer */
lput(a); /* write these events out (unchanged) */
putstr("e"); /* write the string e to output */

}

After execution of lget(), the variable a points to a list of event addresses, each of which points to a stored
event. We have used that same pointer to enable another list function (lput) to access and write out all of the
events that were read. If we now define another symbol e to be an event pointer, then the statement

e = a-e[4];

will set it to the contents of the 4th slot in the evlist structure. The contents is a pointer to an event, which is
itself comprised of an array of parameter field values. Thus the term e-p[5] will mean the value of parameter
field 5 of the 4th event in the evlist denoted by a. The program below will multiply the value of that pfield by 2
before writing it out.

#include "cscore.h"
cscore()
{

EVENT *e; /* a pointer to an event */
EVLIST *a;
a = lget(); /* read a score as a list of events */
e = a-e[4]; /* point to event 4 in event list a */
e-p[5] *= 2; /* find pfield 5, multiply its value by 2 */
lput(a); /* write out the list of events */
putstr("e"); /* add a "score end" statement */

}

Now consider the following score, in which p[5] contains frequency in Hz.

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8

1011

Chapter 18. Cscore

i 1 1 3 0 440 10000
i 1 4 3 0 256 10000
i 1 7 3 0 880 10000
e

If this score were given to the preceding main program, the resulting output would look like this:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
i 1 1 3 0 440 10000
i 1 4 3 0 512 10000 ; p[5] has become 512 instead of 256.
i 1 7 3 0 880 10000
e

Note that the 4th event is in fact the second note of the score. So far we have not distinguished between notes
and function table setup in a numeric score. Both can be classed as events. Also note that our 4th event has
been stored in e[4] of the structure. For compatibility with Csound pfield notation, we will ignore p[0] and e[0]
of the event and list structures, storing p1 in p[1], event 1 in e[1], etc. The Cscore functions all adopt this
convention.

As an extension to the above, we could decide to use a and e to examine each of the events in the list. Note
that e has not preserved the numeral 4, but the contents of that slot. To inspect p5 of the previous listed event
we need only redefine e with the assignment

e = a-e[3];

More generally, if we declare a new variable f to be a pointer to a pointer to an event, the statement

f = &a-e[4];

will set f to the address of the fourth event in the event list a, and *f will signify the contents of the slot,
namely the event pointer itself. The expression

(*f)-p[5],

like e-p[5], signifies the fifth pfield of the selected event. However, we can advance to the next slot in the evlist
by advancing the pointer f . In C this is denoted by f++.

In the following program we will use the same input score. This time we will separate the ftable statements
from the note statements. We will next write the three note-events stored in the list a, then create a second
score section consisting of the original pitch set and a transposed version of itself. This will bring about an
octave doubling.

By pointing the variable f to the first note-event and incrementing f inside a while block which iterates n
times (the number of events in the list), one statement can be made to act upon the same pfield of each
successive event.

#include "cscore.h"
cscore()
{

1012

Chapter 18. Cscore

EVENT *e,**f; /* declarations. see pp.8-9 in the */
EVLIST *a,*b; /* C language programming manual */
int n;
a = lget(); /* read score into event list "a" */
b = lsepf(a); /* separate f statements */
lput(b); /* write f statements out to score */
lrelev(b); /* and release the spaces used */
e = defev("t 0 120"); /* define event for tempo statement */
putev(e); /* write tempo statement to score */
lput(a); /* write the notes */
putstr("s"); /* section end */
putev(e); /* write tempo statement again */
b = lcopyev(a); /* make a copy of the notes in "a" */
n = b-nevents; /* and get the number present */
f = &a-e[1];
while (n--) /* iterate the following line n times: */

(*f++)-p[5] *= .5; /* transpose pitch down one octave */
a = lcat(b,a); /* now add these notes to original pitches */
lput(a);
putstr("e");

}

The output of this program is:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
t 0 120
i 1 1 3 0 440 10000
i 1 4 3 0 256 10000
i 1 7 3 0 880 10000
s
t 0 120
i 1 1 3 0 440 10000
i 1 4 3 0 256 10000
i 1 7 3 0 880 10000
i 1 1 3 0 220 10000
i 1 4 3 0 128 10000
i 1 7 3 0 440 10000
e

Next we extend the above program by using the while statement to look at p[5] and p[6]. In the original score
p[6] denotes amplitude. To create a diminuendo in the added lower octave, which is independent from the
original set of notes, a variable called dim will be used.

#include "cscore.h"
cscore()
{

EVENT *e,**f;
EVLIST *a,*b;
int n, dim; /* declare two integer variables */
a = lget();
b = lsepf(a);
lput(b);
lrelev(b);
e = defev("t 0 120");
putev(e);
lput(a);
putstr("s");

1013

Chapter 18. Cscore

putev(e); /* write out another tempo statement */
b = lcopyev(a);
n = b-nevents;
dim = 0; /* initialize dim to 0 */
f = &a-e[1];
while (n--){

(*f)-p[6] -= dim; /* subtract current value of dim */
(*f++)-p[5] *= .5; /* transpose, move f to next event */
dim += 2000; /* increase dim for each note */

}
a = lcat(b,a);
lput(a);
putstr("e");

}

The increment of f in the above programs has depended on certain precedence rules of C. Although this
keeps the code tight, the practice can be dangerous for beginners. Incrementing may alternately be written as
a separate statement to make it more clear.

while (n--){
(*f)-p[6] -= dim;
(*f)-p[5] *= .5;
dim += 2000;
f++;

}

Using the same input score again, the output from this program is:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
t 0 120
i 1 1 3 0 440 10000
i 1 4 3 0 256 10000
i 1 7 3 0 880 10000
s
t 0 120
i 1 1 3 0 440 10000 ; Three original notes at
i 1 4 3 0 256 10000 ; beats 1,4 and 7 with no dim.
i 1 7 3 0 880 10000
i 1 1 3 0 220 10000 ; three notes transposed down one octave
i 1 4 3 0 128 8000 ; also at beats 1,4 and 7 with dim.
i 1 7 3 0 440 6000
e

In the following program the same three-note sequence will be repeated at various time intervals. The
starting time of each group is determined by the values of the array cue. This time the dim will occur for each
group of notes rather than each note. Note the position of the statement which increments the variable dim
outside the inner while block.

#include "cscore.h"
int cue[3]={0,10,17}; /* declare an array of 3 integers */
cscore()
{

EVENT *e, **f;

1014

Chapter 18. Cscore

EVLIST *a, *b;
int n, dim, cuecount, holdn; /* declare new variables */
a = lget();
b = lsepf(a);
lput(b);
lrelev(b);
e = defev("t 0 120");
putev(e);
n = a-nevents;
holdn = n; /* hold the value of "n" to reset below */
cuecount = 0; /* initialize cuecount to "0" */
dim = 0;
while (cuecount <= 2) { /* count 3 iterations of inner "while" */

f = &a-e[1]; /* reset pointer to first event of list "a" */
n = holdn; /* reset value of "n" to original note count */
while (n--) {

(*f)-p[6] -= dim;
(*f)-p[2] += cue[cuecount]; /* add values of cue */
f++;

}
printf("; diagnostic: cue = %d\n", cue[cuecount]);
cuecount++;
dim += 2000;

lput(a);
}
putstr("e");

}

Here the inner while block looks at the events of list a (the notes) and the outer while block looks at each
repetition of the events of list a (the pitch group repetitions). This program also demonstrates a useful
trouble-shooting device with the printf function. The semi-colon is first in the character string to produce a
comment statement in the resulting score file. In this case the value of cue is being printed in the output to
insure that the program is taking the proper array member at the proper time. When output data is wrong or
error messages are encountered, the printf function can help to pinpoint the problem.

Using the identical input file, the C program above will generate:

f 1 0 257 10 1
f 2 0 257 7 0 300 1 212 .8
t 0 120
; diagnostic: cue = 0
i 1 1 3 0 440 10000
i 1 4 3 0 256 10000
i 1 7 3 0 880 10000
; diagnostic: cue = 10
i 1 11 3 0 440 8000
i 1 14 3 0 256 8000
i 1 17 3 0 880 8000
; diagnostic: cue = 17
i 1 28 3 0 440 4000
i 1 31 3 0 256 4000
i 1 34 3 0 880 4000
e;

1015

Chapter 18. Cscore

More Advanced Examples
The following program demonstrates reading from two different input files. The idea is to switch between two
2-section scores, and write out the interleaved sections to a single output file.

./.htmlinclude "cscore.h" /* CSCORE_SWITCH.C */
cscore() /* callable from either CSound or standalone cscore */
{

EVLIST *a, *b;
FILE *fp1, *fp2; /* declare two scorefile stream pointers */
fp1 = getcurfp(); /* this is the command-line score */
fp2 = filopen("score2.srt"); /* this is an additional score file */
a = lget(); /* read section from score 1 */
lput(a); /* write it out as is */
putstr("s");
setcurfp(fp2);
b = lget(); /* read section from score 2 */
lput(b); /* write it out as is */
putstr("s");
lrelev(a); /* optional to reclaim space */
lrelev(b);
setcurfp(fp1);
a = lget(); /* read next section from score 1 */
lput(a); /* write it out */
putstr("s");
setcurfp(fp2);
b = lget(); /* read next sect from score 2 */
lput(b); / * write it out */
putstr("e");

}

Finally, we show how to take a literal, uninterpreted score file and imbue it with some expressive timing
changes. The theory of composer-related metric pulses has been investigated at length by Manfred Clynes,
and the following is in the spirit of his work. The strategy here is to first create an array of new onset times for
every possible sixteenth-note onset, then to index into it so as to adjust the start and duration of each note of
the input score to the interpreted time-points. This also shows how a Csound orchestra can be invoked
repeatedly from a run-time score generator.

./.htmlinclude "cscore.h" /* CSCORE_PULSE.C */

/* program to apply interpretive durational pulse to */
/* an existing score in 3/4 time, first beats on 0, 3, 6 ... */

static float four[4] = { 1.05, 0.97, 1.03, 0.95 }; /* pulse width for 4’s*/
static float three[3] = { 1.03, 1.05, .92 }; /* pulse width for 3’s*/

cscore() /* callable from either CSound or standalone cscore */
{

EVLIST *a, *b;
register EVENT *e, **ep;
float pulse16[4*4*4*4*3*4]; /* 16th-note array, 3/4 time, 256 measures */
float acc16, acc1,inc1, acc3,inc3, acc12,inc12, acc48,inc48, acc192,inc192;
register float *p = pulse16;
register int n16, n1, n3, n12, n48, n192;

/* fill the array with interpreted ontimes */
for (acc192=0.,n192=0; n192 <4; acc192+=192.*inc192,n192++)

1016

Chapter 18. Cscore

for (acc48=acc192,inc192=four[n192],n48=0; n48 <4; acc48+=48.*inc48,n48++)
for (acc12=acc48,inc48=inc192*four[n48],n12=0;n12 <4;

acc12+=12.*inc12,n12++)
for (acc3=acc12,inc12=inc48*four[n12],n3=0; n3 <4; acc3+=3.*inc3,n3++)

for (acc1=acc3,inc3=inc12*four[n3],n1=0; n1 <3; acc1+=inc1,n1++)
for (acc16=acc1,inc1=inc3*three[n1],n16=0; n16 <4;

acc16+=.25*inc1*four[n16],n16++)
*p++ = acc16;

/* for (p = pulse16, n1 = 48; n1--; p += 4) /* show vals & diffs */
/* printf("%g %g %g %g %g %g %g %g\n", *p, *(p+1), *(p+2), *(p+3),
/* *(p+1)-*p, *(p+2)-*(p+1), *(p+3)-*(p+2), *(p+4)-*(p+3)); */

a = lget(); /* read sect from tempo-warped score */
b = lseptwf(a); /* separate warp & fn statements */
lplay(b); /* and send these to performance */
a = lappstrev(a, "s"); /* append a sect statement to note list */
lplay(a); /* play the note-list without interpretation */
for (ep = &a-e[1], n1 = a-nevents; n1--;) { /* now pulse-modifiy it */

e = *ep++;
if (e-op == ’i’) {

e-p[2] = pulse16[(int)(4. * e-p2orig)];
e-p[3] = pulse16[(int)(4. * (e-p2orig + e-p3orig))] - e-p[2];

}
}

lplay(a); /* now play modified list */
}

As stated above, the input files to Cscore may be in original or time-warped and pre-sorted form; this
modality will be preserved (section by section) in reading, processing and writing scores. Standalone
processing will most often use unwarped sources and create unwarped new files. When running from within
Csound the input score will arrive already warped and sorted, and can thus be sent directly (normally section
by section) to the orchestra.

A list of events can be conveyed to a Csound orchestra using lplay. There may be any number of lplay calls in
a Cscore program. Each list so conveyed can be either time-warped or not, but each list must be in strict
p2-chronological order (either from presorting or using lsort). If there is no lplay in a Cscore module run from
within Csound, all events written out (via putev, putstr or lput) constitute a new score, which will be sent
initially to scsort then to the Csound orchestra for performance. These can be examined in the files
“cscore.out” and “cscore.srt”.

A standalone cscore program will normally use the put commands to write into its output file. If a standalone
Cscore program contains lplay, the events thus intended for performance will instead be printed on the
console.

A note list sent by lplay for performance should be temporally distinct from subsequent note lists. No
note-end should extend past the next list’s start time, since lplay will complete each list before starting the
next (i.e. like a Section marker that doesn’t reset local time to zero). This is important when using lgetnext() or
lgetuntil()to fetch and process score segments prior to performance.

Compiling a Cscore Program
A Cscore program can be invoked either as a Standalone program or as part of Csound:

cscore -U pvanal scorename outfilename

1017

Chapter 18. Cscore

or

csound -C [otherflags] orchname scorename

To create a standalone program, write a cscore.c program as shown above and test compile it with ’cc cscore.c’ .
If the compiler cannot find "cscore.h", try using -I/usr/local/include, or just copy the cscore.h module from the
Csound source directory into your own. There will still be unresolved references, so you must now link your
program with certain Csound I/O modules. If your Csound installation has created a libcscore.a, you can type

cc -o cscore.c -lcscore

Else set an environment variable to a Csound directory containing the already compiled modules, and invoke
them explicitly:

setenv CSOUND /ti/u/bv/Csound
cc -o cscore cscore.c $CSOUND/cscoremain.o $CSOUND/cscorefns.o \

$CSOUND/rdscore.o $CSOUND/memalloc.o

The resulting executable can be applied to an input scorefilein by typing:

cscore scorefilein scorefileout

To operate from CSound, first proceed as above then link your program to a complete set of Csound modules.
If your Csound installation has created a libcsound.a, you can do this by typing

cc -o mycsound cscore.o -lcsounc -lX11 -lm (X11 if your installation included it)

Else copy *.c, *.h and Makefile from the Csound source directory, replace cscore.c by your own, then run
“make CSound”. The resulting executable is your own special Csound, usable as above. The -C flag will
invoke your Cscore program after the input score is sorted into “score.srt”. With no lplay, the subsequent
stages of processing can be seen in the files “cscore.out” and “cscore.srt”.

1018

Chapter 19. Adding your own Cmodules to Csound

If the existing Csound generators do not suit your needs, you can write your own modules in C and add them
to the run-time system. When you invoke Csound on an orchestra and score file, the orchestra is first read by
a table-driven translator ’otran’ and the instrument blocks converted to coded templates ready for loading
into memory by ’oload’ on request by the score reader. To use your own C-modules within a standard
orchestra you need only add an entry in otran’s table and relink Csound with your own code.

The translator, loader, and run-time monitor will treat your module just like any other provided you follow
some conventions. You need a structure defining the inputs, outputs and workspace, plus some initialization
code and some perf-time code. Let’s put an example of these in two new files, newgen.h and newgen.c:

/* newgen.h - define a structure */
typedef struct
{

OPDS h; /* required header */
float *result, *istrt, *incr, *itime, *icontin; /* addr outarg, inargs */
float curval, vincr; /* private dataspace */
long countdown; /* ditto */

} RMP;

/* newgen.c - init and perf code */
#include "cs.h"
#include "newgen.h"

void rampset (RMP * p) /* at note initialization: */
{

if (*p - icontin == 0.)
p - curval = *p - istrt; /* optionally get new start value */

p - vincr = *p - incr / esr; /* set s-rate increment per sec. */
p - countdown = *p - itime * esr; /* counter for itime seconds */

}

void ramp (RMP * p) /* during note performance: */
{

float *rsltp = p - result; /* init an output array pointer */
int nn = ksmps; /* array size from orchestra */
do

{
rsltp++ = p - curval; / copy current value to output */
if (--p - countdown = 0) /* for the first itime seconds, */

p - curval += p - vincr; /* ramp the value */
}

while (--nn);
}

Now we add this module to the translator table entry.c, under the opcode name rampt:

#include "newgen.h"

void rampset(), ramp();

/* opcode dspace thread outarg inargs isub ksub asub */

{ "rampt", S(RMP), 5, "a", "iiio", rampset, NULL, ramp },

1019

Chapter 19. Adding your own Cmodules to Csound

Finally we relink Csound to include the new module. If your Csound installation has created a libcsound.a,
you can do this by typing

cc -o mycsound newgen.c entry.c -lcsound -lX11 -lm
(X11 if included at installation)

Else copy *.c, *.h and Makefile from the Csound sources, add newgen.o to the Makefile list OBJS, add
newgen.h as a dependency for entry.o, and a new dependency ’newgen.o: newgen.h’, then run ’make
CSound’. If your host is a Macintosh, simply add newgen.h and newgen.c to one of the segments in the
Csound Project, and invoke the C compiler.

The above actions have added a new generator to the Csound language. It is an audio-rate linear ramp
function which modifies an input value at a user-defined slope for some period. A ramp can optionally
continue from the previous note’s last value. The Csound manual entry would look like:

ar rampt istart, islope, itime [, icontin]

istart -- beginning value of an audio-rate linear ramp. Optionally overridden by a continue flag.

islope -- slope of ramp, expressed as the y-interval change per second.

itime -- ramp time in seconds, after which the value is held for the remainder of the note.

icontin (optional) -- continue flag. If zero, ramping will proceed from input istart . If non-zero, ramping will
proceed from the last value of the previous note. The default value is zero.

The file newgen.h includes a one-line list of output and input parameters. These are the ports through which
the new generator will communicate with the other generators in an instrument. Communication is by
address, not value, and this is a list of pointers to floats. There are no restrictions on names, but the
input-output argument types are further defined by character strings in entry.c (inargs, outargs). Inarg types
are commonly x, a, k, and i, in the normal Csound manual conventions; also available are o (optional,
defaulting to 0), p (optional, defaulting to 1). Outarg types include a, k, i and s (asig or ksig). It is important
that all listed argument names be assigned a corresponding argument type in entry.c. Also, i-type args are
valid only at initialization time, and other-type args are available only at perf time. Subsequent lines in the
RMP structure declare the work space needed to keep the code re-entrant. These enable the module to be
used multiple times in multiple instrument copies while preserving all data.

The file newgen.c contains two subroutines, each called with a pointer to the uniquely allocated RMP
structure and its data. The subroutines can be of three types: note initialization, k-rate signal generation,
a-rate signal generation. A module normally requires two of these initialization, and either k-rate or a-rate
subroutines which become inserted in various threaded lists of runnable tasks when an instrument is
activated. The thread-types appear in entry.c in two forms: isub, ksub and asub names; and a threading index
which is the sum of isub=1, ksub=2, asub=4. The code itself may reference global variables defined in cs.h and
oload.c, the most useful of which are:

extern OPARMS O ; float esr
user-defined sampling rate float ekr
user-defined control rate float ensmps
user-defined ksmps int ksmps
user-defined ksmps int nchnls
user-defined nchnls int O.odebug
command-line -v flag int O.msglevel
command-line -m level float pi, twopi obvious
constants float tpidsr twopi / esr float
sstrcod special code for string arguments

1020

Chapter 19. Adding your own Cmodules to Csound

Function tables
To access stored function tables, special help is available. The newly defined structure should include a
pointer

FUNC *ftp;

initialized by the statement

ftp = ftpfind(p-ifuncno);

where float *ifuncno is an i-type input argument containing the ftable number. The stored table is then at
ftp-ftable, and other data such as length, phase masks, cps-to-incr converters, are also accessed from this
pointer. See the FUNC structure in cs.h, the ftfind() code in fgens.c, and the code for oscset() and koscil() in
opcodes2.c.

Additional Space
Sometimes the space requirement of a module is too large to be part of a structure (upper limit 65535 bytes),
or it is dependent on an i-arg value which is not known until initialization. Additional space can be
dynamically allocated and properly managed by including the line

AUXCH auxch;

in the defined structure (*p), then using the following style of code in the init module:

if (p-auxch.auxp == NULL)
auxalloc(npoints * sizeof(float), &p-auxch);

The address of this auxiliary space is kept in a chain of such spaces belonging to this instrument, and is
automatically managed while the instrument is being duplicated or garbage-collected during performance.
The assignment

char *auxp = p-auxch.auxp;

will find the allocated space for init-time and perf-time use. See the LINSEG structure in opcodes1.h and the
code for lsgset() and klnseg() in opcodes1.c.

1021

Chapter 19. Adding your own Cmodules to Csound

File Sharing
When accessing an external file often, or doing it from multiple places, it is often efficient to read the entire
file into memory. This is accomplished by including the line

MEMFIL *mfp;

in the defined structure (*p), then using the following style of code in the init module:

if (p-mfp == NULL)
p-mfp = ldmemfile(filname);

where char *filname is a string name of the file requested. The data read will be found between

(char *) p-mfp-beginp; and (char *) p-mfp-endp;

Loaded files do not belong to a particular instrument, but are automatically shared for multiple access. See
the ADSYN structure in opcodes3.h and the code for adset() and adsyn() in opcodes3.c.

String arguments
To permit a quoted string input argument (float *ifilnam, say) in our defined structure (*p), assign it the
argtype S in entry.c, include another member char *strarg in the structure, insert a line

TSTRARG("rampt", RMP) \

in the file oload.h, and include the following code in the init module:

if (*p-ifilnam == sstrcod)
strcpy(filename, unquote(p-strarg));

See the code for adset() in opcodes3.c, lprdset() in opcodes5.c, and pvset() in opcodes8.c.

When accessing an external file often, or doing it from multiple places, it is often efficient to read the entire
file into memory. This is accomplished by including the line

MEMFIL *mfp;

in the defined structure (*p), then using the following style of code in the init module:

if (p-mfp == NULL)
p-mfp = ldmemfile(filname);

1022

Chapter 19. Adding your own Cmodules to Csound

where char *filname is a string name of the file requested. The data read will be found between

(char *) p-mfp-beginp; and (char *) p-mfp-endp;

Loaded files do not belong to a particular instrument, but are automatically shared for multiple access. See
the ADSYN structure in opcodes3.h and the code for adset() and adsyn() in opcodes3.c.

1023

Chapter 19. Adding your own Cmodules to Csound

1024

Appendix A. Pitch Conversion

Table A-1. Pitch Conversion

Note Hz cpspch MIDI

C-1 8.176 3.00 0

C#-1 8.662 3.01 1

D-1 9.177 3.02 2

D#-1 9.723 3.03 3

E-1 10.301 3.04 4

F-1 10.913 3.05 5

F#-1 11.562 3.06 6

G-1 12.250 3.07 7

G#-1 12.978 3.08 8

A-1 13.750 3.09 9

A#-1 14.568 3.10 10

B-1 15.434 3.11 11

C0 16.352 4.00 12

C#0 17.324 4.01 13

D0 18.354 4.02 14

D#0 19.445 4.03 15

E0 20.602 4.04 16

F0 21.827 4.05 17

F#0 23.125 4.06 18

G0 24.500 4.07 19

G#0 25.957 4.08 20

A0 27.500 4.09 21

A#0 29.135 4.10 22

B0 30.868 4.11 23

C1 32.703 5.00 24

C#1 34.648 5.01 25

D1 36.708 5.02 26

D#1 38.891 5.03 27

E1 41.203 5.04 28

F1 43.654 5.05 29

F#1 46.249 5.06 30

G1 48.999 5.07 31

G#1 51.913 5.08 32

A1 55.000 5.09 33

A#1 58.270 5.10 34

1025

Appendix A. Pitch Conversion

Note Hz cpspch MIDI

B1 61.735 5.11 35

C2 65.406 6.00 36

C#2 69.296 6.01 37

D2 73.416 6.02 38

D#2 77.782 6.03 39

E2 82.407 6.04 40

F2 87.307 6.05 41

F#2 92.499 6.06 42

G2 97.999 6.07 43

G#2 103.826 6.08 44

A2 110.000 6.09 45

A#2 116.541 6.10 46

B2 123.471 6.11 47

C3 130.813 7.00 48

C#3 138.591 7.01 49

D3 146.832 7.02 50

D#3 155.563 7.03 51

E3 164.814 7.04 52

F3 174.614 7.05 53

F#3 184.997 7.06 54

G3 195.998 7.07 55

G#3 207.652 7.08 56

A3 220.000 7.09 57

A#3 233.082 7.10 58

B3 246.942 7.11 59

C4 261.626 8.00 60

C#4 277.183 8.01 61

D4 293.665 8.02 62

D#4 311.127 8.03 63

E4 329.628 8.04 64

F4 349.228 8.05 65

F#4 369.994 8.06 66

G4 391.995 8.07 67

G#4 415.305 8.08 68

A4 440.000 8.09 69

A#4 466.164 8.10 70

B4 493.883 8.11 71

C5 523.251 9.00 72

1026

Appendix A. Pitch Conversion

Note Hz cpspch MIDI

C#5 554.365 9.01 73

D5 587.330 9.02 74

D#5 622.254 9.03 75

E5 659.255 9.04 76

F5 698.456 9.05 77

F#5 739.989 9.06 78

G5 783.991 9.07 79

G#5 830.609 9.08 80

A5 880.000 9.09 81

A#5 932.328 9.10 82

B5 987.767 9.11 83

C6 1046.502 10.00 84

C#6 1108.731 10.01 85

D6 1174.659 10.02 86

D#6 1244.508 10.03 87

E6 1318.510 10.04 88

F6 1396.913 10.05 89

F#6 1479.978 10.06 90

G6 1567.982 10.07 91

G#6 1661.219 10.08 92

A6 1760.000 10.09 93

A#6 1864.655 10.10 94

B6 1975.533 10.11 95

C7 2093.005 11.00 96

C#7 2217.461 11.01 97

D7 2349.318 11.02 98

D#7 2489.016 11.03 99

E7 2637.020 11.04 100

F7 2793.826 11.05 101

F#7 2959.955 11.06 102

G7 3135.963 11.07 103

G#7 3322.438 11.08 104

A7 3520.000 11.09 105

A#7 3729.310 11.10 106

B7 3951.066 11.11 107

C8 4186.009 12.00 108

C#8 4434.922 12.01 109

D8 4698.636 12.02 110

1027

Appendix A. Pitch Conversion

Note Hz cpspch MIDI

D#8 4978.032 12.03 111

E8 5274.041 12.04 112

F8 5587.652 12.05 113

F#8 5919.911 12.06 114

G8 6271.927 12.07 115

G#8 6644.875 12.08 116

A8 7040.000 12.09 117

A#8 7458.620 12.10 118

B8 7902.133 12.11 119

C9 8372.018 13.00 120

C#9 8869.844 13.01 121

D9 9397.273 13.02 122

D#9 9956.063 13.03 123

E9 10548.08 13.04 124

F9 11175.30 13.05 125

F#9 11839.82 13.06 126

G9 12543.85 13.07 127

1028

Appendix B. Sound Intensity Values

Table B-1. Sound Intensity Values (for a 1000 Hz tone)

Dynamics Intensity (W/m ˆ 2) Level (dB)

pain 1 120

fff 10 ˆ -2 100

f 10 ˆ -4 80

p 10 ˆ -6 60

ppp 10 ˆ -8 40

threshold 10 ˆ -12 0

1029

Appendix B. Sound Intensity Values

1030

Appendix C. Formant Values

Table C-1. alto “a”

Values f1 f2 f3 f4 f5

freq (Hz) 800 1150 2800 3500 4950

amp (dB) 0 -4 -20 -36 -60

bw (Hz) 80 90 120 130 140

Table C-2. alto “e”

Values f1 f2 f3 f4 f5

freq (Hz) 400 1600 2700 3300 4950

amp (dB) 0 -24 -30 -35 -60

bw (Hz) 60 80 120 150 200

Table C-3. alto “i”

Values f1 f2 f3 f4 f5

freq (Hz) 350 1700 2700 3700 4950

amp (dB) 0 -20 -30 -36 -60

bw (Hz) 50 100 120 150 200

Table C-4. alto “o”

Values f1 f2 f3 f4 f5

freq (Hz) 450 800 2830 3500 4950

amp (dB) 0 -9 -16 -28 -55

bw (Hz) 70 80 100 130 135

Table C-5. alto “u”

Values f1 f2 f3 f4 f5

freq (Hz) 325 700 2530 3500 4950

amp (dB) 0 -12 -30 -40 -64

bw (Hz) 50 60 170 180 200

Table C-6. bass “a”

Values f1 f2 f3 f4 f5

freq (Hz) 600 1040 2250 2450 2750

amp (dB) 0 -7 -9 -9 -20

bw (Hz) 60 70 110 120 130

1031

Appendix C. Formant Values

Table C-7. bass “e”

Values f1 f2 f3 f4 f5

freq (Hz) 400 1620 2400 2800 3100

amp (dB) 0 -12 -9 -12 -18

bw (Hz) 40 80 100 120 120

Table C-8. bass “i”

Values f1 f2 f3 f4 f5

freq (Hz) 250 1750 2600 3050 3340

amp (dB) 0 -30 -16 -22 -28

bw (Hz) 60 90 100 120 120

Table C-9. bass “o”

Values f1 f2 f3 f4 f5

freq (Hz) 400 750 2400 2600 2900

amp (dB) 0 -11 -21 -20 -40

bw (Hz) 40 80 100 120 120

Table C-10. bass “u”

Values f1 f2 f3 f4 f5

freq (Hz) 350 600 2400 2675 2950

amp (dB) 0 -20 -32 -28 -36

bw (Hz) 40 80 100 120 120

Table C-11. countertenor “a”

Values f1 f2 f3 f4 f5

freq (Hz) 660 1120 2750 3000 3350

amp (dB) 0 -6 -23 -24 -38

bw (Hz) 80 90 120 130 140

Table C-12. countertenor “e”

Values f1 f2 f3 f4 f5

freq (Hz) 440 1800 2700 3000 3300

amp (dB) 0 -14 -18 -20 -20

bw (Hz) 70 80 100 120 120

1032

Appendix C. Formant Values

Table C-13. countertenor “i”

Values f1 f2 f3 f4 f5

freq (Hz) 270 1850 2900 3350 3590

amp (dB) 0 -24 -24 -36 -36

bw (Hz) 40 90 100 120 120

Table C-14. countertenor “o”

Values f1 f2 f3 f4 f5

freq (Hz) 430 820 2700 3000 3300

amp (dB) 0 -10 -26 -22 -34

bw (Hz) 40 80 100 120 120

Table C-15. countertenor “u”

Values f1 f2 f3 f4 f5

freq (Hz) 370 630 2750 3000 3400

amp (dB) 0 -20 -23 -30 -34

bw (Hz) 40 60 100 120 120

Table C-16. soprano “a”

Values f1 f2 f3 f4 f5

freq (Hz) 800 1150 2900 3900 4950

amp (dB) 0 -6 -32 -20 -50

bw (Hz) 80 90 120 130 140

Table C-17. soprano “e”

Values f1 f2 f3 f4 f5

freq (Hz) 350 2000 2800 3600 4950

amp (dB) 0 -20 -15 -40 -56

bw (Hz) 60 100 120 150 200

Table C-18. soprano “i”

Values f1 f2 f3 f4 f5

freq (Hz) 270 2140 2950 3900 4950

amp (dB) 0 -12 -26 -26 -44

bw (Hz) 60 90 100 120 120

1033

Appendix C. Formant Values

Table C-19. soprano “o”

Values f1 f2 f3 f4 f5

freq (Hz) 450 800 2830 3800 4950

amp (dB) 0 -11 -22 -22 -50

bw (Hz) 40 80 100 120 120

Table C-20. soprano “u”

Values f1 f2 f3 f4 f5

freq (Hz) 325 700 2700 3800 4950

amp (dB) 0 -16 -35 -40 -60

bw (Hz) 50 60 170 180 200

Table C-21. tenor “a”

Values f1 f2 f3 f4 f5

freq (Hz) 650 1080 2650 2900 3250

amp (dB) 0 -6 -7 -8 -22

bw (Hz) 80 90 120 130 140

Table C-22. tenor “e”

Values f1 f2 f3 f4 f5

freq (Hz) 400 1700 2600 3200 3580

amp (dB) 0 -14 -12 -14 -20

bw (Hz) 70 80 100 120 120

Table C-23. tenor “i”

Values f1 f2 f3 f4 f5

freq (Hz) 290 1870 2800 3250 3540

amp (dB) 0 -15 -18 -20 -30

bw (Hz) 40 90 100 120 120

Table C-24. tenor “o”

Values f1 f2 f3 f4 f5

freq (Hz) 400 800 2600 2800 3000

amp (dB) 0 -10 -12 -12 -26

bw (Hz) 70 80 100 130 135

1034

Appendix C. Formant Values

Table C-25. tenor “u”

Values f1 f2 f3 f4 f5

freq (Hz) 350 600 2700 2900 3300

amp (dB) 0 -20 -17 -14 -26

bw (Hz) 40 60 100 120 120

1035

Appendix C. Formant Values

1036

Appendix D. Window Functions

Windowing functions are used for analysis, and as waveform envelopes, particularly in granular synthesis.
Window functions are built in to some opcodes, but others require a function table to generate the window.
GEN20 is used for this purpose. The diagram of each window below, is accompanied by the f statement used
to generate the it.

Hamming.

Example D-1. Hamming window function statement

f81 0 8192 20 1 1

Hamming Window Function.

Hanning.

Example D-2. Hanning window function statement

f82 0 8192 20 2 1

1037

Appendix D. Window Functions

Hanning Window Function

Bartlett.

Example D-3. Bartlett window function statement

f83 0 8192 20 3 1

Bartlett Window Function

Blackman.

Example D-4. Blackman window function statement

f84 0 8192 20 4 1

1038

Appendix D. Window Functions

Blackman Window Function

Blackman-Harris.

Example D-5. Blackman-Harris window function statement

f85 0 8192 20 5 1

Blackman-Harris Window Function

Gaussian.

Example D-6. Gaussian window function statement

f86 0 8192 20 6 1

1039

Appendix D. Window Functions

Gaussian Window Function

Rectangle.

Example D-7. Rectangle window function statement

f88 0 8192 -20 8 .1

Note: Vertical scale is exaggerated in this diagram.

Rectangle Window Function

Sync.

1040

Appendix D. Window Functions

Example D-8. Sync window function statement

f89 0 4096 -20 9 .75

Sync Window Function

1041

Appendix D. Window Functions

1042

Appendix E. SoundFont2 File Format

Beginning with Csound Version 4.07, Csound supports the SoundFont2 sample file format . SoundFont2 (or
SF2) is a widespread standard which allows encoding banks of wavetable-based sounds into a binary file. In
order to understand the usage of these opcodes, the user must have some knowledge of the SF2 format, so a
brief description of this format follows.

The SF2 format is made by generator and modulator objects. All current Csound opcodes regarding SF2
support the generator function only.

There are several levels of generators having a hierarchical structure. The most basic kind of generator object
is a sample. Samples may or may not be be looped, and are associated with a MIDI note number, called the
base-key. When a sample is associated with a range of MIDI note numbers, a range of velocities, a
transposition (coarse and fine tuning), a scale tuning, and a level scaling factor, the sample and its
associations make up a “split.” A set of splits, together with a name, make up an “instrument.” When an
instrument is associated with a key range, a velocity range, a level scaling factor, and a transposition, the
instrument and its associations make up a “layer.” A set of layers, together with a name, makes up a “preset.”
Presets are normally the final sound-generating structures ready for the user. They generate sound according
to the settings of their lower-level components.

Both sample data and structure data is embedded in the same SF2 binary file. A single SF2 file can contain up
to a maximum of 128 banks of 128 preset programs, for a total of 16384 presets in one SF2 file. The maximum
number of layers, instruments, splits, and samples is not defined, and probably is only limited by the
computer’s memory.

1043

Appendix E. SoundFont2 File Format

1044

Appendix F. Quick Reference

(a != b ? v1 : v2)

#define NAME # replacement text #

#define NAME(a' b' c') # replacement text #

#include “filename”

#undef NAME

$NAME

a % b (no rate restriction)

a && b (logical AND; not audio-rate)

(a > b ? v1 : v2)

(a >= b ? v1 : v2)

(a < b ? v1 : v2)

(a <= b ? v1 : v2)

a ∗ b (no rate restriction)

+ a (no rate restriction)

- a (no rate restriction)

a / b (no rate restriction)

ar = xarg

ir = iarg

kr = karg

(a == b ? v1 : v2)

a ˆ b (b not audio-rate)

a || b (logical OR; not audio-rate)

0dbfs = iarg

a(x) (control-rate args only)

abs(x) (no rate restriction)

ir active insnum

kr active kinsnum

ar adsr iatt, idec, islev, irel [, idel]

kr adsr iatt, idec, islev, irel [, idel]

ar adsyn kamod, kfmod, ksmod, ifilcod

ar adsynt kamp, kcps, iwfn, ifreqfn, iampfn, icnt [, iphs]

kaft aftouch [imin] [, imax]

ar alpass asig, krvt, ilpt [, iskip] [, insmps]

ampdbfs(x) (no rate restriction)

ampdb(x) (no rate restriction)

iamp ampmidi iscal [, ifn]

kr aresonk ksig, kcf, kbw [, iscl] [, iskip]

ar areson asig, kcf, kbw [, iscl] [, iskip]

1045

Appendix F. Quick Reference

kr atonek ksig, khp [, iskip]

ar atone asig, khp [, iskip]

ar atonex asig, khp [, inumlayer] [, iskip]

a1, a2 babo asig, ksrcx, ksrcy, ksrcz, irx, iry, irz [, idiff] [, ifno]

ar balance asig, acomp [, ihp] [, iskip]

ar bamboo kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

a1 bbcutm asource, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats [, istutterspeed] [, istutterchance] [,
ienvchoice]

a1,a2 bbcuts asource1, asource2, ibps, isubdiv, ibarlength, iphrasebars, inumrepeats [, istutterspeed] [,
istutterchance] [, ienvchoice]

ar betarand krange, kalpha, kbeta

ir betarand krange, kalpha, kbeta

kr betarand krange, kalpha, kbeta

ar bexprnd krange

ir bexprnd krange

kr bexprnd krange

ar biquada asig, ab0, ab1, ab2, aa0, aa1, aa2 [, iskip]

ar biquad asig, kb0, kb1, kb2, ka0, ka1, ka2 [, iskip]

birnd(x) (init- or control-rate only)

ar butbp asig, kfreq, kband [, iskip]

ar butbr asig, kfreq, kband [, iskip]

ar buthp asig, kfreq [, iskip]

ar butlp asig, kfreq [, iskip]

ar butterbp asig, kfreq, kband [, iskip]

ar butterbr asig, kfreq, kband [, iskip]

ar butterhp asig, kfreq [, iskip]

ar butterlp asig, kfreq [, iskip]

kr button knum

ar buzz xamp, xcps, knh, ifn [, iphs]

ar cabasa iamp, idettack [, inum] [, idamp] [, imaxshake]

ar cauchy kalpha

ir cauchy kalpha

kr cauchy kalpha

cent(x)

cggoto condition, label

ival chanctrl ichnl, ictlno [, ilow] [, ihigh]

kval chanctrl ichnl, ictlno [, ilow] [, ihigh]

kr checkbox knum

cigoto condition, label

ckgoto condition, label

1046

Appendix F. Quick Reference

clear avar1 [, avar2] [, avar3] [...]

ar clfilt asig, kfreq, itype, inpol [, ikind] [, ipbr] [, isba] [, iskip]

ar clip asig, imeth, ilimit [, iarg]

clockoff inum

clockon inum

cngoto condition, label

ar comb asig, krvt, ilpt [, iskip] [, insmps]

kr control knum

ar1 [, ar2] [, ar3] [, ar4] convle ain, ifilcod [, ichannel]

ar1 [, ar2] [, ar3] [, ar4] convolve ain, ifilcod [, ichannel]

cosh(x) (no rate restriction)

cosinv(x) (no rate restriction)

cos(x) (no rate restriction)

icps cps2pch ipch, iequal

icps cpsmidib [irange]

kcps cpsmidib [irange]

icps cpsmidi

cpsoct (oct) (no rate restriction)

cpspch (pch) (init- or control-rate args only)

icps cpstmid ifn

icps cpstuni index, ifn

kcps cpstun ktrig, kindex, kfn

icps cpsxpch ipch, iequal, irepeat, ibase

cpuprc insnum, ipercent

ar cross2 ain1, ain2, isize, ioverlap, iwin, kbias

ar crunch iamp, idettack [, inum] [, idamp] [, imaxshake]

idest ctrl14 ichan, ictlno1, ictlno2, imin, imax [, ifn]

kdest ctrl14 ichan, ictlno1, ictlno2, kmin, kmax [, ifn]

idest ctrl21 ichan, ictlno1, ictlno2, ictlno3, imin, imax [, ifn]

kdest ctrl21 ichan, ictlno1, ictlno2, ictlno3, kmin, kmax [, ifn]

idest ctrl7 ichan, ictlno, imin, imax [, ifn]

kdest ctrl7 ichan, ictlno, kmin, kmax [, ifn]

ctrlinit ichnl, ictlno1, ival1 [, ictlno2] [, ival2] [, ictlno3] [, ival3] [,...ival32]

aout cuserrnd kmin, kmax, ktableNum

iout cuserrnd imin, imax, itableNum

kout cuserrnd kmin, kmax, ktableNum

ar dam asig, kthreshold, icomp1, icomp2, irtime, iftime

dbamp(x) (init-rate or control-rate args only)

dbfsamp(x) (init-rate or control-rate args only)

db(x)

1047

Appendix F. Quick Reference

ar dcblock ain [, igain]

ar dconv asig, isize, ifn

ar delay1 asig [, iskip]

ar delayr idlt [, iskip]

ar delay asig, idlt [, iskip]

delayw asig

ar deltap3 xdlt

ar deltapi xdlt

ar deltapn xnumsamps

ar deltap kdlt

aout deltapx adel, iwsize

deltapxw ain, adel, iwsize

ar diff asig [, iskip]

kr diff ksig [, iskip]

ar1 [,ar2] [, ar3] [, ar4] diskin ifilcod, kpitch [, iskiptim] [, iwraparound] [, iformat]

dispfft xsig, iprd, iwsiz [, iwtyp] [, idbout] [, iwtflg]

display xsig, iprd [, inprds] [, iwtflg]

ar distort1 asig [, ipregain] [, ipostgain] [, ishape1] [, ishape2]

ar divz xa, xb, ksubst

ir divz ia, ib, isubst

kr divz ka, kb, ksubst

kr downsamp asig [, iwlen]

ar dripwater kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

dumpk2 ksig1, ksig2, ifilname, iformat, iprd

dumpk3 ksig1, ksig2, ksig3, ifilname, iformat, iprd

dumpk4 ksig1, ksig2, ksig3, ksig4, ifilname, iformat, iprd

dumpk ksig, ifilname, iformat, iprd

aout duserrnd ktableNum

iout duserrnd itableNum

kout duserrnd ktableNum

elseif xa R xb then

else

endif

endin

ar envlpxr xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

kr envlpxr kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod] [,irind]

ar envlpx xamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

kr envlpx kamp, irise, idur, idec, ifn, iatss, iatdec [, ixmod]

event iscorechar, kinsnum, kwhen, kdur, [, kp4] [, kp5] [, ...]

ar expon ia, idur1, ib

1048

Appendix F. Quick Reference

kr expon ia, idur1, ib

ar exprand krange

ir exprand krange

kr exprand krange

ar expsega ia, idur1, ib [, idur2] [, ic] [...]

ar expsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

kr expsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

ar expseg ia, idur1, ib [, idur2] [, ic] [...]

kr expseg ia, idur1, ib [, idur2] [, ic] [...]

exp(x) (no rate restriction)

ir filelen ifilcod

ir filenchnls ifilcod

ir filepeak ifilcod [, ichnl]

ir filesr ifilcod

ar filter2 asig, iM, iN, ib0, ib1, ..., ibM, ia1, ia2, ..., iaN

kr filter2 ksig, iM, iN, ib0, ib1, ..., ibM, ia1, ia2, ..., iaN

fini ifilename, iskipframes, iformat, in1 [, in2] [, in3] [, ...]

fink ifilename, iskipframes, iformat, kin1 [, kin2] [, kin3] [,...]

fin ifilename, iskipframes, iformat, ain1 [, ain2] [, ain3] [,...]

ihandle fiopen ifilename, imode

ar flanger asig, adel, kfeedback [, imaxd]

flashtxt iwhich, String

ar fmb3 kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

ar fmbell kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

ar fmmetal kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

ar fmpercfl kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

ar fmrhode kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

ar fmvoice kamp, kfreq, kvowel, ktilt, kvibamt, kvibrate, ifn1, ifn2, ifn3, ifn4, ivibfn

ar fmwurlie kamp, kfreq, kc1, kc2, kvdepth, kvrate, ifn1, ifn2, ifn3, ifn4, ivfn

ar fof2 xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur, kphs, kgliss [, iskip]

ar fof xamp, xfund, xform, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, ifmode] [, iskip]

ar fog xamp, xdens, xtrans, aspd, koct, kband, kris, kdur, kdec, iolaps, ifna, ifnb, itotdur [, iphs] [, itmode] [,
iskip]

ar fold asig, kincr

ar follow2 asig, katt, krel

ar follow asig, idt

ar foscili xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

ar foscil xamp, kcps, xcar, xmod, kndx, ifn [, iphs]

foutir ihandle, iformat, iflag, iout1 [, iout2, iout3,....,ioutN]

fouti ihandle, iformat, iflag, iout1 [, iout2, iout3,....,ioutN]

1049

Appendix F. Quick Reference

foutk ifilename, iformat, kout1 [, kout2, kout3,....,koutN]

fout ifilename, iformat, aout1 [, aout2, aout3,...,aoutN]

frac(x) (init-rate or control-rate args only)

ftchnls(x) (init-rate args only)

gir ftgen ifn, itime, isize, igen, iarga [, iargb] [...]

ftlen(x) (init-rate args only)

ftloadk "filename", ktrig, iflag, ifn1 [, ifn2] [...]

ftload "filename", iflag, ifn1 [, ifn2] [...]

ftlptim(x) (init-rate args only)

ftmorf kftndx, iftfn, iresfn

ftsavek "filename", ktrig, iflag, ifn1 [, ifn2] [...]

ftsave "filename", iflag, ifn1 [, ifn2] [...]

ftsr(x) (init-rate args only)

ar gain asig, krms [, ihp] [, iskip]

ar gauss krange

ir gauss krange

kr gauss krange

ar gbuzz xamp, xcps, knh, klh, kmul, ifn [, iphs]

ar gogobel kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivfn

goto label

ar grain2 kcps, kfmd, kgdur, iovrlp, kfn, iwfn [, irpow] [, iseed] [, imode]

ar grain3 kcps, kphs, kfmd, kpmd, kgdur, kdens, imaxovr, kfn, iwfn, kfrpow, kprpow [, iseed] [, imode]

ar grain xamp, xpitch, xdens, kampoff, kpitchoff, kgdur, igfn, iwfn, imgdur [, igrnd]

ar granule xamp, ivoice, iratio, imode, ithd, ifn, ipshift, igskip, igskip_os, ilength, kgap, igap_os, kgsize,
igsize_os, iatt, idec [, iseed] [, ipitch1] [, ipitch2] [, ipitch3] [, ipitch4] [, ifnenv]

ar guiro kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1]

ar harmon asig, kestfrq, kmaxvar, kgenfreq1, kgenfreq2, imode, iminfrq, iprd

ar1, ar2 hilbert asig

aleft, aright hrtfer asig, kaz, kelev, “HRTFcompact”

ar hsboscil kamp, ktone, kbrite, ibasfreq, iwfn, ioctfn [, ioctcnt] [, iphs]

i(x) (control-rate args only)

if ia R ib igoto label

if ka R kb kgoto label

if ia R ib goto label

if xa R xb then

igoto label

ihold

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8, ar9, ar10, ar11, ar12, ar13, ar14, ar15, ar16, ar17, ar18, ar19, ar20, ar21, ar22,
ar23, ar24, ar25, ar26, ar27, ar28, ar29, ar30, ar31, ar32 in32

ar1 inch ksig1

1050

Appendix F. Quick Reference

ar1, ar2, ar3, ar4, ar5, ar6 inh

initc14 ichan, ictlno1, ictlno2, ivalue

initc21 ichan, ictlno1, ictlno2, ictlno3, ivalue

initc7 ichan, ictlno, ivalue

ar init iarg

ir init iarg

kr init iarg

k1 [, k2] [...] ink

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8 ino

ar1, ar2, ar3, a4 inq

ar1 in

ar1, ar2 ins

instr i, j, ...

ar integ asig [, iskip]

kr integ ksig [, iskip]

ar interp ksig [, iskip]

int(x) (init-rate or control-rate args only)

kvalue invalue "channel name"

ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8, ar9, ar10, ar11, ar12, ar13, ar14, ar15, ar16 inx

inz ksig1

kout jitter2 ktotamp, kamp1, kcps1, kamp2, kcps2, kamp3, kcps3

kout jitter kamp, kcpsMin, kcpsMax

ar jspline xamp, kcpsMin, kcpsMax

kr jspline kamp, kcpsMin, kcpsMax

kgoto label

kr = iarg

ksmps = iarg

ktableseg ifn1, idur1, ifn2 [, idur2] [, ifn3] [...]

kr lfo kamp, kcps [, itype]

ar lfo kamp, kcps [, itype]

ar limit asig, klow, khigh

ir limit isig, ilow, ihigh

kr limit ksig, klow, khigh

ar linenr xamp, irise, idec, iatdec

kr linenr kamp, irise, idec, iatdec

ar linen xamp, irise, idur, idec

kr linen kamp, irise, idur, idec

ar line ia, idur1, ib

kr line ia, idur1, ib

kr lineto ksig, ktime

1051

Appendix F. Quick Reference

ar linrand krange

ir linrand krange

kr linrand krange

ar linsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

kr linsegr ia, idur1, ib [, idur2] [, ic] [...], irel, iz

ar linseg ia, idur1, ib [, idur2] [, ic] [...]

kr linseg ia, idur1, ib [, idur2] [, ic] [...]

a1, a2 locsend

a1, a2, a3, a4 locsend

a1, a2 locsig asig, kdegree, kdistance, kreverbsend

a1, a2, a3, a4 locsig asig, kdegree, kdistance, kreverbsend

log10(x) (no rate restriction)

logbtwo(x) (init-rate or control-rate args only)

log(x) (no rate restriction)

ksig loopseg kfreq, ktrig, ktime0, kvalue0 [, ktime1] [, kvalue1] [, ktime2] [, kvalue2] [...]

ax, ay, az lorenz ksv, krv, kbv, kh, ix, iy, iz, iskip

ar [,ar2] loscil3 xamp, kcps, ifn [, ibas] [, imod1] [, ibeg1] [, iend1] [, imod2] [, ibeg2] [, iend2]

ar [,ar2] loscil xamp, kcps, ifn [, ibas] [, imod1] [, ibeg1] [, iend1] [, imod2,] [, ibeg2] [, iend2]

ar lowpass2 asig, kcf, kq [, iskip]

ar lowres asig, kcutoff, kresonance [, iskip]

ar lowresx asig, kcutoff, kresonance [, inumlayer] [, iskip]

ar lpf18 asig, kfco, kres, kdist

ar lpfreson asig, kfrqratio

ar lphasor xtrns [, ilps] [, ilpe] [, imode] [, istrt] [, istor]

lpinterp islot1, islot2, kmix

ar lposcil3 kamp, kfreqratio, kloop, kend, ifn [, iphs]

ar lposcil kamp, kfreqratio, kloop, kend, ifn [, iphs]

krmsr, krmso, kerr, kcps lpread ktimpnt, ifilcod [, inpoles] [, ifrmrate]

ar lpreson asig

ksig lpshold kfreq, ktrig, ktime0, kvalue0 [, ktime1] [, kvalue1] [, ktime2] [, kvalue2] [...]

lpslot islot

ar maca asig1 [, asig2] [, asig3] [, asig4] [, asig5] [...]

ar mac asig1, ksig1 [, asig2] [, ksig2] [, asig3] [, ksig3] [...]

ar madsr iatt, idec, islev, irel [, idel]

kr madsr iatt, idec, islev, irel [, idel]

ar mandol kamp, kfreq, kpluck, kdetune, kgain, ksize, ifn [, iminfreq]

ar marimba kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec [, idoubles] [, itriples]

massign ichnl, insnum

maxalloc insnum, icount

mclock ifreq

1052

Appendix F. Quick Reference

mdelay kstatus, kchan, kd1, kd2, kdelay

idest midic14 ictlno1, ictlno2, imin, imax [, ifn]

kdest midic14 ictlno1, ictlno2, kmin, kmax [, ifn]

idest midic21 ictlno1, ictlno2, ictlno3, imin, imax [, ifn]

kdest midic21 ictlno1, ictlno2, ictlno3, kmin, kmax [, ifn]

idest midic7 ictlno, imin, imax [, ifn]

kdest midic7 ictlno, kmin, kmax [, ifn]

midichannelaftertouch xchannelaftertouch [, ilow] [, ihigh]

ichn midichn

midicontrolchange xcontroller, xcontrollervalue [, ilow] [, ihigh]

ival midictrl inum [, imin] [, imax]

kval midictrl inum [, imin] [, imax]

mididefault xdefault, xvalue

kstatus, kchan, kdata1, kdata2 midiin

midinoteoff xkey, xvelocity

midinoteoncps xcps, xvelocity

midinoteonkey xkey, xvelocity

midinoteonoct xoct, xvelocity

midinoteonpch xpch, xvelocity

midion2 kchn, knum, kvel, ktrig

midion kchn, knum, kvel

midiout kstatus, kchan, kdata1, kdata2

midipitchbend xpitchbend [, ilow] [, ihigh]

midipolyaftertouch xpolyaftertouch, xcontrollervalue [, ilow] [, ihigh]

midiprogramchange xprogram

ar mirror asig, klow, khigh

ir mirror isig, ilow, ihigh

kr mirror ksig, klow, khigh

ar moog kamp, kfreq, kfiltq, kfiltrate, kvibf, kvamp, iafn, iwfn, ivfn

ar moogvcf asig, xfco, xres [, iscale]

moscil kchn, knum, kvel, kdur, kpause

ar mpulse kamp, kfreq [, ioffset]

mrtmsg imsgtype

ar multitap asig [, itime1] [, igain1] [, itime2] [, igain2] [...]

ar mxadsr iatt, idec, islev, irel [, idel]

kr mxadsr iatt, idec, islev, irel [, idel]

nchnls = iarg

ar nestedap asig, imode, imaxdel, idel1, igain1 [, idel2] [, igain2] [, idel3] [, igain3] [, istor]

ar nlfilt ain, ka, kb, kd, kC, kL

ar noise xamp, kbeta

1053

Appendix F. Quick Reference

noteoff ichn, inum, ivel

noteondur2 ichn, inum, ivel, idur

noteondur ichn, inum, ivel, idur

noteon ichn, inum, ivel

ival notnum

ar nreverb asig, ktime, khdif [, iskip] [,inumCombs] [, ifnCombs] [, inumAlpas] [, ifnAlpas]

nrpn kchan, kparmnum, kparmvalue

nsamp(x) (init-rate args only)

ar ntrpol asig1, asig2, kpoint [, imin] [, imax]

ir ntrpol isig1, isig2, ipoint [, imin] [, imax]

kr ntrpol ksig1, ksig2, kpoint [, imin] [, imax]

octave(x)

octcps (cps) (init- or control-rate args only)

ioct octmidib [irange]

koct octmidib [irange]

ioct octmidi

octpch (pch) (init- or control-rate args only)

ar oscbnk kcps, kamd, kfmd, kpmd, iovrlap, iseed, kl1minf, kl1maxf, kl2minf, kl2maxf, ilfomode, keqminf,
keqmaxf, keqminl, keqmaxl, keqminq, keqmaxq, ieqmode, kfn [, il1fn] [, il2fn] [, ieqffn] [, ieqlfn] [, ieqqfn] [,
itabl] [, ioutfn]

kr oscil1i idel, kamp, idur, ifn

kr oscil1 idel, kamp, idur, ifn

ar oscil3 xamp, xcps, ifn [, iphs]

kr oscil3 kamp, kcps, ifn [, iphs]

ar oscili xamp, xcps, ifn [, iphs]

kr oscili kamp, kcps, ifn [, iphs]

ar osciln kamp, ifrq, ifn, itimes

ar oscil xamp, xcps, ifn [, iphs]

kr oscil kamp, kcps, ifn [, iphs]

ar oscils iamp, icps, iphs [, iflg]

ar oscilx kamp, ifrq, ifn, itimes

out32 asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8, asig10, asig11, asig12, asig13, asig14, asig15, asig16,
asig17, asig18, asig19, asig20, asig21, asig22, asig23, asig24, asig25, asig26, asig27, asig28, asig29, asig30,
asig31, asig32

outch ksig1, asig1 [, ksig2] [, asig2] [...]

outc asig1 [, asig2] [...]

outh asig1, asig2, asig3, asig4, asig5, asig6

outiat ichn, ivalue, imin, imax

outic14 ichn, imsb, ilsb, ivalue, imin, imax

outic ichn, inum, ivalue, imin, imax

outipat ichn, inotenum, ivalue, imin, imax

1054

Appendix F. Quick Reference

outipb ichn, ivalue, imin, imax

outipc ichn, iprog, imin, imax

outkat kchn, kvalue, kmin, kmax

outkc14 kchn, kmsb, klsb, kvalue, kmin, kmax

outkc kchn, knum, kvalue, kmin, kmax

outkpat kchn, knotenum, kvalue, kmin, kmax

outkpb kchn, kvalue, kmin, kmax

outkpc kchn, kprog, kmin, kmax

outk k1 [, k2] [...]

outo asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8

outq1 asig

outq2 asig

outq3 asig

outq4 asig

outq asig1, asig2, asig3, asig4

outs1 asig

outs2 asig

out asig

outs asig1, asig2

outvalue "channel name", kvalue

outx asig1, asig2, asig3, asig4, asig5, asig6, asig7, asig8, asig9, asig10, asig11, asig12, asig13, asig14, asig15,
asig16

outz ksig1

a1, a2, a3, a4 pan asig, kx, ky, ifn [, imode] [, ioffset]

ar pareq asig, kc, kv, kq [, imode]

ar pcauchy kalpha

ir pcauchy kalpha

kr pcauchy kalpha

ibend pchbend [imin] [, imax]

kbend pchbend [imin] [, imax]

ipch pchmidib [irange]

kpch pchmidib [irange]

ipch pchmidi

pchoct (oct) (init- or control-rate args only)

kr peak asig

kr peak ksig

pgmassign ipgm, inst

ar phaser1 asig, kfreq, kord, kfeedback [, iskip]

ar phaser2 asig, kfreq, kq, kord, kmode, ksep, kfeedback

ar phasorbnk xcps, kndx, icnt [, iphs]

1055

Appendix F. Quick Reference

kr phasorbnk kcps, kndx, icnt [, iphs]

ar phasor xcps [, iphs]

kr phasor kcps [, iphs]

ar pinkish xin [, imethod] [, inumbands] [, iseed] [, iskip]

kcps, krms pitchamdf asig, imincps, imaxcps [, icps] [, imedi] [, idowns] [, iexcps] [, irmsmedi]

koct, kamp pitch asig, iupdte, ilo, ihi, idbthresh [, ifrqs] [, iconf] [, istrt] [, iocts] [, iq] [, inptls] [, irolloff] [, iskip]

ax, ay, az planet kmass1, kmass2, ksep, ix, iy, iz, ivx, ivy, ivz, idelta [, ifriction]

ar pluck kamp, kcps, icps, ifn, imeth [, iparm1] [, iparm2]

ar poisson klambda

ir poisson klambda

kr poisson klambda

ir polyaft inote [, ilow] [, ihigh]

kr polyaft inote [, ilow] [, ihigh]

kr portk ksig, khtim [, isig]

kr port ksig, ihtim [, isig]

ar poscil3 kamp, kcps, ifn [, iphs]

kr poscil3 kamp, kcps, ifn [, iphs]

ar poscil kamp, kcps, ifn [, iphs]

kr poscil kamp, kcps, ifn [, iphs]

powoftwo(x) (init-rate or control-rate args only)

ar pow aarg, kpow [, inorm]

ir pow iarg, ipow

kr pow karg, kpow [, inorm]

prealloc insnum, icount

printk2 kvar [, inumspaces]

printk itime, kval [, ispace]

printks istring, itime, kval1, kval2, kval3, kval4

print iarg [, iarg1] [, iarg2] [...]

ar product asig1, asig2 [, asig3] [...]

pset icon1 [, icon2] [...]

p(x)

ar pvadd ktimpnt, kfmod, ifilcod, ifn, ibins [, ibinoffset] [, ibinincr] [, iextractmode] [, ifreqlim] [, igatefn]

pvbufread ktimpnt, ifile

ar pvcross ktimpnt, kfmod, ifile, kampscale1, kampscale2 [, ispecwp]

ar pvinterp ktimpnt, kfmod, ifile, kfreqscale1, kfreqscale2, kampscale1, kampscale2, kfreqinterp, kampinterp

ar pvoc ktimpnt, kfmod, ifilcod [, ispecwp] [, iextractmode] [, ifreqlim] [, igatefn]

kfreq, kamp pvread ktimpnt, ifile, ibin

ar pvsadsyn fsrc, inoscs, kfmod [, ibinoffset] [, ibinincr] [, iinit]

fsig pvsanal ain, ifftsize, ioverlap, iwinsize, iwintype [, iformat] [, iinit]

fsig pvscross fsrc, fdest, kamp1, kamp2

1056

Appendix F. Quick Reference

fsig pvsfread ktimpt, ifn [, ichan]

pvsftr fsrc, ifna [, ifnf]

kflag pvsftw fsrc, ifna [, ifnf]

ioverlap, inumbins, iwinsize, iformat pvsinfo fsrc

fsig pvsmaska fsrc, ifn, kdepth

ar pvsynth fsrc, [iinit]

ar randh xamp, xcps [, iseed] [, isize] [, ioffset]

kr randh kamp, kcps [, iseed] [, isize] [, ioffset]

ar randi xamp, xcps [, iseed] [, isize] [, ioffset]

kr randi kamp, kcps [, iseed] [, isize] [, ioffset]

ar randomh kmin, kmax, acps

kr randomh kmin, kmax, kcps

ar randomi kmin, kmax, acps

kr randomi kmin, kmax, kcps

ar random kmin, kmax

ir random imin, imax

kr random kmin, kmax

ar rand xamp [, iseed] [, isize] [, ioffset]

kr rand xamp [, iseed] [, isize] [, ioffset]

ir readclock inum

kr1, kr2 readk2 ifilname, iformat, ipol [, interp]

kr1, kr2, kr3 readk3 ifilname, iformat, ipol [, interp]

kr1, kr2, kr3, kr4 readk4 ifilname, iformat, ipol [, interp]

kr readk ifilname, iformat, ipol [, interp]

reinit label

kflag release

ar repluck iplk, kamp, icps, kpick, krefl, axcite

kr resonk ksig, kcf, kbw [, iscl] [, iskip]

ar resonr asig, kcf, kbw [, iscl] [, iskip]

ar reson asig, kcf, kbw [, iscl] [, iskip]

ar resonx asig, kcf, kbw [, inumlayer] [, iscl] [, iskip]

ar resony asig, kbf, kbw, inum, ksep [, isepmode] [, iscl] [, iskip]

ar resonz asig, kcf, kbw [, iscl] [, iskip]

ar reverb2 asig, ktime, khdif [, iskip] [,inumCombs] [, ifnCombs] [, inumAlpas] [, ifnAlpas]

ar reverb asig, krvt [, iskip]

ar rezzy asig, xfco, xres [, imode]

rigoto label

rireturn

kr rms asig [, ihp] [, iskip]

ax rnd31 kscl, krpow [, iseed]

1057

Appendix F. Quick Reference

ix rnd31 iscl, irpow [, iseed]

kx rnd31 kscl, krpow [, iseed]

rnd(x) (init- or control-rate only)

ar rspline xrangeMin, xrangeMax, kcpsMin, kcpsMax

kr rspline krangeMin, krangeMax, kcpsMin, kcpsMax

ir rtclock

kr rtclock

i1,...,i16 s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb16, ictlno_lsb16,
imin16, imax16, initvalue16, ifn16

k1,...,k16 s16b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb16,
ictlno_lsb16, imin16, imax16, initvalue16, ifn16

i1,...,i32 s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb32, ictlno_lsb32,
imin32, imax32, initvalue32, ifn32

k1,...,k32 s32b14 ichan, ictlno_msb1, ictlno_lsb1, imin1, imax1, initvalue1, ifn1,..., ictlno_msb32,
ictlno_lsb32, imin32, imax32, initvalue32, ifn32

ar samphold asig, agate [, ival] [, ivstor]

kr samphold ksig, kgate [, ival] [, ivstor]

ar sandpaper iamp, idettack [, inum] [, idamp] [, imaxshake]

scanhammer isrc, idst, ipos, imult

ar scans kamp, kfreq, ifn, id [, iorder]

aout scantable kamp, kpch, ipos, imass, istiff, idamp, ivel

scanu init, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, kmass, kstif, kcentr, kdamp, ileft, iright, kpos,
kstrngth, ain, idisp, id

schedkwhen ktrigger, kmintim, kmaxnum, kinsnum, kwhen, kdur [, ip4] [, ip5] [...]

schedule insnum, iwhen, idur [, ip4] [, ip5] [...]

schedwhen ktrigger, kinsnum, kwhen, kdur [, ip4] [, ip5] [...]

seed ival

ar sekere iamp, idettack [, inum] [, idamp] [, imaxshake]

semitone(x)

kr sensekey

kr sense

ktrig_out seqtime ktime_unit, kstart, kloop, kinitndx, kfn_times

setctrl inum, ival, itype

sfilist ifilhandle

ar sfinstr3m ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

ar1, ar2 sfinstr3 ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

ar sfinstrm ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

ar1, ar2 sfinstr ivel, inotnum, xamp, xfreq, instrnum, ifilhandle [, iflag]

ir sfload ifilename

sfpassign istartndx, ifilhandle

ar sfplay3m ivel, inotnum, xamp, xfreq, iprendx [, iflag]

1058

Appendix F. Quick Reference

ar1, ar2 sfplay3 ivel, inotnum, xamp, xfreq, iprendx [, iflag]

ar sfplaym ivel, inotnum, xamp, xfreq, iprendx [, iflag]

ar1, ar2 sfplay ivel, inotnum, xamp, xfreq, iprendx [, iflag]

sfplist ifilhandle

ir sfpreset iprog, ibank, ifilhandle, iprendx

ar shaker kamp, kfreq, kbeans, kdamp, ktimes [, idecay]

sinh(x) (no rate restriction)

sininv(x) (no rate restriction)

sin(x) (no rate restriction)

ar sleighbells kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

k1,...,k16 slider16f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum16, imin16, imax16, init16,
ifn16, icutoff16

i1,...,i16 slider16 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum16, imin16, imax16, init16, ifn16

k1,...,k16 slider16 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum16, imin16, imax16, init16, ifn16

k1,...,k32 slider32f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum32, imin32, imax32, init32,
ifn32, icutoff32

i1,...,i32 slider32 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum32, imin32, imax32, init32, ifn32

k1,...,k32 slider32 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum32, imin32, imax32, init32, ifn32

k1,...,k64 slider64f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum64, imin64, imax64, init64,
ifn64, icutoff64

i1,...,i64 slider64 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum64, imin64, imax64, init64, ifn64

k1,...,k64 slider64 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum64, imin64, imax64, init64, ifn64

k1,...,k8 slider8f ichan, ictlnum1, imin1, imax1, init1, ifn1, icutoff1,..., ictlnum8, imin8, imax8, init8, ifn8,
icutoff8

i1,...,i8 slider8 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum8, imin8, imax8, init8, ifn8

k1,...,k8 slider8 ichan, ictlnum1, imin1, imax1, init1, ifn1,..., ictlnum8, imin8, imax8, init8, ifn8

ar [, ac] sndwarp xamp, xtimewarp, xresample, ifn1, ibeg, iwsize, irandw, ioverlap, ifn2, itimemode

ar1, ar2 [,ac1] [, ac2] sndwarpst xamp, xtimewarp, xresample, ifn1, ibeg, iwsize, irandw, ioverlap, ifn2,
itimemode

ar1 soundin ifilcod [, iskptim] [, iformat]

ar1, ar2 soundin ifilcod [, iskptim] [, iformat]

ar1, ar2, ar3 soundin ifilcod [, iskptim] [, iformat]

ar1, ar2, ar3, ar4 soundin ifilcod [, iskptim] [, iformat]

soundout asig1, ifilcod [, iformat]

a1, a2, a3, a4 space asig, ifn, ktime, kreverbsend, kx, ky

aW, aX, aY, aZ spat3di ain, iX, iY, iZ, idist, ift, imode [, istor]

aW, aX, aY, aZ spat3d ain, kX, kY, kZ, idist, ift, imode, imdel, iovr [, istor]

spat3dt ioutft, iX, iY, iZ, idist, ift, imode, irlen [, iftnocl]

k1 spdist ifn, ktime, kx, ky

wsig specaddm wsig1, wsig2 [, imul2]

wsig specdiff wsigin

1059

Appendix F. Quick Reference

specdisp wsig, iprd [, iwtflg]

wsig specfilt wsigin, ifhtim

wsig spechist wsigin

koct, kamp specptrk wsig, kvar, ilo, ihi, istr, idbthresh, inptls, irolloff [, iodd] [, iconfs] [, interp] [, ifprd] [,
iwtflg]

wsig specscal wsigin, ifscale, ifthresh

ksum specsum wsig [, interp]

wsig spectrum xsig, iprd, iocts, ifrqa [, iq] [, ihann] [, idbout] [, idsprd] [, idsinrs]

a1, a2, a3, a4 spsend

sqrt(x) (no rate restriction)

sr = iarg

ar stix iamp, idettack [, inum] [, idamp] [, imaxshake]

ar streson asig, kfr, ifdbgain

strset iarg, istring

a1, [...] [, a8] subinstr instrnum [, p4] [, p5] [...]

ar sum asig1 [, asig2] [, asig3] [...]

alow, ahigh, aband svfilter asig, kcf, kq [, iscl]

ar table3 andx, ifn [, ixmode] [, ixoff] [, iwrap]

ir table3 indx, ifn [, ixmode] [, ixoff] [, iwrap]

kr table3 kndx, ifn [, ixmode] [, ixoff] [, iwrap]

tablecopy kdft, ksft

tablegpw kfn

tableicopy idft, isft

tableigpw ifn

ar tableikt xndx, kfn [, ixmode] [, ixoff] [, iwrap]

kr tableikt kndx, kfn [, ixmode] [, ixoff] [, iwrap]

tableimix idft, idoff, ilen, is1ft, is1off, is1g, is2ft, is2off, is2g

ar tablei andx, ifn [, ixmode] [, ixoff] [, iwrap]

ir tablei indx, ifn [, ixmode] [, ixoff] [, iwrap]

kr tablei kndx, ifn [, ixmode] [, ixoff] [, iwrap]

tableiw isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]

ar tablekt xndx, kfn [, ixmode] [, ixoff] [, iwrap]

kr tablekt kndx, kfn [, ixmode] [, ixoff] [, iwrap]

tablemix kdft, kdoff, klen, ks1ft, ks1off, ks1g, ks2ft, ks2off, ks2g

ir tableng ifn

kr tableng kfn

ar tablera kfn, kstart, koff

tableseg ifn1, idur1, ifn2 [, idur2] [, ifn3] [...]

ar table andx, ifn [, ixmode] [, ixoff] [, iwrap]

ir table indx, ifn [, ixmode] [, ixoff] [, iwrap]

1060

Appendix F. Quick Reference

kr table kndx, ifn [, ixmode] [, ixoff] [, iwrap]

kstart tablewa kfn, asig, koff

tablewkt asig, andx, kfn [, ixmode] [, ixoff] [, iwgmode]

tablewkt ksig, kndx, kfn [, ixmode] [, ixoff] [, iwgmode]

tablew asig, andx, ifn [, ixmode] [, ixoff] [, iwgmode]

tablew isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]

tablew ksig, kndx, ifn [, ixmode] [, ixoff] [, iwgmode]

ar tablexkt xndx, kfn, kwarp, iwsize [, ixmode] [, ixoff] [, iwrap]

tablexseg ifn1, idur1, ifn2 [, idur2] [, ifn3] [...]

ar tambourine kamp, idettack [, inum] [, idamp] [, imaxshake] [, ifreq] [, ifreq1] [, ifreq2]

tanh(x) (no rate restriction)

ar taninv2 ay, ax

ir taninv2 iy, ix

kr taninv2 ky, kx

taninv(x) (no rate restriction)

tan(x) (no rate restriction)

ar tbvcf asig, xfco, xres, kdist, kasym

ktemp tempest kin, iprd, imindur, imemdur, ihp, ithresh, ihtim, ixfdbak, istartempo, ifn [, idisprd] [, itweek]

tempo ktempo, istartempo

kr tempoval

tigoto label

kr timeinstk

kr timeinsts

kr timeinsts

ir timek

kr timek

ir times

kr times

timout istrt, idur, label

ir tival

kr tlineto ksig, ktime, ktrig

kr tonek ksig, khp [, iskip]

ar tone asig, khp [, iskip]

ar tonex asig, khp [, inumlayer] [, iskip]

ar transeg ia, idur, itype, ib [, idur2] [, itype] [, ic] ...

kr transeg ia, idur, itype, ib [, idur2] [, itype] [, ic] ...

kout trigger ksig, kthreshold, kmode

trigseq ktrig_in, kstart, kloop, kinitndx, kfn_values, kout1 [, kout2] [...]

ar trirand krange

ir trirand krange

1061

Appendix F. Quick Reference

kr trirand krange

turnoff

turnon insnum [, itime]

ar unirand krange

ir unirand krange

kr unirand krange

ar upsamp ksig

aout = urd(ktableNum)

iout = urd(itableNum)

kout = urd(ktableNum)

ar valpass asig, krvt, xlpt, imaxlpt [, iskip] [, insmps]

ar1, ..., ar16 vbap16move asig, ispread, ifldnum, ifld1 [, ifld2] [...]

ar1, ..., ar16 vbap16 asig, iazim [, ielev] [, ispread]

ar1, ar2, ar3, ar4 vbap4move asig, ispread, ifldnum, ifld1 [, ifld2] [...]

ar1, ar2, ar3, ar4 vbap4 asig, iazim [, ielev] [, ispread]

ar1, ..., ar8 vbap8move asig, ispread, ifldnum, ifld1 [, ifld2] [...]

ar1, ..., ar8 vbap8 asig, iazim [, ielev] [, ispread]

vbaplsinit idim, ilsnum [, idir1] [, idir2] [...] [, idir32]

vbapzmove inumchnls, istartndx, asig, idur, ispread, ifldnum, ifld1, ifld2, [...]

vbapz inumchnls, istartndx, asig, iazim [, ielev] [, ispread]

ar vcomb asig, krvt, xlpt, imaxlpt [, iskip] [, insmps]

ar vco xamp, xcps, iwave, kpw [, ifn] [, imaxd] [, ileak] [, inyx] [, iphs]

ar vdelay3 asig, adel, imaxdel [, iskip]

ar vdelay asig, adel, imaxdel [, iskip]

aout1, aout2, aout3, aout4 vdelayxq ain1, ain2, ain3, ain4, adl, imd, iws [, ist]

aout vdelayx ain, adl, imd, iws [, ist]

aout1, aout2 vdelayxs ain1, ain2, adl, imd, iws [, ist]

aout1, aout2, aout3, aout4 vdelayxwq ain1, ain2, ain3, ain4, adl, imd, iws [, ist]

aout vdelayxw ain, adl, imd, iws [, ist]

aout1, aout2 vdelayxws ain1, ain2, adl, imd, iws [, ist]

ival veloc [ilow] [, ihigh]

ar vibes kamp, kfreq, ihrd, ipos, imp, kvibf, kvamp, ivibfn, idec

kout vibrato kAverageAmp, kAverageFreq, kRandAmountAmp, kRandAmountFreq, kAmpMinRate,
kAmpMaxRate, kcpsMinRate, kcpsMaxRate, ifn [, iphs]

kout vibr kAverageAmp, kAverageFreq, ifn

vincr asig, aincr

ar vlowres asig, kfco, kres, iord, ksep

ar voice kamp, kfreq, kphoneme, kform, kvibf, kvamp, ifn, ivfn

ar vpvoc ktimpnt, kfmod, ifile [, ispecwp] [, ifn]

ar waveset ain, krep [, ilen]

1062

Appendix F. Quick Reference

ar weibull ksigma, ktau

ir weibull ksigma, ktau

kr weibull ksigma, ktau

ar wgbowedbar kamp, kfreq, kpos, kbowpres, kgain [, iconst] [, itvel] [, ibowpos] [, ilow]

ar wgbow kamp, kfreq, kpres, krat, kvibf, kvamp, ifn [, iminfreq]

ar wgbrass kamp, kfreq, ktens, iatt, kvibf, kvamp, ifn [, iminfreq]

ar wgclar kamp, kfreq, kstiff, iatt, idetk, kngain, kvibf, kvamp, ifn [, iminfreq]

ar wgflute kamp, kfreq, kjet, iatt, idetk, kngain, kvibf, kvamp, ifn [, iminfreq] [, ijetrf] [, iendrf]

ar wgpluck2 iplk, kamp, icps, kpick, krefl

ar wgpluck icps, iamp, kpick, iplk, idamp, ifilt, axcite

ar wguide1 asig, xfreq, kcutoff, kfeedback

ar wguide2 asig, xfreq1, xfreq2, kcutoff1, kcutoff2, kfeedback1, kfeedback2

ar wrap asig, klow, khigh

ir wrap isig, ilow, ihigh

kr wrap ksig, klow, khigh

aout wterrain kamp, kpch, k_xcenter, k_ycenter, k_xradius, k_yradius, itabx, itaby

ar xadsr iatt, idec, islev, irel [, idel]

kr xadsr iatt, idec, islev, irel [, idel]

kpos, kvel xscanmap iscan, kamp, kvamp [, iwhich]

ar xscans kamp, kfreq, ifntraj, id [, iorder]

xscanu init, irate, ifnvel, ifnmass, ifnstif, ifncentr, ifndamp, kmass, kstif, kcentr, kdamp, ileft, iright, kpos,
kstrngth, ain, idisp, id

xtratim iextradur

kx, ky xyin iprd, ixmin, ixmax, iymin, iymax [, ixinit] [, iyinit]

zacl kfirst, klast

zakinit isizea, isizek

ar zamod asig, kzamod

ar zarg kndx, kgain

ar zar kndx

zawm asig, kndx [, imix]

zaw asig, kndx

ar zfilter2 asig, kdamp, kfreq, iM, iN, ib0, ib1, ..., ibM, ia1,ia2, ..., iaN

ir zir indx

ziwm isig, indx [, imix]

ziw isig, indx

zkcl kfirst, klast

kr zkmod ksig, kzkmod

kr zkr kndx

zkwm ksig, kndx [, imix]

zkw ksig, kndx

1063

Appendix F. Quick Reference

1064

Index

Symbols
!=, 77
#define, 78

orchestra, 78
score, 69

#include
orchestra, 81
score, 72

#undef, 82
orchestra, 82
score, 69

$NAME, 83
orchestra, 83
score, 69

%, 86
~, 69
&&, 87
>, 89
>=, 90
<, 92
<=, 93
<CsInstruments>, 36
<CsMidifileB>, 36
<CsOptions>, 36
<CsoundSynthesizer>, 36
<CsSampleB>, 36
<CsScore>, 36
<CsVersion>, 36
(, 69
), 69
*, 94
+, 96
-, 98
--aiff, 32
--analysis-directory, 35
--asciidisplay, 33
--control-rate, 34
--cscore, 32
--defer-gen1, 33
--dither, 36
--extract-score, 36
--format=24bit, 32
--format=alaw, 32
--format=float, 33
--format=long, 34
--format=rescale, 33
--format=schar, 33
--format=short, 35
--format=uchar, 32
--format=ulaw, 36
--graphs, 33
--hardwarebufsamps, 32
--heartbeat, 33
--help, 33

--i-only, 33
--input, 33
--iobugsamps, 32
--ircam, 34
--keep-sorted-score, 35
--list-opcodesNUM, 36
--logfile, 34
--messagelevel, 34
--midi-device, 34
--midifile, 33
--nodisplays, 33
--noheader, 33
--nopeaks, 34
--nosound, 34
--notify, 34
--output, 35
--playonend, 35
--pollrate, 35
--postscriptdisplay, 33
--profile-rate, 36
--progress-rate, 36
--rewrite, 35
--sample-directory, 35
--sample-rate, 35
--save-midi, 36
--sched, 35
--score-in, 34
--screen-buffer, 36
--sound-directory, 36
--tempo=NUM, 35
--terminate-on-midi, 35
--utility, 35
--verbose, 36
--volume, 36
--wave, 36
-3, 32
-8, 32
-@, 32
-A, 32
-B, 32
-C, 32
-D, 33
-E, 33
-F, 33
-G, 33
-H, 33
-I, 33
-J, 34
-K, 34
-L, 34
-M, 34
-N, 34
-O, 34
-P, 35
-Q, 35
-R, 35
-s, 35
-T, 35

1065

Index

-t0, 35
-U, 35
-V, 36
-W, 36
-X, 36
-Y, 36
-Z, 36
.csd, 36
.csoundrc, 36
/, 100
0dbfs, 107
:, 77, 89, 90, 92, 93, 103
=, 102
==, 103
?, 77, 89, 90, 92, 93, 103
@, 72
@@, 72
^, 104
{, 69
||, 106
}, 69

A
a, 109
a statement, 943
abetarand, 109
abexprnd, 110
abs, 110
acauchy, 111
active, 111
adsr, 114
adsyn, 117
adsynt, 118
advance statement, 943
aexprand, 121
aftouch, 121
agauss, 122
agogobel, 123
alinrand, 123
alpass, 123
ampdb, 125
ampdbfs, 126
ampmidi, 127
apcauchy, 129
apoisson, 129
apow, 129
areson, 129
aresonk, 131
atone, 132
atonek, 133
atonex, 134
atrirand, 135
aunirand, 135
aweibull, 135

B
b statement, 944
babo, 136
balance, 139
bamboo, 141
bbcutm, 142
bbcuts, 146
betarand, 149
bexprnd, 151
biquad, 152
biquada, 154
birnd, 155
bug reports

code, 30
butbp, 157
butbr, 157
buthp, 157
butlp, 158
butterbp, 158
butterbr, 160
butterhp, 161
butterlp, 163
button, 164
buzz, 165

C
cabasa, 166
cauchy, 168
cent, 169
cggoto, 171
chanctrl, 172
checkbox, 173
cigoto, 174
ckgoto, 176
clear, 177
clfilt, 178
clip, 180
clock, 182
clockoff, 182
clockon, 184
cngoto, 186
comb, 187
conditional expressions, 77, 89, 90, 92, 93, 103
control, 189
convle, 191
convolve, 191
cos, 194
cosh, 195
cosinv, 196
cps2pch, 197
cpsmidi, 200
cpsmidib, 201
cpsoct, 202
cpspch, 204
cpstmid, 206
cpstun, 208

1066

Index

cpstuni, 210
cpsxpch, 212
cpuprc, 215
cross2, 217
crunch, 218
Cscore, 1009
CSSTRNGS, 41
ctrl14, 219
ctrl21, 220
ctrl7, 221
ctrlinit, 222
cuserrnd, 223
cvanal, 996

D
dam, 224
db, 227
dbamp, 228
dbfsamp, 229
dcblock, 230
dconv, 232
delay, 233
delay1, 235
delayr, 235
delayw, 236
deltap, 237
deltape, 239
deltapi, 241
deltapn, 242
deltapx, 244
deltapxw, 245
diff, 247
diskin, 249
dispfft, 251
display, 252
distort1, 253
divz, 255
dnoise, 999
downsamp, 256
dripwater, 258
dumpk, 259
dumpk2, 261
dumpk3, 262
dumpk4, 263
duserrnd, 264

E
e statement, 945
else, 265
elseif, 266
endif, 266
endin, 267
envlpx, 268
envlpxr, 271
event, 272

exp, 274
expon, 275
exprand, 276
expseg, 278
expsega, 279
expsegr, 281
extract, 39

F

f statement, 945
filelen, 283
filenchnls, 284
filepeak, 286
filesr, 287
filter2, 288
fin, 290
fini, 290
fink, 291
fiopen, 292
flags, 31
flanger, 293
flashtxt, 295
fmb3, 296
fmbell, 298
fmmetal, 300
fmpercfl, 302
fmrhode, 304
fmvoice, 306
fmwurlie, 307
fof, 309
fof2, 312
fog, 313
fold, 315
follow, 316
follow2, 318
foscil, 319
foscili, 320
fout, 322
fouti, 324
foutir, 325
foutk, 326
frac, 327
ftchnls, 328
ftgen, 330
ftlen, 331
ftload, 333
ftloadk, 334
ftlptim, 335
ftmorf, 336
ftsave, 338
ftsavek, 340
ftsr, 340
function table statement, 945

1067

Index

G

gain, 342
gauss, 343
gbuzz, 344
GEN01, 955
GEN02, 956
GEN03, 957
GEN04, 958
GEN05, 958
GEN06, 959
GEN07, 960
GEN08, 961
GEN09, 962
GEN10, 963
GEN11, 964
GEN12, 965
GEN13, 966
GEN14, 967
GEN15, 969
GEN16, 969
GEN17, 970
GEN18, 971
GEN19, 972
GEN20, 973
GEN21, 975
GEN22, 971
GEN23, 976
GEN24, 977
GEN25, 977
GEN27, 978
GEN28, 979
GEN30, 981
GEN31, 981
GEN32, 982
GEN33, 984
GEN34, 985
GEN40, 987
GEN41, 988
GEN42, 988
gogobel, 346
goto, 347
grain, 349
grain2, 350
grain3, 354
granule, 359
guiro, 361

H

harmon, 363
hetro, 992
hilbert, 365
hrtfer, 368
hsboscil, 370

I
i, 372
i statement, 946
ibetarand, 373
ibexprnd, 373
icauchy, 373
ictrl14, 374
ictrl21, 374
ictrl7, 374
iexprand, 374
if, 374
igauss, 377
igoto, 378
ihold, 379
ilinrand, 381
imidic14, 381
imidic21, 381
imidic7, 381
in, 381
in32, 382
INCDIR, 41
inch, 383
inh, 383
init, 384
initc14, 385
initc21, 385
initc7, 386
ink, 387
ino, 389
inq, 389
ins, 390
instimek, 391
instimes, 391
instr, 391
instrument statement, 946
int, 395
integ, 396
interp, 397
invalue, 399
inx, 399
inz, 400
ioff, 401
ion, 401
iondur, 401
iondur2, 401
ioutat, 401
ioutc, 402
ioutc14, 402
ioutpat, 402
ioutpb, 402
ioutpc, 403
ipcauchy, 403
ipoisson, 403
ipow, 403
is16b14, 403
is32b14, 404
islider16, 404

1068

Index

islider32, 404
islider64, 404
islider8, 405
itablecopy, 405
itablegpw, 405
itablemix, 405
itablew, 405
itrirand, 406
iunirand, 406
iweibull, 406

J

jitter, 406
jitter2, 408
jspline, 410

K

kbetarand, 410
kbexprnd, 411
kcauchy, 411
kdump, 411
kdump2, 411
kdump3, 411
kdump4, 412
kexprand, 412
kfilter2, 412
kgauss, 412
kgoto, 413
klinrand, 414
kon, 414
koutat, 414
koutc, 415
koutc14, 415
koutpat, 415
koutpb, 415
koutpc, 416
kpcauchy, 416
kpoisson, 416
kpow, 416
kr, 416
kread, 417
kread2, 418
kread3, 418
kread4, 418
ksmps, 418
ktableseg, 419
ktrirand, 419
kunirand, 420
kweibull, 420

L
lfo, 420
limit, 422
line, 423
linen, 424
linenr, 425
lineto, 426
linrand, 426
linseg, 428
linsegr, 429
locsend, 431
locsig, 433
log, 435
log10, 436
logbtwo, 437
loopseg, 439
lorenz, 440
loscil, 443
loscil3, 445
lowpass2, 447
lowres, 448
lowresx, 450
lpanal, 993
lpf18, 451
lpfreson, 453
lphasor, 454
lpinterp, 455
lposcil, 456
lposcil3, 457
lpread, 457
lpreson, 458
lpshold, 459
lpslot, 460

M
m statement, 949
mac, 461
maca, 462
macros

orchestra, 78, 82, 83
score, 69

madsr, 463
mandol, 464
marimba, 466
mark statement, 949
massign, 468
maxalloc, 468
mclock, 470
mdelay, 471
midic14, 471
midic21, 472
midic7, 473
midichannelaftertouch, 474
midichn, 476
midicontrolchange, 478
midictrl, 480

1069

Index

mididefault, 481
midiin, 482
midinoteoff, 483
midinoteoncps, 485
midinoteonkey, 487
midinoteonoct, 489
midinoteonpch, 491
midion, 493
midion2, 494
midiout, 494
midipitchbend, 495
midipolyaftertouch, 497
midiprogramchange, 499
mirror, 500
modules, 1019
moog, 501
moogvcf, 502
moscil, 504
mpulse, 505
mrtmsg, 506
multiple file orchestras, 81
multiple file scores, 72
multitap, 507
mxadsr, 508

N
n statement, 950
nchnls, 509
nestedap, 510
nlfilt, 513
noise, 514
note statement, 946
noteoff, 516
noteon, 516
noteondur, 517
noteondur2, 518
notnum, 519
np, 68
nreverb, 520
nrpn, 522
nsamp, 523
ntrpol, 525

O
octave, 525
octcps, 527
octmidi, 529
octmidib, 530
octpch, 531
oscbnk, 533
oscil, 538
oscil1, 539
oscil1i, 540
oscil3, 541
oscili, 542

osciln, 544
oscils, 544
oscilx, 546
out, 546
out32, 547
outc, 547
outch, 548
outh, 549
outiat, 549
outic, 550
outic14, 551
outipat, 552
outipb, 553
outipc, 554
outk, 555
outkat, 556
outkc, 556
outkc14, 557
outkpat, 558
outkpb, 559
outkpc, 560
outo, 561
outq, 562
outq1, 562
outq2, 563
outq3, 564
outq4, 564
outs, 565
outs1, 566
outs2, 567
outvalue, 567
outx, 568
outz, 569

P
p, 569
pan, 570
pareq, 572
pcauchy, 574
pchbend, 575
pchmidi, 576
pchmidib, 578
pchoct, 579
peak, 581
peakk, 582
pgmassign, 582
phaser1, 585
phaser2, 587
phasor, 590
phasorbnk, 592
pinkish, 593
pitch, 596
pitchamdf, 598
planet, 600
pluck, 601
poisson, 603

1070

Index

polyaft, 605
port, 606
portk, 607
poscil, 607
poscil3, 609
pow, 610
powoftwo, 612
pp, 68
prealloc, 613
print, 615
printk, 616
printk2, 618
printks, 619
product, 622
pset, 622
pvadd, 623
pvanal, 995
pvbufread, 625
pvcross, 627
pvinterp, 628
pvlook, 1001
pvoc, 630
pvread, 631
pvsadsyn, 632
pvsanal, 633
pvscross, 635
pvsfread, 636
pvsftr, 637
pvsftw, 639
pvsinfo, 640
pvsmaska, 641
pvsynth, 642

R
r statement, 950
rand, 643
randh, 645
randi, 646
random, 648
randomh, 649
randomi, 651
readclock, 652
readk, 654
readk2, 655
readk3, 656
readk4, 658
reinit, 659
release, 660
repeat statement, 950
repluck, 661
reson, 663
resonk, 664
resonr, 665
resonx, 668
resony, 669
resonz, 671

reverb, 672
reverb2, 674
rezzy, 675
rigoto, 676
rireturn, 677
rms, 678
rnd, 678
rnd31, 680
rspline, 684
rtclock, 685

S
s statement, 951
s16b14, 686
s32b14, 688
SADIR, 41
samphold, 689
sandpaper, 690
scanhammer, 691
scans, 692
scantable, 694
scanu, 695
schedkwhen, 697
schedule, 698
schedwhen, 700
score

carry, 67
macros, 69
next-p, 68
previous-p, 68
ramping, 69
sort, 68
tempo, 67

Scsort, 39
sdif2ad, 1005
seed, 702
sekere, 702
semitone, 704
sense, 705
sensekey, 706
seqtime, 707
setctrl, 708
SFDIR, 41
sfilist, 710
sfinstr, 711
sfinstr3, 712
sfinstr3m, 714
sfinstrm, 715
sfload, 716
sfpassign, 717
sfplay, 718
sfplay3, 719
sfplay3m, 720
sfplaym, 721
sfplist, 723
sfpreset, 723

1071

Index

shaker, 724
sin, 726
sinh, 727
sininv, 728
sleighbells, 729
slider16, 731
slider16f, 732
slider32, 733
slider32f, 734
slider64, 735
slider64f, 737
slider8, 738
slider8f, 739
sndinfo, 998
sndwarp, 740
sndwarpst, 743
soundin, 745
soundout, 747
space, 748
spat3d, 752
spat3di, 760
spat3dt, 763
spdist, 766
specaddm, 770
specdiff, 771
specdisp, 772
specfilt, 773
spechist, 774
specptrk, 774
specscal, 776
specsum, 777
spectrum, 778
spsend, 779
sqrt, 781
sr, 782
srconv, 1007
SSDIR, 41
stix, 783
streson, 785
strset, 786
subinstr, 787
sum, 788
svfilter, 788

T
t statement, 952
table, 790
table3, 792
tablecopy, 793
tablegpw, 794
tablei, 794
tableicopy, 795
tableigpw, 796
tableikt, 797
tableimix, 798
tableiw, 799

tablekt, 801

tablemix, 802

tableng, 803

tablera, 804

tables

stored function, 1021
tableseg, 806

tablew, 807

tablewa, 809

tablewkt, 812

tablexkt, 814

tablexseg, 815

tambourine, 816

tan, 817

tanh, 818

taninv, 819

taninv2, 820

tbvcf, 822

tempest, 824

tempo, 826

tempo statement, 952

tempoval, 828

tigoto, 829

timeinstk, 830

timeinsts, 831

timek, 832

times, 834

timout, 835

tival, 836

tlineto, 836

tone, 837

tonek, 838

tonex, 838

transeg, 839

trigger, 840

trigseq, 842

trirand, 843

turnoff, 844

turnon, 845

U

Unified File Format, 36

unirand, 846

upsamp, 847

urd, 848

1072

V
v statement, 953
valpass, 849
vbap16, 850
vbap16move, 852
vbap4, 853
vbap4move, 855
vbap8, 857
vbap8move, 858
vbaplsinit, 860
vbapz, 862
vbapzmove, 863
vco, 865
vcomb, 867
vdelay, 868
vdelay3, 869
vdelayx, 870
vdelayxq, 871
vdelayxs, 872
vdelayxw, 873
vdelayxwq, 874
vdelayxws, 875
veloc, 876
vibes, 878
vibr, 879
vibrato, 881
vincr, 883
vlowres, 883
voice, 885
vpvoc, 887

W
waveset, 888
weibull, 890
wgbow, 891
wgbowedbar, 893
wgbrass, 894
wgclar, 896

wgflute, 898
wgpluck, 899
wgpluck2, 901
wguide1, 903
wguide2, 904
wrap, 905
wterrain, 906

X
x statement, 954
x-class noise generators, 149, 151, 168, 276, 343, 426, 574,
603, 843, 846, 890
xadsr, 908
xscanmap, 909
xscans, 909
xscanu, 911
xtratim, 913
xyin, 914

Z
zacl, 916
zakinit, 917
zamod, 919
zar, 921
zarg, 922
zaw, 924
zawm, 925
zfilter2, 927
zir, 929
ziw, 930
ziwm, 932
zkcl, 934
zkmod, 935
zkr, 937
zkw, 939
zkwm, 940

	Table of Contents
	Preface
	Preface to the Csound Manual
	Copyright Notice
	Contributors
	Why is this called the Alternative Csound Reference Manual?

	Chapter 1. Introduction
	Where to Get Public Csound and the Csound Manual
	How to Install Csound
	Linux
	Macintosh
	MSDOS and Windows 95/NT
	Windows 95/98/2000
	Other Platforms

	The Csound Mailing List
	Bug Reports

	Chapter 2. The Csound Command
	Order of Precedence
	Description
	Commandline Flags
	Commandline Flags

	Unified File Format for Orchestras and Scores
	Description
	Structured Data File Format
	Mandatory Elements
	Options
	Instruments (Orchestra)
	Score

	Optional Elements
	Included Base64 Files
	Version Blocking
	Example

	Command Line Parameter File

	Score File Preprocessing
	The Extract Feature
	Independent PreProcessing with Scsort

	Chapter 3. Syntax of the Orchestra
	Directories and Files
	Nomenclature
	Orchestra Statement Types
	Constants and Variables
	Expressions
	Orchestra Header Statements
	Instrument Block Statements
	Variable Initialization

	Chapter 4. Instrument Control
	Clock Control
	Conditional Values
	Duration Control Statements
	Instrument Invocation
	Macros
	Program Flow Control
	Realtime Performance Control
	Reinitialization
	Sensing and Control
	Subinstrument Control
	Time Reading

	Chapter 5. Function Table Control
	Table Queries
	Read/Write Operations
	Table Selection

	Chapter 6. Mathematical Operations
	Amplitude Converters
	Arithmetic and Logic Operations
	Mathematical Functions
	Opcode Equivalents of Functions
	Random Functions
	Trigonometric Functions

	Chapter 7. MIDI Support
	Controller Input
	Converters
	Event Extenders
	Generic Input and Output
	Noteon/Noteoff
	MIDI Message Output
	Realtime Messages
	Slider Banks

	Chapter 8. Pitch Converters
	Functions
	Tuning Opcodes

	Chapter 9. Signal Generators
	Additive Synthesis/Resynthesis
	Basic Oscillators
	Dynamic Spectrum Oscillators
	FM Synthesis
	Granular Synthesis
	Linear and Exponential Generators
	Linear Predictive Coding (LPC) Resynthesis
	Models and Emulations
	Phasors
	Random (Noise) Generators
	Sample Playback
	Scanned Synthesis
	Shorttime Fourier Transform (STFT) Resynthesis
	Table Access
	Wave Terrain Synthesis
	Waveguide Physical Modeling

	Chapter 10. Signal Input and Output
	File Input and Output
	Input
	Output
	Printing and Display
	Sound File Queries

	Chapter 11. Signal Modifiers
	Amplitude Modifiers
	Convolution and Morphing
	Delay
	Envelope Modifiers
	Panning and Spatialization
	Reverberation
	Sample Level Operators
	Signal Limiters
	Special Effects
	Specialized Filters
	Standard Filters
	Waveguides

	Chapter 12. Spectral Processing
	Nonstandard Spectral Processing
	Tools for Realtime Spectral Processing

	Chapter 13. Zak Patch System
	Chapter 14. The Standard Numeric Score
	Preprocessing of Standard Scores
	Carry
	Tempo
	Sort
	N.B.

	NextP and PreviousP Symbols
	Ramping
	Score Macros
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	Multiple File Score
	Description
	Syntax
	Performance
	Credits

	Evaluation of Expressions
	Example
	Credits

	Score Statements
	Sine/Cosine Generators
	Line/Exponential Segment Generators
	File Access GEN Routines
	Numeric Value Access GEN Routines
	Window Function GEN Routines
	Random Function GEN Routines
	Waveshaping GEN Routines
	Amplitude Scaling GEN Routines
	Mixing GEN Routines

	Chapter 15. Orchestra Opcodes and Operators
	!=
	Description
	Syntax
	Performance
	Examples
	See Also

	define
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	include
	Description
	Syntax
	Performance
	Examples
	Credits

	undef
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	NAME
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	
	Description
	Syntax
	Examples
	See Also

	
	Description
	Syntax
	See Also

	
	Description
	Syntax
	Performance
	Examples
	See Also

	=
	Description
	Syntax
	Performance
	Examples
	See Also

	
	Description
	Syntax
	Performance
	Examples
	See Also

	=
	Description
	Syntax
	Performance
	Examples
	See Also

	
	Description
	Syntax
	Examples
	See Also

	
	Description
	Syntax
	Examples
	See Also

	
	Description
	Syntax
	Examples
	See Also

	
	Description
	Syntax
	Examples
	See Also

	=
	Syntax
	Description
	Initialization
	Examples
	See Also

	==
	Description
	Syntax
	Performance
	Examples
	See Also

	
	Description
	Syntax
	Examples
	See Also

	
	Description
	Syntax
	See Also

	0dbfs
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	a
	Description
	Syntax
	See Also
	Credits

	abetarand
	Description

	abexprnd
	Description

	abs
	Description
	Syntax
	Examples
	See Also

	acauchy
	Description

	active
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	adsr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	adsyn
	Description
	Syntax
	Initialization
	Performance
	Examples

	adsynt
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	aexprand
	Description

	aftouch
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	agauss
	Description

	agogobel
	Description

	alinrand
	Description

	alpass
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	ampdb
	Description
	Syntax
	Examples
	See Also

	ampdbfs
	Description
	Syntax
	Examples
	See Also

	ampmidi
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	apcauchy
	Description

	apoisson
	Description

	apow
	Description

	areson
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	aresonk
	Description
	Syntax
	Initialization
	Performance
	See Also

	atone
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	atonek
	Description
	Syntax
	Initialization
	Performance
	See Also

	atonex
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	atrirand
	Description

	aunirand
	Description

	aweibull
	Description

	babo
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	balance
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	bamboo
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	bbcutm
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	bbcuts
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	betarand
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	bexprnd
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	biquad
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	biquada
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	birnd
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	butbp
	Description
	Syntax

	butbr
	Description
	Syntax

	buthp
	Description
	Syntax

	butlp
	Description
	Syntax

	butterbp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	butterbr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	butterhp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	butterlp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	button
	Description
	Syntax
	Performance
	See Also
	Credits

	buzz
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	cabasa
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	cauchy
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	cent
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	cggoto
	Description
	Syntax
	Examples
	See Also
	Credits

	chanctrl
	Description
	Syntax
	Initialization
	Credits

	checkbox
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	cigoto
	Description
	Syntax
	Examples
	See Also
	Credits

	ckgoto
	Description
	Syntax
	Examples
	See Also
	Credits

	clear
	Description
	Syntax
	Performance
	See Also
	Credits

	clfilt
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	clip
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	clock
	Description

	clockoff
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	clockon
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	cngoto
	Description
	Syntax
	Examples
	See Also
	Credits

	comb
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	control
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	convle
	Description
	Syntax

	convolve
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	cos
	Description
	Syntax
	Examples
	See Also

	cosh
	Description
	Syntax
	Examples
	See Also

	cosinv
	Description
	Syntax
	Examples
	See Also

	cps2pch
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	cpsmidi
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	cpsmidib
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	cpsoct
	Description
	Syntax
	Performance
	Examples
	See Also

	cpspch
	Description
	Syntax
	Performance
	Examples
	See Also

	cpstmid
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	cpstun
	Description
	Syntax
	Performance
	Examples
	See Also

	cpstuni
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	cpsxpch
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	cpuprc
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	cross2
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	crunch
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	ctrl14
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	ctrl21
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	ctrl7
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	ctrlinit
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	cuserrnd
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	dam
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	db
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	dbamp
	Description
	Syntax
	Examples
	See Also

	dbfsamp
	Description
	Syntax
	Examples
	See Also

	dcblock
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	dconv
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	delay
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	delay1
	Description
	Syntax
	Initialization
	Performance
	See Also

	delayr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	delayw
	Description
	Syntax
	Performance
	Examples
	See Also

	deltap
	Description
	Syntax
	Performance
	Examples
	See Also

	deltap3
	Description
	Syntax
	Performance
	Examples
	See Also

	deltapi
	Description
	Syntax
	Performance
	Examples
	See Also

	deltapn
	Description
	Syntax
	Performance
	Examples
	See Also

	deltapx
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	deltapxw
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	diff
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	diskin
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	dispfft
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	display
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	distort1
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	divz
	Syntax
	Description
	Initialization
	Examples
	See Also

	downsamp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	dripwater
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	dumpk
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	dumpk2
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	dumpk3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	dumpk4
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	duserrnd
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	else
	Description
	Syntax
	Performance
	See Also
	Credits

	elseif
	Description
	Syntax
	Performance
	See Also
	Credits

	endif
	Description
	Syntax
	Performance
	See Also
	Credits

	endin
	Description
	Syntax
	Initialization
	Examples
	See Also

	envlpx
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	envlpxr
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	event
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	exp
	Description
	Syntax
	Examples
	See Also

	expon
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	exprand
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	expseg
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	expsega
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	expsegr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	filelen
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	filenchnls
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	filepeak
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	filesr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	filter2
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fin
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	fini
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	fink
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	fiopen
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	flanger
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	flashtxt
	Description
	Syntax
	Initialization
	Performance
	Examples

	fmb3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fmbell
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fmmetal
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fmpercfl
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fmrhode
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fmvoice
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	fmwurlie
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fof
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	fof2
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	fog
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	fold
	Description
	Syntax
	Performance
	Examples
	Credits

	follow
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	follow2
	Description
	Syntax
	Performance
	Examples
	Credits

	foscil
	Description
	Syntax
	Initialization
	Performance
	Examples

	foscili
	Description
	Syntax
	Initialization
	Performance
	Examples

	fout
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	fouti
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	foutir
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	foutk
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	frac
	Description
	Syntax
	Examples
	See Also

	ftchnls
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	ftgen
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	ftlen
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	ftload
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	ftloadk
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	ftlptim
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	ftmorf
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	ftsave
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	ftsavek
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	ftsr
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	gain
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	gauss
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	gbuzz
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	gogobel
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	goto
	Description
	Syntax
	Examples
	See Also
	Credits

	grain
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	grain2
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	grain3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	granule
	Description
	Syntax
	Performance
	Examples
	Credits

	guiro
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	harmon
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	hilbert
	Description
	Syntax
	Performance
	Examples
	Technical History
	References
	Credits

	hrtfer
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	hsboscil
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	i
	Description
	Syntax
	See Also

	ibetarand
	Description

	ibexprnd
	Description

	icauchy
	Description

	ictrl14
	Description

	ictrl21
	Description

	ictrl7
	Description

	iexprand
	Description

	if
	Description
	Syntax
	Examples
	See Also
	Credits

	igauss
	Description

	igoto
	Description
	Syntax
	Examples
	See Also
	Credits

	ihold
	Description
	Syntax
	Performance
	Examples
	See Also

	ilinrand
	Description

	imidic14
	Description

	imidic21
	Description

	imidic7
	Description

	in
	Description
	Syntax
	Performance
	See Also
	Credits

	in32
	Description
	Syntax
	Performance
	Credits
	Credits

	inch
	Description
	Syntax
	Performance
	Credits
	Credits

	inh
	Description
	Syntax
	Performance
	See Also
	Credits

	init
	Syntax
	Description
	Initialization
	See Also

	initc14
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	initc21
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	initc7
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	ink
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	ino
	Description
	Syntax
	Performance
	See Also
	Credits

	inq
	Description
	Syntax
	Performance
	See Also
	Credits

	ins
	Description
	Syntax
	Performance
	See Also
	Credits

	instimek
	Description
	Credits

	instimes
	Description
	Credits

	instr
	Description
	Syntax
	Initialization
	Performance
	Calling an Instrument within an Instrument
	Advanced Options

	Examples
	See Also

	int
	Description
	Syntax
	Examples
	See Also

	integ
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	interp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	invalue
	Description
	Syntax
	Performance
	See Also
	Credits

	inx
	Description
	Syntax
	Performance
	Credits
	Credits

	inz
	Description
	Syntax
	Performance
	Credits
	Credits

	ioff
	Description

	ion
	Description

	iondur
	Description

	iondur2
	Description

	ioutat
	Description

	ioutc
	Description

	ioutc14
	Description

	ioutpat
	Description

	ioutpb
	Description

	ioutpc
	Description

	ipcauchy
	Description

	ipoisson
	Description

	ipow
	Description

	is16b14
	Description

	is32b14
	Description

	islider16
	Description

	islider32
	Description

	islider64
	Description

	islider8
	Description

	itablecopy
	Description

	itablegpw
	Description

	itablemix
	Description

	itablew
	Description

	itrirand
	Description

	iunirand
	Description

	iweibull
	Description

	jitter
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	jitter2
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	jspline
	Description
	Syntax
	Performance
	Credits

	kbetarand
	Description

	kbexprnd
	Description

	kcauchy
	Description

	kdump
	Description

	kdump2
	Description

	kdump3
	Description

	kdump4
	Description

	kexprand
	Description

	kfilter2
	Description

	kgauss
	Description

	kgoto
	Description
	Syntax
	Examples
	See Also
	Credits

	klinrand
	Description

	kon
	Description

	koutat
	Description

	koutc
	Description

	koutc14
	Description

	koutpat
	Description

	koutpb
	Description

	koutpc
	Description

	kpcauchy
	Description

	kpoisson
	Description

	kpow
	Description

	kr
	Description
	Syntax
	Initialization
	Examples
	See Also

	kread
	Description

	kread2
	Description

	kread3
	Description

	kread4
	Description

	ksmps
	Description
	Syntax
	Initialization
	Examples
	See Also

	ktableseg
	Description
	Syntax

	ktrirand
	Description

	kunirand
	Description

	kweibull
	Description

	lfo
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	limit
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	line
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	linen
	Description
	Syntax
	Initialization
	Performance
	See Also

	linenr
	Description
	Syntax
	Initialization
	Performance
	See Also

	lineto
	Description
	Syntax
	Performance
	See Also
	Credits

	linrand
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	linseg
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	linsegr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	locsend
	Description
	Syntax
	Examples
	See Also
	Credits

	locsig
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	log
	Description
	Syntax
	Examples
	See Also

	log10
	Description
	Syntax
	Examples
	See Also

	logbtwo
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	loopseg
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	lorenz
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	loscil
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	loscil3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	lowpass2
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	lowres
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	lowresx
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	lpf18
	Description
	Syntax
	Performance
	Examples
	Credits

	lpfreson
	Description
	Syntax
	Performance
	See Also

	lphasor
	Description
	Syntax
	Initialization
	Performance
	Credits

	lpinterp
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	lposcil
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	lposcil3
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	lpread
	Description
	Syntax
	Initialization
	Performance
	See Also

	lpreson
	Description
	Syntax
	Performance
	See Also

	lpshold
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	lpslot
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	mac
	Description
	Syntax
	Performance
	See Also
	Credits

	maca
	Description
	Syntax
	Performance
	See Also
	Credits

	madsr
	Description
	Syntax
	Initialization
	Performance
	See Also

	mandol
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	marimba
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	massign
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	maxalloc
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	mclock
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	mdelay
	Description
	Syntax
	Performance
	Credits

	midic14
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	midic21
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	midic7
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	midichannelaftertouch
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	midichn
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	midicontrolchange
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	midictrl
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	mididefault
	Description
	Syntax
	Performance
	See Also
	Credits

	midiin
	Description
	Syntax
	Performance
	Credits

	midinoteoff
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	midinoteoncps
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	midinoteonkey
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	midinoteonoct
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	midinoteonpch
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	midion
	Description
	Syntax
	Performance
	See Also
	Credits

	midion2
	Description
	Syntax
	Performance
	Credits

	midiout
	Description
	Syntax
	Performance
	Credits

	midipitchbend
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	midipolyaftertouch
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	midiprogramchange
	Description
	Syntax
	Performance
	See Also
	Credits

	mirror
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	moog
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	moogvcf
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	moscil
	Description
	Syntax
	Performance
	See Also
	Credits

	mpulse
	Description
	Syntax
	Initialization
	Performance
	Examples

	mrtmsg
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	multitap
	Description
	Syntax
	Initialization
	Examples
	Credits

	mxadsr
	Description
	Syntax
	Initialization
	Performance
	See Also

	nchnls
	Description
	Syntax
	Initialization
	See Also

	nestedap
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	nlfilt
	Description
	Syntax
	Performance
	Credits

	noise
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	noteoff
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	noteon
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	noteondur
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	noteondur2
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	notnum
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	nreverb
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	nrpn
	Description
	Syntax
	Performance
	Credits

	nsamp
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	ntrpol
	Description
	Syntax
	Initialization
	Performance
	Credits

	octave
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	octcps
	Description
	Syntax
	Performance
	Examples
	See Also

	octmidi
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	octmidib
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	octpch
	Description
	Syntax
	Performance
	Examples
	See Also

	oscbnk
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	oscil
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	oscil1
	Description
	Syntax
	Initialization
	Performance
	See Also

	oscil1i
	Description
	Syntax
	Initialization
	Performance
	See Also

	oscil3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	oscili
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	osciln
	Description
	Syntax
	Initialization
	Performance
	See Also

	oscils
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	oscilx
	Description
	Syntax

	out
	Description
	Syntax
	Performance
	See Also
	Credits

	out32
	Description
	Syntax
	Performance
	Credits
	Credits

	outc
	Description
	Syntax
	Performance
	Credits
	Credits

	outch
	Description
	Syntax
	Performance
	Credits
	Credits

	outh
	Description
	Syntax
	Performance
	See Also
	Credits

	outiat
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	outic
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	outic14
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	outipat
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	outipb
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	outipc
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	outk
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	outkat
	Description
	Syntax
	Performance
	See Also
	Credits

	outkc
	Description
	Syntax
	Performance
	See Also
	Credits

	outkc14
	Description
	Syntax
	Performance
	See Also
	Credits

	outkpat
	Description
	Syntax
	Performance
	See Also
	Credits

	outkpb
	Description
	Syntax
	Performance
	See Also
	Credits

	outkpc
	Description
	Syntax
	Performance
	See Also
	Credits

	outo
	Description
	Syntax
	Performance
	See Also
	Credits

	outq
	Description
	Syntax
	Performance
	See Also
	Credits

	outq1
	Description
	Syntax
	Performance
	See Also
	Credits

	outq2
	Description
	Syntax
	Performance
	See Also
	Credits

	outq3
	Description
	Syntax
	Performance
	See Also
	Credits

	outq4
	Description
	Syntax
	Performance
	See Also
	Credits

	outs
	Description
	Syntax
	Performance
	See Also
	Credits

	outs1
	Description
	Syntax
	Performance
	See Also
	Credits

	outs2
	Description
	Syntax
	Performance
	See Also
	Credits

	outvalue
	Description
	Syntax
	Performance
	See Also
	Credits

	outx
	Description
	Syntax
	Performance
	Credits
	Credits

	outz
	Description
	Syntax
	Performance
	Credits
	Credits

	p
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pan
	Description
	Syntax
	Initialization
	Performance
	Examples

	pareq
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pcauchy
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	pchbend
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pchmidi
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	pchmidib
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pchoct
	Description
	Syntax
	Performance
	Examples
	See Also

	peak
	Description
	Syntax
	Performance
	Examples
	Credits

	peakk
	Description

	pgmassign
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	phaser1
	Description
	Syntax
	Initialization
	Performance
	Examples
	Technical History
	References
	See Also
	Credits

	phaser2
	Description
	Syntax
	Initialization
	Performance
	Examples
	Technical History
	References
	See Also
	Credits

	phasor
	Description
	Syntax
	Initialization
	Performance
	Examples

	phasorbnk
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pinkish
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pitch
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pitchamdf
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	planet
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pluck
	Description
	Syntax
	Initialization
	Performance
	Examples

	poisson
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	polyaft
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	port
	Description
	Syntax
	Initialization
	Performance
	See Also

	portk
	Description
	Syntax
	Initialization
	Performance
	See Also

	poscil
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	poscil3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pow
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	powoftwo
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	prealloc
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	print
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	printk
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	printk2
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	printks
	Description
	Syntax
	Initialization
	Performance
	Print Output Formatting
	Examples
	See Also
	Credits

	product
	Description
	Syntax
	Performance
	Credits

	pset
	Description
	Syntax
	Initialization
	Examples
	See Also

	pvadd
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pvbufread
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pvcross
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pvinterp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pvoc
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	pvread
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pvsadsyn
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pvsanal
	Description
	Syntax
	Initialization
	Examples
	Credits

	pvscross
	Description
	Syntax
	Performance
	Examples
	Credits

	pvsfread
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pvsftr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pvsftw
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	pvsinfo
	Description
	Syntax
	Initialization
	Examples
	Credits

	pvsmaska
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	pvsynth
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	rand
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	randh
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	randi
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	random
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	randomh
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	randomi
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	readclock
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	readk
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	readk2
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	readk3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	readk4
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	reinit
	Description
	Syntax
	Examples
	See Also

	release
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	repluck
	Description
	Syntax
	Initialization
	Performance
	Performance
	Examples
	See Also
	Credits

	reson
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	resonk
	Description
	Syntax
	Initialization
	Performance
	See Also

	resonr
	Description
	Syntax
	Initialization
	Performance
	Examples
	Technical History
	References
	See Also
	Credits

	resonx
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	resony
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	resonz
	Description
	Syntax
	Initialization
	Performance
	Technical History
	References
	See Also
	Credits

	reverb
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	reverb2
	Description
	Syntax

	rezzy
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	rigoto
	Description
	Syntax
	See Also

	rireturn
	Description
	Syntax
	Examples
	See Also

	rms
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	rnd
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	rnd31
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	rspline
	Description
	Syntax
	Performance
	Credits

	rtclock
	Description
	Syntax
	Performance
	Examples
	Credits

	s16b14
	Description
	Syntax
	Initialization
	Performance
	Credits

	s32b14
	Description
	Syntax
	Initialization
	Performance
	Credits

	samphold
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	sandpaper
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	scanhammer
	Description
	Syntax
	Initialization
	See Also
	Credits

	scans
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	scantable
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	scanu
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	schedkwhen
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	schedule
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	schedwhen
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	seed
	Description
	Syntax
	Performance

	sekere
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	semitone
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	sense
	Description
	Syntax

	sensekey
	Description
	Syntax
	Performance
	Examples
	Credits

	seqtime
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	setctrl
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	sfilist
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfinstr
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfinstr3
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfinstr3m
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfinstrm
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfload
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfpassign
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfplay
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfplay3
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfplay3m
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfplaym
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfplist
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sfpreset
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	shaker
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	sin
	Description
	Syntax
	Examples
	See Also

	sinh
	Description
	Syntax
	Examples
	See Also

	sininv
	Description
	Syntax
	Examples
	See Also

	sleighbells
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	slider16
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	slider16f
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	slider32
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	slider32f
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	slider64
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	slider64f
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	slider8
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	slider8f
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sndwarp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	sndwarpst
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	soundin
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	soundout
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	space
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	spat3d
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	spat3di
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	spat3dt
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	spdist
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	specaddm
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	specdiff
	Description
	Syntax
	Performance
	Examples
	See Also

	specdisp
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	specfilt
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	spechist
	Description
	Syntax
	Performance
	Examples
	See Also

	specptrk
	Description
	Syntax
	Initialization
	Performance
	Examples

	specscal
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	specsum
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	spectrum
	Description
	Syntax
	Initialization
	Performance
	Examples

	spsend
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	sqrt
	Description
	Syntax
	Examples
	See Also

	sr
	Description
	Syntax
	Initialization
	Examples
	See Also

	stix
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	streson
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	strset
	Description
	Syntax
	Initialization
	Examples
	See Also

	subinstr
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	sum
	Description
	Syntax
	Performance
	Credits

	svfilter
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	table
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	table3
	Description
	Syntax
	Initialization
	Performance
	See Also

	tablecopy
	Description
	Syntax
	Performance
	See Also
	Credits

	tablegpw
	Description
	Syntax
	Performance
	See Also
	Credits

	tablei
	Description
	Syntax
	Initialization
	Performance
	See Also

	tableicopy
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	tableigpw
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	tableikt
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	tableimix
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	tableiw
	Description
	Syntax
	Initialization
	Performance
	Limit mode (0)
	Wrap mode (1)
	Guardpoint mode (2)

	See Also
	Credits

	tablekt
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	tablemix
	Description
	Syntax
	Performance
	See Also
	Credits

	tableng
	Description
	Syntax
	Initialization
	Performance
	Credits

	tablera
	Description
	Syntax
	Performance
	Examples

	tableseg
	Description
	Syntax
	Initialization
	See Also
	Credits

	tablew
	Description
	Syntax
	Initialization
	Performance
	Limit mode (0)
	Wrap mode (1)
	Guardpoint mode (2)
	Caution with krate table numbers

	See Also
	Credits

	tablewa
	Description
	Syntax
	Performance
	Examples

	tablewkt
	Description
	Syntax
	Initialization
	Performance
	Limit mode (0)
	Wrap mode (1)
	Guardpoint mode (2)
	Caution with krate table numbers

	See Also
	Credits

	tablexkt
	Description
	Syntax
	Initialization
	Performance
	Credits

	tablexseg
	Description
	Syntax
	Initialization
	See Also
	Credits

	tambourine
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	tan
	Description
	Syntax
	Examples
	See Also

	tanh
	Description
	Syntax
	Examples
	See Also

	taninv
	Description
	Syntax
	Examples
	See Also

	taninv2
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	tbvcf
	Description
	Syntax
	Performance
	Examples
	Credits

	tempest
	Description
	Syntax
	Initialization
	Performance
	Examples

	tempo
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also

	tempoval
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	tigoto
	Description
	Syntax
	See Also
	Credits

	timeinstk
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	timeinsts
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	timek
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	times
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	timout
	Description
	Syntax
	See Also
	Credits

	tival
	Syntax
	Description
	Initialization
	See Also

	tlineto
	Description
	Syntax
	Performance
	See Also
	Credits

	tone
	Description
	Syntax
	Initialization
	Performance
	See Also

	tonek
	Description
	Syntax
	Initialization
	Performance
	See Also

	tonex
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	transeg
	Description
	Syntax
	Initialization
	Performance
	Credits

	trigger
	Description
	Syntax
	Performance
	Examples
	Credits

	trigseq
	Description
	Syntax
	Performance
	See Also
	Credits

	trirand
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	turnoff
	Description
	Syntax
	Performance
	Examples
	See Also

	turnon
	Description
	Syntax
	Initialization
	Performance

	unirand
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	upsamp
	Description
	Syntax
	Performance
	Examples
	See Also

	urd
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	valpass
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	vbap16
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbap16move
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbap4
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbap4move
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbap8
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbap8move
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbaplsinit
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbapz
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vbapzmove
	Description
	Syntax
	Initialization
	Performance
	Examples
	Reference
	See Also
	Credits

	vco
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	vcomb
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	vdelay
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	vdelay3
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	vdelayx
	Description
	Syntax
	Initialization
	Performance
	See Also

	vdelayxq
	Description
	Syntax
	Initialization
	Performance
	See Also

	vdelayxs
	Description
	Syntax
	Initialization
	Performance
	See Also

	vdelayxw
	Description
	Syntax
	Initialization
	Performance
	See Also

	vdelayxwq
	Description
	Syntax
	Initialization
	Performance
	See Also

	vdelayxws
	Description
	Syntax
	Initialization
	Performance
	See Also

	veloc
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	vibes
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	vibr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	vibrato
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	vincr
	Description
	Syntax
	Performance
	See Also
	Credits

	vlowres
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	voice
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	vpvoc
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	waveset
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	weibull
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	wgbow
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	wgbowedbar
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	wgbrass
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	wgclar
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	wgflute
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	wgpluck
	Description
	Syntax
	Initialization
	Performance
	Examples

	wgpluck2
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	wguide1
	Description
	Syntax
	Performance
	See Also
	Credits

	wguide2
	Description
	Syntax
	Performance
	See Also
	Credits

	wrap
	Description
	Syntax
	Initialization
	Performance
	See Also
	Credits

	wterrain
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	xadsr
	Description
	Syntax
	Initialization
	Performance
	See Also

	xscanmap
	Description
	Syntax
	Initialization
	Performance
	Credits

	xscans
	Description
	Syntax
	Initialization
	Performance
	Matrix Format
	Examples
	See Also

	xscanu
	Description
	Syntax
	Initialization
	Performance
	Matrix Format
	Examples
	See Also

	xtratim
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	xyin
	Description
	Syntax
	Initialization
	Performance
	Examples

	zacl
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	zakinit
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	zamod
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	zar
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	zarg
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	zaw
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	zawm
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	zfilter2
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	zir
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	ziw
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	ziwm
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	zkcl
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	zkmod
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	zkr
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	zkw
	Description
	Syntax
	Performance
	Examples
	See Also
	Credits

	zkwm
	Description
	Syntax
	Initialization
	Performance
	Examples
	See Also
	Credits

	Chapter 16. Score Statements and GEN Routines
	Score Statements
	a Statement (or Advance Statement)
	Description
	Syntax
	Performance
	Special Considerations

	b Statement
	Description
	Syntax
	Performance
	Special Considerations

	Examples
	Credits

	e Statement
	Description
	Syntax
	Performance
	Special Considerations

	f Statement (or Function Table Statement)
	Description
	Syntax
	Performance
	Special Considerations

	Credits

	i Statement (Instrument or Note Statement)
	Description
	Syntax
	Initialization
	Performance
	Special Considerations

	Examples
	Credits

	m Statement (Mark Statement)
	Description
	Syntax
	Initialization
	Performance
	Credits

	n Statement
	Description
	Syntax
	Initialization
	Performance
	Credits

	r Statement (Repeat Statement)
	Description
	Syntax
	Initialization
	Performance
	Examples
	Credits

	s Statement
	Description
	Syntax
	Initialization
	Performance

	t Statement (Tempo Statement)
	Description
	Syntax
	Initialization
	Performance

	v Statement
	Description
	Syntax
	Initialization
	Performance
	Examples

	x Statement
	Description
	Syntax
	Initialization

	GEN Routines
	GEN01
	Description
	Syntax
	Performance
	Examples

	GEN02
	Description
	Syntax
	Initialization
	Examples

	GEN03
	Description
	Syntax
	Initialization
	Examples

	GEN04
	Description
	Syntax
	Initialization
	Examples

	GEN05
	Description
	Syntax
	Initialization
	Examples
	See Also

	GEN06
	Description
	Syntax
	Initialization
	Examples

	GEN07
	Description
	Syntax
	Initialization
	Examples
	See Also

	GEN08
	Description
	Syntax
	Initialization
	Examples

	GEN09
	Description
	Syntax
	Initialization
	Examples
	See Also

	GEN10
	Description
	Syntax
	Initialization
	Examples
	See Also

	GEN11
	Description
	Syntax
	Initialization
	Examples

	GEN12
	Description
	Syntax
	Initialization
	Performance
	Examples

	GEN13
	Description
	Syntax
	Initialization
	Examples
	See Also

	GEN14
	Description
	Syntax
	Initialization
	Examples
	See Also

	GEN15
	Description
	Syntax
	Initialization

	GEN16
	Description
	Syntax
	Initialization
	Credits

	GEN17
	Description
	Syntax
	Initialization
	Examples

	GEN18
	Description
	Syntax
	Initialization
	Examples
	Deprecated Names
	Credits

	GEN19
	Description
	Syntax
	Initialization
	Examples
	See Also

	GEN20
	Description
	Syntax
	Initialization
	Examples
	Credits

	GEN21
	Description
	Syntax
	Initialization
	Examples
	Credits

	GEN23
	Description
	Syntax
	Initialization
	Credits

	GEN24
	Description
	Syntax
	Initialization
	Credits

	GEN25
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	GEN27
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	GEN28
	Description
	Syntax
	Initialization
	Examples
	Credits

	GEN30
	Description
	Syntax
	Performance
	Credits

	GEN31
	Description
	Syntax
	Performance
	Credits

	GEN32
	Description
	Syntax
	Performance
	Examples
	Credits

	GEN33
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	GEN34
	Description
	Syntax
	Initialization
	Examples
	See Also
	Credits

	GEN40
	Description
	Syntax
	Performance
	Credits

	GEN41
	Description
	Syntax
	Performance
	Credits

	GEN42
	Description
	Syntax
	Performance
	Credits

	Chapter 17. The Utility Programs
	Directories.
	Soundfile Formats.
	Credits
	Analysis File Generation
	hetro
	Description
	Syntax
	Initialization
	Performance
	Examples
	File Format

	Credits

	lpanal
	Description
	Syntax
	Initialization
	Examples
	File Format

	pvanal
	Description
	Syntax
	Pvanal extension to create a PVOCEX file.
	Initialization
	Examples
	Files
	Diagnostics

	Credits

	cvanal
	Description
	Syntax
	Initialization
	Examples
	Files

	Credits

	File Queries
	sndinfo
	Description
	Syntax
	Initialization
	Examples

	File Conversion
	dnoise
	Description
	Syntax
	Initialization
	Performance
	Credits

	pvlook
	Description
	Syntax
	Initialization
	Examples
	Credits

	sdif2ad
	Description
	Syntax
	Initialization
	Credits

	srconv
	Description
	Syntax
	Initialization
	Credits

	Chapter 18. Cscore
	Events, Lists, and Operations
	Writing a Main Program
	More Advanced Examples
	Compiling a Cscore Program

	Chapter 19. Adding your own Cmodules to Csound
	Function tables
	Additional Space
	File Sharing
	String arguments

	Appendix A. Pitch Conversion
	Appendix B. Sound Intensity Values
	Appendix C. Formant Values
	Appendix D. Window Functions
	Appendix E. SoundFont2 File Format
	Appendix F. Quick Reference
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

